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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have now reached the level of sophistication

to permit analysis of important macroeconomic issues. Whereas the model parameters (θ) used

to be calibrated, numerical advances have made it possible to estimate models with as many

as a hundred parameters. Researchers are, however, aware that not all the parameters can be

consistently estimated because of identification failure: that is, changes in some of the parameters

may lead to indistinguishable outcomes. This paper studies local identification of a DSGE model

from its linearized solution. We use the restrictions implied by observationally equivalent spectral

densities to obtain rank and order conditions for identification. Mean and long-run restrictions can

be incorporated in the form of a priori restrictions. The error terms can be the primitive shocks in

the model but can also be specification or measurement errors.

The literature on identification of DSGE models is relatively small. Canova and Sala (2009)

drew attention to the identification problem and suggest to plot some statistics of the estimated

model evaluated at different parameter values. Consolo, Favero, and Paccagnini (2009) compare

the properties of the DSGE model with those of a factor augmented VAR. Both approaches, while

useful, do not provide formal conditions for identification. Rubio-Ramı́rez, Waggoner, and Zha

(2007) study identification of structural VARs but not DSGE models per se. The most complete

analysis to date is due to Iskrev (2010) who proposes to evaluate the derivatives with respect to

θ of some J < T model-implied autocovariances, where T is the sample size. His results depend

on J and the autocovariance matrices need to be solved numerically. We do not compute any

autocovariances. Instead, we study the implications of observational equivalence for the canonical

model that generates the autocovariances. This leads to a finite system of nonlinear equations with

derivative matrix ∆(θ). The rank of ∆(θ) and the order of the system provide the necessary and

sufficient conditions for identification of θ.

Our analysis has two distinctive features. First, the restrictions used in the identification

analysis are derived from the structural features of the linearized DSGE model. This structural

identification approach appears new to the econometrics literature. It has its roots in control theory

which typically assumes that both the outputs (endogenous variables) and the inputs (innovations)

are observed. In such cases, restrictions on the transfer function of minimal systems are necessary

and sufficient for identification. But DSGE models have latent shocks with unknown variances

and the econometrician only observes some of the outputs. Thus we derive new identification

conditions that also exploit restrictions on transfer functions that are left-invertible. Minimality

and left-invertibility, which will be explained below, allow us to by-pass direct calculations of

autocovariances and instead focus on the determinants of these autocovariances. The ∆(θ) matrix

1



sheds light on whether non-identification is due to parameter dependency, or delicate interactions

between the impulse and the propagating mechanism of the model. The null space of ∆(θ) helps

isolate which parameters are responsible for non-identification.

Second, the identification conditions for singular and non-singular systems are studied sepa-

rately. Classical identification analysis tend to focus on models with the same number of endogenous

variables as errors. The results do not usually hold when there are fewer errors than observables,

a condition known as ‘stochastic singularity’. Models with fewer observables than errors are non-

singular; however, the innovations is such models are usually non-fundamental. As each case has

specific implications about what can be uncovered from the observables, the identification restric-

tions are also different. Nonetheless, in the important special case when the system is ‘square’, the

two sets of conditions coincide. The conditions depend on the number of state variables and the

number of innovations irrespective of the sample size.

Before turning to the main analysis, it is useful to better understand what is unusual about

the identification of DSGE models. Consider a model parameterized by θ whose linearized solution

takes a PQRS form:

kt+1 = P (θ)kt +Q(θ)zt+1

wt+1 = R(θ)kt + S(θ)zt+1

zt+1 = Ψz(θ)zt + εzt+1, εzt ∼WN(0,Σz(θ)),

where kt is the endogenous state vector, wt are jump variables, and zt are exogenous shocks with

innovations εzt. To begin with, observe that y′t = (k′t, w
′
t) is a VARMA process. Identification of θ

would be futile unless the VARMA parameters were identifiable even though we are not interested

in these parameters per se. This, however, is not a trivial problem because VARMA models are

potentially ‘exchangeable’ and common factors can exist unless a so-called left-coprime condition is

satisfied.1 The echelon (canonical) VARMA model and its order, also known as McMillan degree,

can be solved only when the system is small.2 A problem that further complicates identification is

that the VARMA representations of stochastically singular models involve matrices that are gen-

erally not square. This violates the usual assumptions used in Deistler (1976), for example. Thus,

no attempt has been made to identify DSGE models directly from the VARMA representations.

We can also view kt+1 and wt+1 as dependent variables being expressed in terms of the pre-

determined variables kt and serially correlated errors zt+1. Then the equations have the flavor
1Exchangeable means that two processes can have identical moving average representations if there is a unimodular

factor in the autoregressive or moving-average matrix polynomial. For example, Thus a VMA model yt = U(L)Θ(L)εt
is equivalent to the VARMA model U(L)−1yt = Θ(L)εt (see, e.g., Section 2.3 in Reinsel, 2003). The co-primeness
condition rules out redundant polynomials that lead to an overparameteried model (see, e.g., Hannan, 1971).

2See, e.g., Solo (1986), Reinsel (2003), and Lutkepohl (2005).
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of a reduced form which is convenient for discussing why classical results of Koopmans (1950),

Fisher (1966), Rothenberg (1971), Hausman and Taylor (1983) are not applicable. First, many of

these results apply to static models in which the innovations of the reduced form are orthogonal

to the predetermined regressors. Obviously, DSGE models are dynamic, and kt in our model is

correlated with zt+1 whenever Ψz(θ) 6= 0. Second, unlike iid data with time invariant distributions,

the probability distributions of time series data may change over time. Thus, likelihood based

identification analysis may not be appropriate. Third, results for full rank dynamic models as in

Hatanaka (1975), Hannan (1971), Sargan (1977) all assume the presence of exogenous variables.

However, there are no exogenous variables in DSGE models other than the latent shocks which

cannot be used for identification. Fourth, results for full rank systems do not easily extend to

singular systems. Though we can drop some variables so that the system is full rank, the results

will not be robust unless we know which variables are ancillary for the parameters of interest.

Finally, and perhaps the most important reason why classical identification results are invalid

is that the rank conditions of Rothenberg (1971) rest on the assumption that the reduced form

parameters are identifiable. However, as Wallis (1977) and others have pointed out, there may be

common factors in the rational polynomial matrices that relate the exogenous to the endogenous

variables. In such cases, the (P (θ), Q(θ), R(θ), S(θ)) parameters may themselves be not identifiable.

This non-identifiability of the ‘reduced form’ model should not come as a surprise because as already

pointed out, the VARMA parameters for the same data may also be non-identifiable.

The rest of the paper is organized as follows. Section 2 sets up the econometric framework.

Sections 3 and 4 present rank and order conditions derived for singular and non-singular models,

respectively. Section 5 studies partial and conditional identification under a priori restrictions.

Section 6 gives two different perspectives on our results and relates them to the information matrix.

An illustration is given in Section 7. The key steps of the proofs are given in the Appendix. A

detailed long proof is available on request.

2 Setup

Consider a DSGE model with (deep) parameters θ belonging to a set Θ ⊆ Rnθ . The variables

of the model, denoted by Xa
t , are driven by structural shocks with innovations εzt. The model is

characterized by a set of equations that define the steady state values Xa
ss(θ) and Euler equations

that describe the transition dynamics. Linearizing around the steady state gives a system of

expectational difference equations EtΓ0(θ)Xa
t+1 = Γ1(θ)Xa

t + εzt that can be solved to yield a
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solution in the form of difference equations.3 Let Xt be a nX × 1 state vector that is a subvector

of Xa
t , and let Yt be a nY × 1 vector of observables. We allow for measurement and specification

errors whose innovations are εvt. Collect all the innovations into a nε×1 vector εt = (ε′zt, ε
′
vt)
′. The

state space solution of Yt is given by the transition and measurement equations:

Xt+1

nX×1

= A(θ)
nX×nX

Xt

nX×1

+ B(θ)
nX×nε

εt+1

nε×1

(1a)

Yt+1

nY ×1

= C(θ)
nY ×nX

Xt

nX×1

+ D(θ)
nY ×nε

εt+1

nε×1

. (1b)

Assumption 1 For every θ ∈ Θ and (t, s) > 1, E(εt) = 0 and E(εtε′s) = δt−sΣε(θ), where Σε(θ)

is positive definite with Cholesky decomposition Lε(θ).

Assumption 2 For every θ ∈ Θ and for any z ∈ C, det(zInX −A(θ)) = 0 implies |z| < 1.

Assumption 1 only requires the innovations εt to be white noise with time invariant variance

Σε(θ), which is weaker than iid. The shocks can be mutually correlated as in Curdia and Reis (2009).

Assumption 2 is a stability condition. Under Assumptions 1 and 2, {Yt} is weakly stationary and

has a causal VMA(∞) representation:

Yt =
∞∑
j=0

hε(j, θ)εt−j = Hε(L−1; θ)εt, (2)

where L is the lag operator. The nY × nε matrices hε(j, θ) are the Markov parameters defined by

hε(0, θ) = D(θ), and hε(j, θ) = C(θ)A(θ)j−1B(θ), for all j > 1. For z ∈ C, the transfer function

(the z-transform of the impulse response function) is

Hε(z; θ) = D(θ) + C(θ)[zInX −A(θ)]−1B(θ) =
∞∑
j=0

hε(j, θ)z−j .

Let ΓY (j; θ) = E(YtY ′t−j) = ΓY (−j; θ)′ be the autocovariance matrix at lag j. Then for all z ∈ C,

the nY × nY spectral density matrix is:

ΩY (z; θ) ≡ ΓY (0; θ) +
∞∑
j=1

ΓY (j; θ)z−j +
∞∑
j=1

ΓY (−j; θ)z−j

= Hε(z; θ)Σε(θ)Hε(z−1; θ)′.

In addition to stability, it is quite frequent in econometric analysis to assume left-invertibility

(also known as miniphase). Under this assumption, (2) is the Wold representation and εt is fun-

damental for {Yt}, meaning that εt is spanned by Y t ≡ {Yt−k}∞k=0, the current and past history of
3Solution algorithms include Anderson and Moore (1985), Uhlig (1999), Klein (2000), King and Watson (2002),

and Sims (2002) among others.
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Yt. For square models with nε = nY , left-invertibility holds when detHε(z; θ) 6= 0 in |z| > 1.4 In

models that are not square, left invertibility requires that Hε(z; θ) is full column rank in |z| > 1,

(see, e.g., Rozanov, 1967). Left-invertibility is crucial for subsequent analysis which relies on the

rank of the spectral density; clearly the rank of ΩY (z; θ) is a function of the ranks of Σε(θ) and

Hε(z; θ). The properties of Hε(z; θ) are related to those of the (Rosenbrock) system matrix:

P(z; θ) =
(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)
, z ∈ C. (3)

Lemma 1 Suppose Assumptions 1 and 2 hold. Then rank P(z; θ) = nX + rank Hε(z; θ) for any

θ ∈ Θ and for every z ∈ C\A(θ), where A(θ) is the set of eigenvalues of A(θ).

Lemma 1 will be used subsequently.

The identification problem can now be stated as follows. Suppose we are given a realization

of {Yt} generated by (1a) and (1b) at θ = θ0 of length T . With T infinitely large, under what

conditions would it be possible to uncover the value θ0 and the model that generated {Yt}? Since

Assumptions 1 and 2 imply covariance stationarity, the first and second moments of {Yt} are time

invariant. The objective is to characterize whether θ0 is identifiable from the unconditional means

and autocovariances. The same analysis can be alternatively motivated by assuming εt is Gaussian.

We start by discussing the identifiability from the autocovariances of {Yt}. Mean, long-run and

other (nonlinear) restrictions are exploited in Section 5.

Definition 1 θ0 and θ1 are observationally equivalent in the second order if ΩY (z; θ0) = ΩY (z; θ1)

for all z ∈ C, or equivalently, ΓY (j, θ0) = ΓY (j, θ1) at all j > 0.

Definition 2 The DSGE model is locally identifiable from the second moments of {Yt} at a point

θ0 ∈ Θ if there exists an open neighborhood of θ0 such that for every θ1 in this neighborhood, θ0

and θ1 are observationally equivalent if and only if θ1 = θ0.

In theory, a sufficient condition for uniqueness of the second moments with respect to θ is that

the derivative matrix of ΓY,∞(θ) ≡ limT→∞
(
ΓY (0; θ) ΓY (1; θ) . . . ΓY (T ; θ)

)
with respect to θ

has full column rank when evaluated at θ = θ0. The autocovariance matrix at each j is

ΓY (j; θ) =
∞∑
k=0

hε(k + j; θ)Σε(θ)hε(k; θ)′ = C(θ)A(θ)jΓX(0; θ)C(θ)′ + 1Ij=0D(θ)Σε(θ)D(θ)′,

where ΓX(0; θ) = E(XtX
′
t) solves ΓX(0; θ) = A(θ)ΓX(0; θ)A(θ)′ + B(θ)Σε(θ)B(θ)′. Clearly, each

ΓY (j; θ) can only be approximated as a truncated sum of the Markov parameters, or ΓX(0; θ) has
4In the borderline case when detHε(z; θ) = 0 at |z| = 1, the transfer function is left-invertible and yet not

invertible.
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to be solved from a system of nonlinear equations. Furthermore, we can only compute ΓY,T (θ)

for some finite T . The rank of ΓY,T (θ) can be sensitive to approximation and numerical errors.

Observe, however that ΓY (j; θ) is defined from the parameters of the canonical (ABCD) model.

Rather than establishing identification from the partial derivatives of ΓY,T (θ) with respect to θ,

we use features of the canonical model to characterize observational equivalence through a finite

system of equations directly involving the ABCD matrices. This sheds light on the identification

problem without evaluating ΓY,T (θ). We begin with the singular case.

3 Identification: Singular Case nε 6 nY

Let ΛS(θ) be the hyperparameters in the state space solution:

ΛS(θ) ≡
(
(vec A(θ))′, (vec B(θ))′, (vec C(θ))′, (vec D(θ))′, (vech Σε(θ))′

)′
.

The dimension of ΛS(θ) is nS
Λ = n2

X + nXnε + nY nX + nY nε + nε(nε + 1)/2.

Assumption 3-S The mapping ΛS : θ 7→ ΛS(θ) is continuously differentiable on Θ.

Our point of departure is that associated with each θ ∈ Θ is the transfer function Hε(z; ΛS(θ))

and the covariance matrix Σε(θ). The spectral density ΩY (z; θ) depends on θ only through ΛS(θ).

By definition, ΩY (z; θ0) = ΩY (z; θ1) when

Hε(z; ΛS(θ0))Σε(θ0)Hε(z−1; ΛS(θ0))′ = Hε(z; ΛS(θ1))Σε(θ1)Hε(z−1; ΛS(θ1))′. (4)

Equivalent spectral densities can arise because: (i) for given Σε(θ), each Hε(z; ΛS(θ)) can potentially

be obtained from a multitude of quadruples (A(θ), B(θ), C(θ), D(θ)), or (ii) there can be many pairs

(Hε(z; ΛS(θ)),Σε(θ)) that jointly generate the same spectral density. In economic terms, the first

problem can arise when two structures induce identical impulse responses to an innovation of a

given size, and the second problem can arise when an innovation of arbitrary size can combine with

the propagating mechanism to yield the same impulse responses. To make precise their implications

on the canonical model, the following assumptions are required.

Assumption 4-S For every θ ∈ Θ, rank P(z; θ) = nX + nε in |z| > 1.

Assumption 5-S For every θ ∈ Θ, (i) the matrix
(
B(θ) A(θ)B(θ) . . . AnX−1(θ)B(θ)

)
has full

row rank; and (ii) the matrix
(
C(θ)′ A(θ)′C(θ)′ . . . AnX−1(θ)′C(θ)′

)′ has full column rank.
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Assumptions 4-S and 5-S are key to structural identification of singular models. A nec-

essary and sufficient condition for left-invertibility of transfer functions of singular systems is

rank Hε(z; θ) = nε in |z| > 1. Lemma 1 implies that Hε(z; θ) is left-invertible if and only if

nε 6 nY and rank P(z; θ) = nX + nε, for all |z| > 1.

Assumption 4-S ensures that Hε(z; θ) is left-invertible. When combined with Assumption 1, As-

sumption 4-S also ensures that the rank of the spectral density is nε almost everywhere (a.e.) in C.

Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) propose an eigenvalue test for

left-invertibility when D(θ) is square. In non-square cases with nε < nY , this can be implemented

as a generalized eigenvalue test (see, e.g., Laub and Moore, 1978).

Assumptions 5-S ensures that (A(θ), B(θ)) is controllable and (A(θ), C(θ)) is observable and

hence that the system is minimal. Controllability means that for any initial state, it is always

possible to design an input sequence that puts the system to a desired final state. Observability

means that we can always reconstruct the initial state from observing the evolution of the out-

put, given the evolution of the input.5 Minimality is similar to relative co-primeness in VARMA

terminology, and nX is the McMillan degree. Hannan (1971) imposed co-primeness in his seminal

work on identification of dynamic simultaneous systems.6 A ‘minimal’ system has the property

that the state vector Xt is of the smallest dimension possible. In DSGE models, this is the smallest

vector of exogenous and endogenous state variables that are rid of common factors and redundant

dynamics, and yet able to fully characterize the properties of the model. Minimality thus simplifies

the identification analysis. As a DSGE model is based on microfoundations, nX is not hard to

determine.

The conditions for identification are obtained as follows. First, we use the fact that Hε(z; θ0) =

Hε(z; θ1) if and only if there exists a full rank nX × nX matrix T such that

(A(θ1), B(θ1), C(θ1), D(θ1)) = (TA(θ0)T−1, TB(θ0), C(θ0)T−1, D(θ0)). (5)

The quadruples (A(θ0), B(θ0), C(θ0), D(θ0)) and (A(θ1), B(θ1), C(θ1), D(θ1)) are said to be related

by a similarity transformation. That these transformations are sufficient for transfer functions to

be equivalent is obvious. That they are also necessary follows from an algebraically involved but

well-known result in control theory (see, e.g., Theorem 3.10 in Antsaklis and Michel, 1997).

Second, we take into account that Hε(z; θ) can interact with Σε(θ) to give equivalent spec-

tral densities. To characterize such interactions, let Hε(z; θ) ≡ Hε(z; θ)Lε(θ). Since ΩY (z; θ) =
5See, e.g. Anderson and Moore (1979). The matrices A(θ) and C(θ) in a minimal system need not be full rank,

meaning that some components of Xt can be white noise, and that identities are allowed in Yt.
6Further discussion of the role of minimality in this context can be found in ?.
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Hε(z; θ)Hε(z−1; θ)′, it is not hard to see that H̃ε(z; θ) = Hε(z; θ)V (z) will yield the same spectral

density for any V (z) satisfying V (z)V (z−1)′ = Inε , even if Σε(θ) is an identity matrix. Thus, equiv-

alent pairs (Hε(z; θ),Σε(θ)) can be related only through a polynomial matrix V (z) of unknown

degree. This is unlike in static models in which V (z) = V is a constant matrix. Hence, the number

of static models in the equivalent class is substantially smaller than in the dynamic case.

Left-invertibility is crucial for being able to narrow down the equivalent pairs (Hε(z; θ),Σε(θ)).

Suppose for the moment that the system is square. It is well known that the spectral density

of a full rank covariance stationary process can be factorized as ΩY (z; θ) = Wε(z; θ)Wε(z−1; θ)′,

where Wε(z; θ) is known as the spectral factor. Much less known is that if Wε(z; θ) and W̃ε(z; θ)

are both spectral factors that are also left-invertible, then necessarily W̃ε(z; θ) = Wε(z; θ)V with

V V ′ = Inε (see, e.g., Youla, 1961; Anderson, 1969; Kailath, Sayed, and Hassibi, 2000). Note that

V is a constant matrix and is no longer a polynomial matrix in z. This means that no dynamic

transformations of left-invertible factors are allowed. Importantly, this result holds even in singular

models. Our spectral factor is Wε(z; θ) = Hε(z; θ)Lε(θ). It is left-invertible if and only if Hε(z; θ) is

left-invertible which holds by Assumption 4-S. In such a case, two equivalent pairs (Hε(z; θ),Σε(θ))

must be related by a full rank matrix U = Lε(θ0)V Lε(θ1)−1 such that

Hε(z; θ1) = Hε(z; θ0)U, and UΣε(θ1)U ′ = Σε(θ0), for every z ∈ C. (6)

Combining the transformations in (5) and (6) leads to our first main result.

Proposition 1-S (Observational Equivalence nε 6 nY ) Suppose Assumptions 1, 2, 4-S, and

5-S hold. Then θ0 and θ1 are observationally equivalent if and only if there exists a full rank nX×nX
matrix T and a full rank nε × nε matrix U such that:

A(θ1) = TA(θ0)T−1, B(θ1) = TB(θ0)U, C(θ1) = C(θ0)T−1, D(θ1) = D(θ0)U,

Σε(θ1) = U−1Σε(θ0)U−1′. (7)

Proposition 1-S, proved in the Appendix, says that in singular systems with nε 6 nY , there can

exist no other transformation of the hyperparameters ΛS(θ) other than those defined in (7) that

can give rise to equivalent spectral densities. In other words, these transformations are necessary

and sufficient for observational equivalence. The crux of the proposition is to use minimality and

left-invertibility to narrow down the set of observationally equivalent hyperparameters. The result

also holds in the important special case of a square system.

An immediate implication of Proposition 1-S is that without restrictions ΛS(θ) may not be

identifiable. In other words, the ABCD representation is not a reduced form in the sense of classical
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simultaneous equations analysis. Iskrev (2007) suggests this possibility in finite samples. Here, we

see that the problem can arise even if the population autocovariances are available.

Proposition 1-S can now be used to derive formal identification conditions. Define the continu-

ously differentiable mapping δS : Θ× Rn2
X × Rn2

ε → RnS
Λ as

δS(θ, T, U) ≡


vec (TA(θ)T−1)
vec (TB(θ)U)
vec (C(θ)T−1)
vec (D(θ)U)

vech (U−1Σε(θ)U−1′)

 . (8)

The mapping defines nS
Λ equations in nθ + n2

X + n2
ε unknowns.

Lemma 2-S Under the assumptions of Proposition 1-S, θ is locally identifiable from the second mo-

ments of {Yt} at a point θ0 ∈ Θ if and only if the system of equations δS(θ0, InX , Inε) = δS(θ1, T, U)

has a locally unique solution (θ1, T, U) = (θ0, InX , Inε).

Lemma 2-S, proved in the Appendix, says that a singular DSGE model is locally identifiable at

θ0 ∈ Θ if and only if δS(θ, T, U) is locally injective at (θ0, InX , Inε). Necessity and sufficiency both

rely on the minimality and left-invertibility. However, as will be explained below, the necessity

argument can be modified when these assumptions are relaxed.

As δS is continuously differentiable, a sufficient condition for δS to be locally injective is that

the matrix of partial derivatives of δS(θ, T, U) has full column rank at (θ0, InX , Inε). The matrix of

partial derivatives of δS(θ, T, U) evaluated at (θ0, InX , Inε) is given by:7

∆S(θ0) ≡
(
∂δS(θ,InX ,Inε )

∂θ

∂δS(θ,InX ,Inε )

∂vec T

∂δS(θ,InX ,Inε )

∂vec U

)∣∣∣
θ=θ0

=



∂vec A(θ)
∂θ A(θ)′ ⊗ InX − InX ⊗A(θ) 0n2

X×n2
ε

∂vec B(θ)
∂θ B(θ)′ ⊗ InX Inε ⊗B(θ)

∂vec C(θ)
∂θ −InX ⊗ C(θ) 0nY nX×n2

ε
∂vec D(θ)

∂θ 0nY nX×n2
X

Inε ⊗D(θ)
∂vech Σε(θ)

∂θ 0nε(nε+1)
2

×n2
X

−2Enε
[
Σε(θ)⊗ Inε

]


θ=θ0

≡
(
∆S

Λ(θ0) ∆S
T (θ0) ∆S

U (θ0)
)
.

The nS
Λ × nθ block defined by ∆S

Λ(θ0) describes the local properties of the mapping from θ to

ΛS(θ). When the rank of ∆S
Λ(θ0) equals nθ, the mapping is locally invertible at θ0. Since ΛS(θ0)

7For an arbitrary matrix X, we let vec(X) be formed by stacking the columns of X into a single column vector.

Also for any symmetric n × n matrix A, En is the left inverse of the n × n(n+1)
2

duplication matrix Gn, where
vec (A) = Gnvech (A).
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may not be identifiable, the rank of ∆S
Λ(θ0) alone is necessary but not sufficient for identifica-

tion. The middle nS
Λ × n2

X matrix ∆S
T (θ0) corresponds to the partial derivatives with respect to T

evaluated at (T,U) = (InX , Inε). When rank ∆S
T (θ0) = n2

X , then the only (local) similarity trans-

formation is provided by the identity matrix. If the transfer function were observable, one could

(locally) uniquely determine (A(θ0), B(θ0), C(θ0), D(θ0)) that generated it. The final nS
Λ×n2

ε matrix

∆S
U (θ0) corresponds to the partial derivatives with respect to U , evaluated at (T,U) = (InX , Inε).

When rank ∆S
U (θ0) = n2

ε then the spectral factorization (locally) uniquely determines the pair

(Hε(z; θ),Σε(θ)).

Proposition 2-S (Rank and Order Conditions nε 6 nY ) Suppose Assumptions 1, 2, 3-S, 4-S

and 5-S hold. If the rank of ∆S(θ) remains constant in a neighborhood of θ0, then a necessary and

sufficient rank condition for θ to be locally identified from the second moments of {Yt} at a point

θ0 in Θ is:

rank ∆S(θ0) = rank
(
∆S

Λ(θ0) ∆S
T (θ0) ∆S

U (θ0)
)

= nθ + n2
X + n2

ε .

A necessary order condition is: nθ +n2
X +n2

ε 6 n
S
Λ, where nS

Λ = (nX +nY )(nX +nε)+nε(nε+1)/2.

Proposition 2-S is new to both the econometrics and control theory literature. It extends the

results of Hannan (1971), Deistler (1976), and Glover and Willems (1974) to stochastically singular

systems in which εt is unobserved with unknown covariance Σε(θ). The conditions allow researchers

to establish the identifiability of singular and square DSGE models from the second moments prior

to estimation, independent of the estimator used. These conditions have three distinctive features.

First, θ can be identified from the second moments of the data, even though the hyperparameters

ΛS(θ) may not be identifiable. Second, the conditions depend on nY , nX , and nε representing the

structure of the economic model; the sample size T is not involved. However, the term nY −nε > 0

reflects stochastic singularity and is specific to DSGE models. Third, numerical evaluations of the

population autocovariances or of the spectral density are not necessary because we study their

determinants ΛS(θ) directly.

The order condition requires the number of equations defined by δS to be at least as large as

the number of unknowns in those equations. It can be rewritten as

nθ 6 nY nX + nε(nX + nY − nε) +
nε(nε + 1)

2
.

Notably, square models have nY = nε and the order condition is stronger than when the system is

singular. The parameters nY , nε and nX play the role of the number of endogenous and predeter-

mined variables in classical simultaneous equations analysis. Both rank and order conditions have a

classical flavor even though we work with assumptions that would not be valid in a classical setup.
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As in classical analysis, the constant rank requirement in Proposition 2-S ensures that (θ0, InX , Inε)

is a regular point. Our rank condition is still sufficient for identification, even if θ0 fails to be a

regular point.8

The sub-matrices ∆S
ΛT (θ0) =

(
∆S

Λ(θ0) ∆S
T (θ0)

)
and ∆S

ΛU (θ0) =
(
∆Λ(θ0) ∆U (θ0)

)
reveal del-

icate types of non-identification that might arise even when ΛS(θ) is identified, and hence ∆S
Λ(θ0)

is full rank. They shed light on identification failure due to the features of the impulse and propa-

gating mechanism of the model. Such information about the properties of the model is useful even

if estimation is not of interest. As will be shown in Section 6, the null space of ∆S(θ0) can be used

to isolate the parameters that are not identifiable.

Minimality and left-invertibility are maintained assumptions of Proposition 2-S. However, rank

conditions on the sub-matrices of ∆S(θ0) remain necessary for identification even if one of these

assumptions fail. In particular, (i) rank ∆S
ΛU (θ0) = nθ + n2

ε is necessary for θ0 to be identifi-

able when the system fails to be minimal but the transfer function is left-invertible, while (ii)

rank ∆S
ΛT (θ0) = nθ + n2

X is necessary for identification of minimal systems with transfer func-

tions that are not left-invertible. To see why, consider case (i). Local injectivity of δS(θ, InX , U)

at (θ, U) = (θ0, Inε) is still necessary for local identification of θ0 because the transformation

A(θ1) = A(θ0), B(θ1) = B(θ0)U , C(θ1) = C(θ0), D(θ1) = D(θ0), and Σε(θ1) = U−1Σε(θ0)U−1′

always leads to observational equivalence even if the system is not minimal. However, if both mini-

mality and left-invertibility fail to hold, then only rank ∆S
Λ(θ0) = nθ is necessary for identification.

While none of these conditions are sufficient, they are still useful diagnostic tools.

4 Structural Identification: Non-Singular Case nε > nY

A non-singular system occurs when there are at least as many shocks as variables. When nε > nY

a different framework is necessary because (2) is no longer the Wold representation for {Yt} and εt
is no longer fundamental. In consequence, Hε(z; θ) is no longer left-invertible. We work with the

innovations representation:9

X̂t+1|t+1 = A(θ)X̂t|t +K(θ)at+1 (9a)

Yt+1 = C(θ)X̂t|t + at+1, (9b)

where X̂t|t is the optimal linear predictor of Xt based on the history Y t, at+1 = Yt+1 − C(θ)X̂t|t

is the one-step ahead forecast error of Yt+1, and K(θ) is the steady state Kalman gain. The state
8The regular point requirement is satisfied almost everywhere in the parameter space except when the determinant

of ∆S(θ)′∆S(θ) is an analytic function (see, e.g., Fisher, 1966).
9Details of the innovations representation can be found in Anderson and Moore (1979), Hansen and Sargent (2005).
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vector in the innovations model is the conditional forecast of Xt given Y t, and the nε > nY shocks

are now consolidated into a vector of nY white noise forecast errors at whose variance is Σa(θ). Let

La(θ) be the Cholesky decomposition of Σa(θ). Collect the system parameters of the innovations

model into

ΛNS(θ) ≡
(
(vec A(θ))′, (vec K(θ))′, (vec C(θ))′, (vech Σa(θ))′

)′
,

in which the number of components equals nNS
Λ = n2

X + 2nXnY + nY (nY + 1)/2.

Assumption 3-NS The mapping ΛNS : θ 7→ ΛNS(θ) is continuously differentiable on Θ.

Assumption 4-NS For every θ ∈ Θ, D(θ)Σε(θ)D(θ)′ is non-singular.

Assumption 5-NS For every θ ∈ Θ, (i) the matrix
(
K(θ) A(θ)K(θ) . . . AnX−1(θ)K(θ)

)
has full

row rank; and (ii) the matrix
(
C(θ)′ A(θ)′C(θ)′ . . . AnX−1(θ)′C(θ)′

)′ has full column rank.

The validity of the innovations representation hinges on the existence of a positive semi-definite

solution to the so-called discrete algebraic Ricatti equation (DARE).10 Such a solution exists if

D(θ) is full row rank (Assumption 4-NS) so that each of the innovations, which can be primitive

to the model or is a measurement error, affects at least one series. It rules out observables that are

defined by identities and are not affected by any shock or measurement error. Under Assumption

4-NS, K(θ) and Σa(θ) are well defined functions of the hyperparameter ΛS(θ) and their expressions

are given in Equations (19) and (18) of Appendix. Moreover, Σa(θ) is nonsingular for every θ ∈ Θ.

The transfer function according to the innovations model is given by

Ha(z; θ) = InY + C(θ)[zInX −A(θ)]−1K(θ).

Under the assumptions of the innovations representation, Ha(z; θ) is square and invertible in |z| > 1

by construction. This allows us to apply the left-invertibility arguments. This is unlike in singular

models where left-invertibility holds by virtue of Assumption 4-S. Assumption 5-NS ensures that

the system (9a)-(9b) is minimal. Using Ha(z; θ) and Σa(θ), the spectral density of {Yt} is

ΩY (z; θ) = Ha(z; θ)Σa(θ)Ha(z−1; θ)′.

The following result characterizes observational equivalence in non-singular models.

Proposition 1-NS (Observational Equivalence nε > nY ) Suppose Assumptions 1, 2, 4-NS,

and 5-NS hold. Then θ0 and θ1 are observationally equivalent if and only if there exists a full rank

nX × nX matrix T such that:

A(θ1) = TA(θ0)T−1, K(θ1) = TK(θ0), C(θ1) = C(θ0)T−1, Σa(θ1) = Σa(θ0). (10)

10See, e.g., Appendix E in Kailath, Sayed, and Hassibi (2000).
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Proposition 1-NS takes as a starting point that transfer functions related by similarity trans-

forms must also have equivalent Kalman filters. Furthermore, Ha(z; θ) is nonsingular in |z| > 1 so

that the spectral factor Wa(θ) = Ha(z; θ)La(θ) is left-invertible. Combining the minimality and

left-invertibility restrictions yield (10). The restrictions no longer involve U because the innovation

representation imposes the normalization ha(0; θ) = InX . Furthermore, the restrictions are now ex-

pressed in terms of K(θ) which needs to be solved numerically. This matrix is a complex function

of ΛS(θ) because the forecast errors at are derived from Kalman filtering. In contrast, no filtering

is necessary to study identification of singular models.

For any θ ∈ Θ and any full rank nX × nX matrix T , let δNS : Θ× Rn2
X → RnNS

Λ be defined by

δNS(θ, T ) ≡


vec (TA(θ)T−1)

vec (TK(θ))
vec (C(θ)T−1)
vech (Σa(θ))

 . (11)

The mapping δNS defines nNS
Λ equations in nθ+n2

X unknowns. Under the assumptions of Proposition

1-NS, θ is locally identifiable from the second moments of {Yt} at a point θ0 ∈ Θ if and only if the

system of equations δNS(θ0, InX ) = δNS(θ1, T ) has a locally unique solution (θ1, T ) = (θ0, InX ).11

The matrix of partial derivatives of δNS(θ, T ) evaluated at (θ0, InX ) is:

∆NS(θ0) ≡
(
∂δ(θ,InX )

∂θ

∂δ(θ,InX )

∂vec T

)∣∣∣
θ=θ0

=


∂vec A(θ)

∂θ A(θ)′ ⊗ InX − InX ⊗A(θ)
∂vec K(θ)

∂θ K(θ)′ ⊗ InX
∂vec C(θ)

∂θ −InX ⊗ C(θ)
∂vech Σa(θ)

∂θ 0nY (nY +1)

2
×n2

X


θ=θ0

≡
(
∆NS

Λ (θ0) ∆NS
T (θ0)

)
.

Proposition 2-NS (Rank and Order Conditions nε > nY ) Suppose Assumptions 1, 2, 3-NS,

4-NS, and 5-NS hold. If the rank of ∆NS(θ) remains constant in a neighborhood of θ0, then a

necessary and sufficient rank condition for θ to be locally identified from the second moments of

{Yt} at a point θ0 in Θ is:

rank ∆NS(θ0) = rank
(
∆NS

Λ (θ0) ∆NS
T (θ0)

)
= nθ + n2

X .

A necessary order condition is nθ + n2
X 6 n

NS
Λ , where nNS

Λ = n2
X + 2nXnY + nY (nY + 1)/2.

While the rank condition appears weaker than in the singular case, Assumption 4-NS must also

hold. Using the same arguments as in the singular case, rank ∆NS
Λ (θ0) = nθ remains necessary for

identification when the minimality Assumption 5-NS fails.
11The proof of this statement can be obtained by using the same arguments as in the proof of Lemma 2-S.
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The order condition can be rewritten as

nθ 6 2nXnY +
nY (nY + 1)

2
.

Holding nX and nY fixed, this is apparently stronger than in the singular case. Filtering entails

information loss, and less may be identified as a result.

When the system is square (nY = nε), the rank and order conditions derived in Proposi-

tion 2-NS coincide with those in Proposition 2-S. The reason is that the state covariance ma-

trix of the innovations model becomes degenerate when nY = nε. This allows K(θ) to be ex-

pressed in terms of B(θ) and D(θ).12 Simplifying shows that the transformation (10) holds if

and only if there exists a full rank nY × nY matrix U such that (7) holds. Thus, in the square

case the condition rank ∆NS(θ0) = nθ + n2
X of Proposition 2-NS is equivalent to the condition

rank ∆S(θ0) = nθ + n2
X + n2

Y of Proposition 2-S, as expected.

5 Conditional and Partial Identification

Restrictions on some components of θ are often imposed for a number of reasons. They may enable

identification of the remaining parameters when the rank conditions in Proposition 2-S or 2-NS

fail. A researcher may have detailed information about a parameter so that consideration of other

values is unnecessary. The unconditional moments implied by second order approximations to the

model may contain information about θ. More generally, consider a set of nR a priori restrictions

that when evaluated at θ0 satisfy:

ϕ(θ0) = 0.

The formulation provides a convenient basis for incorporating information about the unconditional

mean of Yt since in the steady state, EY a
t = EY a

ss(θ) can be written as ϕ(θ0) = 0. Certain long

run restrictions can be imposed on Hε(1; θ).

In the singular case, let δS(θ, T, U) ≡
(

ϕ(θ)
δS(θ, T, U)

)
be the augmented vector of restrictions

where δS is given in (8). Define its derivative matrix by

∆S(θ0) ≡
(
∂δ

S
(θ,InX ,Inε )

∂θ

∂δ(θ,InX ,Inε )

∂vec T

∂δ
S
(θ,InX ,Inε )

∂vec U

)∣∣∣
θ=θ0

=

 ∂ϕ(θ0)
∂θ 0nR×n2

X
0nR×n2

ε

∆S
Λ(θ0) ∆S

T (θ0) ∆S
U (θ0)

 .

In the non-singular case, let δNS(θ, T ) ≡
(

ϕ(θ)
δNS(θ, T )

)
with δNS as given in (11) and

∆NS(θ0) ≡
(
∂δ

NS
(θ,InX )

∂θ

∂δ
NS

(θ,InX )

∂vec T

)∣∣∣
θ=θ0

=

(
∂ϕ(θ0)
∂θ 0nR×n2

X

∆NS
Λ (θ0) ∆NS

T (θ0)

)
.

12Specifically, K(θ) = (B(θ)Σε(θ)D(θ)′(D(θ)Σε(θ)D(θ)′)−1.
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Local injectivity of δS at (θ0, InX , Inε) or that of δNS at (θ0, InX ) is necessary and sufficient for θ0 to

be locally identifiable from the second moments of {Yt} under the restrictions ϕ(θ0) = 0. We refer

to such an analysis as conditional identification.

Proposition 3 (Conditional Identification) Suppose the conditions of Proposition 2-S or Propo-

sition 2-NS hold and let ∆(θ) denote either ∆S(θ) or ∆NS(θ). Assume that the nR restrictions

defined by ϕ(θ) are continuously differentiable on Θ and that the rank of ∆(θ) remains constant

in a neighborhood of θ0. A necessary and sufficient rank condition for θ to be locally conditionally

identified at point θ = θ0 is:

rank ∆(θ0) = nθ + n2
X + 1IS · n2

ε ,

where 1IS = 1 if the model is singular and zero otherwise. When ϕ(θ) involves the mean, the

above restrictions are necessary and sufficient for local identification of θ0 from the first and second

moments of {Yt}.

Our a priori restrictions are incorporated in the form of additional equations for solving the same

number of unknowns. Thus, the required rank is always the same; it is the number of rows of the

∆S(θ) or ∆NS(θ) matrix that increases with the number of restrictions. In singular models, the order

condition requires nθ +n2
X +n2

ε 6 n
S
Λ +nR; in the non-singular case, we need nθ +n2

X 6 n
NS
Λ +nR.

Proposition 3 provides formal ways to check how many restrictions are mathematically necessary

for identification, which is very useful in empirical work. For instance, univariate AR(i) shocks are

often specified, but this entails many restrictions on the contemporaneous and past correlations

amongst shocks. Proposition 3 provides a means to check their identification implications.

Situations may arise when only a subset of θ is of interest. As well, some components of θ may

still be identifiable even when Proposition 2-S or 2-NS fails. To analyze such partial identification

situations, partition the nθ vector θ into two components θi and θ−i of respective sizes nθ,i and nθ,−i
(with nθ,i+nθ,−i = nθ). Without loss of generality, we order the components so that θ = (θ−i′, θi′)′.

Proposition 4 (Partial Identification) Suppose the conditions of Proposition 2-S or Proposi-

tion 2-NS hold. Assume that the ranks of ∆(θ) and ∂δ(θ)
∂θ−i

remain constant in a neighborhood of θ0.

A necessary and sufficient rank condition for θi to be locally partially identified at point θ = θ0 is:

rank ∆(θ0) = rank
(
∂δ(θ0)
∂θ−i

)
+
(
nθ,i + n2

X + 1IS · n2
ε

)
,

where
(
∆(θ), ∂δ(θ)∂θ−i

)
=
(
∆S(θ), ∂δ

S(θ,InX ,Inε )

∂θ−i

)
with 1IS = 1 if the model is singular, and

(
∆(θ), ∂δ(θ)∂θ−i

)
=(

∆NS(θ), ∂δ
NS(θ,InX )

∂θ−i

)
with 1IS = 0 in the non-singular case.
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The results generalize Propositions 2-S and 2-NS to allow θ−i to be non-empty. It is important

to note that even though one might be interested in a subset of parameters, its identifiability will,

in general, depend on the parameters that are not of interest.

6 Relation to the Information Matrix

All identification methods must exploit the canonical solution of the DSGE model in one way or

another. Iskrev (2010) uses it to numerically evaluate the T analytical autocovariances, while Qu

and Tkachenko (2010) use it to evaluate the discretized spectral density. Our approach is unique

in that we do not evaluate any second moments and yet obtain necessary and sufficient conditions

for identification. This section provides two different perspectives on our results. The first studies

the null space of ∆(θ) and relates the proposed rank conditions to those on the Markov parameters

of {Yt}. The second relates our rank condition to the information matrix. Since the information

matrix is defined only when nY 6 nε the focus of this section is on the non-singular case only.13 It

is understood that Λ(θ) and ∆(θ) refer to ΛNS(θ) and ∆NS(θ), respectively.

Let ∆hJ
(θ) ≡ ∂vec hJ (θ)

∂θ = ∂vec hJ (θ)
∂Λ · ∂Λ

∂θ , where for any J > 0,

hJ(θ) ≡
(
ha(0; θ)La(θ) ha(1; θ)La(θ) . . . ha(J ; θ)La(θ)

)
.

Lemma 3 Suppose the conditions of Proposition 2-NS hold. Then for every θ ∈ Θ:

(i) for every J > 0, ∂vec hJ (θ)
∂Λ ·∆T (θ) = 0(J+1)n2

Y ×n
2
X

;

(ii) if J > 2nX − 2, then rank hJ(θ) = rank h2nX−2(θ);

(iii) rank ∆(θ0) = nθ + n2
X if and only if rank ∆h2nX−2

(θ0) = nθ.

Result (i) says that the columns of ∆T (θ) belong to the null space of ∂vec hJ (θ)
∂Λ . This is intuitive

because ∆T (θ) is the Jacobian matrix of the transformation of Λ(θ) that leaves hJ(θ) unchanged.14

A direct consequence of result (i) is

∂vec hJ(θ0)
∂Λ

·∆(θ0) =
(

∆hJ
(θ0) 0(J+1)n2

Y ×n
2
X

)
.

To use this property in a constructive way, let v be an nθ + n2
X vector that is in the null space of

∆(θ0). The above equality implies that(
∆hJ

(θ0) 0(J+1)n2
Y ×n

2
X

)
v = 0(J+1)n2

Y ×1.

13Qu and Tkachenko (2010) considered a modified information matrix and studied its rank.
14This follows from Proposition 1-NS which shows that for any observationally equivalent values θ0 and θ1,

ha(j; θ1)La(θ1) = ha(j; θ0)La(θ0) for all j > 0.
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In particular, the first nθ components of v form a sub-vector in the null space of ∆hJ
(θ0). Its entries

are the combinations of components of θ that leave hJ(θ0) unchanged. In other words, these are

the elements of θ that are responsible for identification failure. This suggests a simple procedure

for determining the source of non-identification: (1) if the rank test on ∆(θ0) fails, compute its null

space; (2) for each v in the null space, find the position of its non-zero entries in the first nθ rows.

These positions correspond to the components of θ that are not identifiable without restrictions.15

Result (ii) of the Lemma follows from the fact that the Hankel matrix of a minimal system

of order nX consists of 2nX − 1 Markov parameters. These uniquely determine all j > 2nX − 2

Markov parameters. As rank ∆hJ
(θ) = rank ∆h2nX−2

(θ) for any J > 2nX − 2, increasing the

number of Markov parameters does not increase the rank of the derivative matrix. Minimality thus

allows us to use a finite number of Markov parameters containing non-redundant information for

identification. This avoids direct computation of the autocovariances ΓY (j; θ) which would have

involved infinite Markov parameters.

Result (iii) says that our rank condition holds if and only if h2nX−2(θ) (locally) uniquely de-

termines θ0. This result allows us to link the rank condition in Proposition 2-NS to I(θ), the

information matrix of the model. To make this link, let ξ be the identifiable parameters of the

model and denote by I(ξ) the corresponding information matrix. It is always possible to decom-

pose I(θ) into

I(θ) =
(
∂ξ

∂θ

)′
I(ξ)

(
∂ξ

∂θ

)
.

Since ξ is identifiable, I(ξ) is nonsingular. The rank of the information matrix is given by

rank I(θ) = rank
(
∂ξ
∂θ

)
. Obviously, I(θ0) is full rank nθ if and only if rank ∂ξ

∂θ |θ=θ0 = nθ.16

For the above information matrix decomposition to be useful, we need to find an identifiable

parameter ξ. By Proposition 1-NS, hJ(θ) is identified from the second moments of {Yt} for any J >

0. Hence, if we define ξJ to be vec hJ(θ), then I(ξJ) is full rank. It follows that I(θ0) is nonsingular

if and only if there exists a J > 0 such that rank ∂ξJ
∂θ |θ=θ0 = nθ. Using result (ii), a necessary

and sufficient condition for I(θ0) to be nonsingular is that rank ∂ξ2nX−2

∂θ |θ=θ0 = nθ. Combining this

with result (iii) then shows that I(θ0) is nonsingular if and only if rank ∆(θ0) = nθ + n2
X . Thus,

the information matrix is full rank if and only if our rank condition is satisfied. While likelihood

analysis requires εt to be iid, we require εt to be white noise and that the other assumptions in

Proposition 2-NS hold.

Lemma 3 also enables a comparison of the order conditions. The dimension of ξ2nX−2 =

vec h2nX−2(θ) is nξ = (2nX − 1)n2
Y and the order condition based on the information matrix is

15A similar procedure based on the null space of ∆S(θ0) can be used in the singular case.
16In Iskrev (2007), I(ξ) is that of the (time domain) information matrix of the reduced form (ABCD) model which

is not necessarily full rank. Hence, the decomposition is not useful for identification analysis.
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nθ 6 (2nX − 1)n2
Y . Our order condition stated in Proposition 2-NS only requires nθ 6 2nXnY +

nY (nY + 1)/2. Since 2nXnY + nY (nY + 1)/2 < (2nX − 1)n2
Y whenever nX > 1 and nY > 1, our

order condition based on ∆(θ) is generally tighter than the one based on the information matrix.

7 Example

An and Schorfheide (2007) consider a model whose log-linearized solution is given by:17

yt = Etyt+1 + gt − Etgt+1 −
1
τ

(
rt − Etπt+1 − Etzt+1

)
πt = βEtπt+1 +

τ(1− ν)
νπ2φ

(yt − gt)

ct = yt − gt

rt = ρrrt−1 + (1− ρr)ψ1πt + (1− ρr)ψ2(yt − gt) + εrt

gt = ρggt−1 + εgt

zt = ρzzt−1 + εzt

with εrt ∼WN(0, σ2
r ), εgt ∼WN(0, σ2

g), and εzt ∼WN(0, σ2
z) mutually uncorrelated. In the above

model π is steady state inflation rate. The parameter vector of interest is of dimension nθ = 13.

We consider two sets of θ0. The first is taken from the file simpar1.txt distributed by the authors,

while the second set corresponds to the Para (2) column in Table 2 of An and Schorfheide (2007).

Let X̃t ≡
(
zt, gt, rt, yt, πt, ct, Et(πt+1), Et(yt+1)

)′, εt ≡ (εzt, εgt, εrt)′, and Yt = (rt, yt, πt, ct)′.

Sims’ (2002) gensys solution evaluated at both parameter sets is determinate. However, the

solution is not minimal because the state vector X̃t consists of the expectational variables Etπt+1,

Etyt+1, and identities. In consequence, rank C = 3 < nX = 8 and rank O = 6 < nX = 8 where C
and O are the controllability and observability matrices in Assumption 5-S.

While the gensys solution does not yield a minimal representation of the solution, full column

ranks of the submatrices ∆ΛT (θ0) and ∆ΛU (θ0) remain necessary for identification. Table 1 shows

that for this example, the necessary condition fails. But there could be examples in which these

sub-matrices are full rank. To be able to use Proposition 2-S to check if the necessary and sufficient

conditions for identification are satisfied, the state vector will need to be of the smallest dimension

possible.

Minimality is not a restrictive assumption as Kalman’s decomposition theorem assures that a

minimal state system can always be constructed by eliminating the uncontrollable and unobservable
17An appendix that contains additional examples explains how to take the numerical results from several solution

algorithms to the form in (1a)-(1b) and is available upon request.
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states.18 The problem of finding a minimal representation of the solution is made simple by the

fact that DSGE models are based on microfoundations, and we know which are the exogenous and

endogenous state variables. Algorithms such as that of Klein (2000) and Uhlig (1999) require a

user to specify the size of the state vector. These algorithms usually yield a solution of the form

X̃t+1 =
(
X1,t+1

X2,t+1

)
=

(
Ã1(θ) 0
Ã2(θ) 0

)(
X1t

X2t

)
+

(
B̃1(θ)
B̃2(θ)

)
εt+1

Yt+1 =
(
C̃1(θ) C̃2(θ)

)(X1,t+1

X2,t+1

)
.

By suitable ordering of the variables, the gensys solution will also have this form. Note that the Ã

matrix has columns of zeros. In most cases, X1t is the minimal state vector.19 The ABCD matrices

are then defined upon simple substitutions:

X1,t+1 = Ã1(θ)
A(θ)

X1t + B̃1(θ)
B(θ)

εt+1

Yt+1 =
(
C̃1(θ)Ã1(θ) + C̃2(θ)Ã2(θ)

)
C(θ)

X1t +
(
C̃1(θ)B̃1(θ) + C̃2(θ)B̃2(θ)

)
D(θ)

εt+1.

In the An-Schorfheide example, X1t ≡
(
zt, gt, rt

)′ and the new system has nX = 3. The minimal

state space form with Yt+1 = (rt+1, yt+1, πt+1, ct+1) is presented in Table 1. As nε = 3 < nY = 4,

the model is singular. Table 1 shows that some of the nθ = 13 parameters of this model are not

identified. An analysis of the null space of ∆S(θ0) quickly reveals that the columns corresponding

to ν, φ, π are not linearly independent. As already pointed out in An and Schorfheide (2007), these

three parameters are not separately identified and rank ∆S
Λ(θ0) should indeed be less than nθ = 13.

While non-identifiability at this 13 dimensional θ0 is a foregone conclusion, it provides a useful case

study to examine some numerical issues involved.

The rank of any matrix M is determined by the number of its non-zero eigenvalues. Any

identification analysis must confront the problem of determining how small an eigenvalue is deemed

small. Matlab uses tolerance tol=max(size(M))eps(‖M‖), where eps is the float point precision

of M . This default tolerance does not take into account that the ∆S(θ0) matrix is often sparse and

can lead to misleading results. The present example bears this out. We consider 11 values of tol

ranging from 1e-2 to 1e-11, along with the Matlab’s default (last row). Clearly, the rank of ∆S
Λ(θ0)

varies with tol. If tol is set to default, the rank is 13, suggesting identification may be possible
18The minreal function in Matlab produces the minimal state vectors from an eigenvector analysis of the non-

minimal state variables. However, the eigenvectors depend on the parameters to be identified and cannot be used
directly for identification without carefully defining the ABCD matrices.

19In other cases, the endogenous state variables defined by identities will also need to be removed from X1t. This
is straightforward because their corresponding rows in eB1(θ) will be zero.
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even though we know that the model is not identifiable! An overly tight tolerance here clearly gives

the wrong result.

How should we set tol? We use tol=1e-3 in the baseline analysis on the ground that the

numerical derivatives are computed using a step size of 1e-3. Furthermore, the rank of ∆S
Λ(θ0) is

unchanged for a range of smaller and larger values of tol. Since tol=1e-3 is by no means the magic

number, we also use the change in rank as tol tightens as an indication that some parameters of

the model are at not well identified even with infinite data. This flags the parameters that will be

difficult to identify when only a finite number of observations are available.

The rank of ∆S(θ0) suggests that three restrictions may be necessary to identify the model. To

proceed with conditional identification, the rank of ∆S(θ0) is evaluated for 11 sets of restrictions.

Recall that in our analysis, a restriction adds to the rows of ∆S(θ0) but leaves the number of

columns unchanged. Thus, the rank required for identification is always nθ + n2
X + n2

ε = 31. As

expected, three restrictions are necessary. It is quickly found that ν, φ and one of ψ1 or ψ2 needs

to be restricted for identification. Fixing ν and φ always leads to full rank of ∆S

Λ(θ0), as we would

expect. What is more surprising is that not every choice of third restriction leads to identification.

For example, fixing ν, φ and β leads to a rank deficient ∆S

Λ U (θ0). The example illustrates that full

column rank of the matrices ∆S

Λ(θ0),∆S

T (θ0),∆S

U (θ0) are individually necessary but not sufficient

for identification.

Now consider a reparameterized model with κ = τ(1−ν)
νπφ and nθ = 11. Table 2 shows that

∆S
Λ(θ0),∆S

T (θ0),∆S
U (θ0) of the reparameterized model are individually full rank but ∆S(θ0) is short

rank by one. This is in agreement with Table 1 that fixing two of ν, φ, and π is not enough

for identification. One of the three parameters in the Taylor rule (ψ1, ψ2, ρr) needs to be further

restricted. This finding is reinforced when measurement errors are added to each of the four

observed variables so that the model becomes non-singular.

Instead of the posterior mean, Table 3 takes θ0 to be the mean of the priors. The autoregressive

parameters for the shocks are now smaller in this configuration of θ, but the shocks have larger

dispersion. At tol=1e-3, the three sub-matrices of ∆S(θ0) are all full rank. However, ∆S(θ0) is full

rank only in three cases, none of which involves parameters in the Phillips curve. Thus, general

statements about non-identifiability of the Phillips curve cannot be made on the basis of rank

test evaluated at a particular θ0. Each parameter point has to be assessed on an individual basis.

Adding measurement errors to each of the four observed variables leads to the same findings.

The rank conditions defined in Propositions 2-S and 2-NS do not require solving for the au-

tocovariances whose numerical errors could affect the rank conditions. In the singular case, the

only component of the ∆S(θ0) matrix that is subject to numerical errors is ∆S
Λ(θ0). The remaining
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submatrices can be computed exactly in a few lines of code. In the non-singular case, the Kalman

gain matrix needs to be solved numerically. This too is a simple iterative procedure. The code,

along with results for larger and more complex models solved using other solution algorithms, are

available in a supplementary file.

8 Concluding Remarks

Almost every empirical DSGE exercise estimates a subset of the parameters and fixes many others.

At issue is how many restrictions are truly necessary. This paper uses the structural properties of

the canonical solution to DSGE models to obtain identification results that do not require knowledge

of infinite autocovariances or Markov parameters. These conditions are easy to compute; they do

not depend on the data or the choice of the estimator. Because the identification conditions are

based on structure of the model, the results also help us uncover features of the model that are not

immediately transparent.
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Table 1: Full Model: nθ = 13
τ β ν φ π ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz
2 0.9975 0.1 53.6797 1.008 1.5 0.125 0.75 0.95 0.9 .2 .6 .3

Minimal State Space Representation

Xt+1 =

zt+1

gt+1

rt+1

 =

 0.9 0 0
0 0.95 0

0.5450 0 0.5143


A(θ)

X1t +

 1 0 0
0 1 0

0.6055 0 0.6858


B(θ)

εzt+1

εgt+1

εrt+1


εt+1

Yt+1 =


rt+1

yt+1

πt+1

ct+1

 =


.5450 0 0.5143
1.3377 0.95 −0.8258
1.3418 0 −0.5596
1.3377 0 −0.8258


C(θ)

X1t +


0.6055 0 0.6858
1.4863 1 −1.1011
1.4909 0 −0.7462
1.4863 0 −1.1011


D(θ)

εt+1

Non-Minimal Model Minimal Model
Tol ∆S

Λ ∆S
U ∆S

ΛU pass ∆S
Λ ∆S

T ∆S
U ∆S

ΛT ∆S
ΛU ∆S pass

e-02 11 9 19 0 11 9 9 20 19 28 0
e-03 11 9 19 0 11 9 9 20 19 28 0
e-04 11 9 19 0 11 9 9 20 19 28 0
e-05 11 9 19 0 11 9 9 20 19 28 0
e-06 11 9 19 0 11 9 9 20 19 28 0
e-07 12 9 21 0 11 9 9 20 20 29 0
e-08 12 9 21 0 11 9 9 20 20 29 0
e-09 12 9 21 0 11 9 9 20 20 29 0
e-10 12 9 21 0 12 9 9 21 21 29 0
e-11 12 9 21 0 12 9 9 21 21 29 0

default 13 9 22 1 12 9 9 21 21 30 0
Required 13 9 22 1 13 9 9 22 22 31 1

Full Minimal Model with Restrictions: Tol=1e-3
Restriction ∆S

Λ ∆S

T ∆S

U ∆S

Λ,T ∆S

Λ,U ∆S pass
ν - - 12 9 9 21 20 29 0
ν φ - 13 9 9 22 21 30 0
φ π - 13 9 9 22 21 30 0
ν π - 13 9 9 22 21 30 0
β φ - 12 9 9 21 20 29 0
φ ρg - 12 9 9 21 20 29 0
β ν φ 13 9 9 22 21 30 0
β ψ1 ψ2 11 9 9 20 20 29 0
ν φ ψ1 13 9 9 22 22 31 1
ν φ ψ2 13 9 9 22 22 31 1
τ ψ1 ψ2 11 9 9 20 20 29 0
Required 13 9 9 22 22 31 1
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Table 2: Reparameterized Model with κ = τ(1−ν)
νπ2φ

τ β κ ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz 100σvr 100σvy 100σvπ 100σvc
2 .9975 .33 1.5 .125 .75 .95 .9 .2 .6 .3 .2 .2 .2 .2

Tol = 1e-3 No Measurement Errors, nθ = 11 With Errors, nθ = 15
Restriction ∆S

Λ ∆S

T ∆S

U ∆S

Λ,T ∆S

Λ,U ∆S pass ∆NS

Λ ∆NS

T ∆NS pass
τ 11 9 9 20 19 28 0 14 9 23 0
β 11 9 9 20 19 28 0 14 9 23 0
κ 11 9 9 20 19 28 0 14 9 23 0
ψ1 11 9 9 20 20 29 1 15 9 24 1
ψ2 11 9 9 20 20 29 1 15 9 24 1
ρr 11 9 9 20 20 29 1 15 9 24 1
ρg 11 9 9 20 19 28 0 14 9 23 0
ρz 11 9 9 20 19 28 0 14 9 23 0
σ2
r 11 9 9 20 19 28 0 14 9 23 0
σ2
g 11 9 9 20 19 28 0 14 9 23 0
σ2
z 11 9 9 20 19 28 0 14 9 23 0

Required 11 9 9 20 20 29 1 15 9 24 1

Table 3: Reparameterized Model with κ = τ(1−ν)
νπ2φ

τ β κ ψ1 ψ2 ρr ρg ρz 100σr 100σg 100σz 100σvr 100σvy 100σvπ 100σvc
.5 .9988 .1 .25 .25 .2 .1 .15 4 4 4 .2 .2 .2 .2

Tol = 1e-3 No Measurement Errors, nθ = 11 With Errors, nθ = 15
Restriction ∆S

Λ ∆S

T ∆S

U ∆S

Λ,T ∆S

Λ,U ∆S pass ∆NS

Λ ∆NS

T ∆NS pass
τ 11 9 9 20 20 29 1 15 9 24 1
β 11 9 9 20 20 29 1 15 9 24 1
κ 11 9 9 20 20 29 1 15 9 24 1
ψ1 11 9 9 20 20 28 0 14 9 23 0
ψ2 11 9 9 20 20 28 0 14 9 23 0
ρr 11 9 9 20 20 28 0 14 9 23 0
ρg 11 9 9 20 20 28 0 14 9 23 0
ρz 11 9 9 20 20 28 0 14 9 23 0
σ2
r 11 9 9 20 20 28 0 14 9 23 0
σ2
g 11 9 9 20 20 28 0 14 9 23 0
σ2
z 11 9 9 20 20 28 0 14 9 23 0

Required 11 9 9 20 20 29 1 15 9 24 1

26



Appendix

Proof of Lemma 1

For any θ ∈ Θ, let A(θ) ⊂ C be the set of eigenvalues of A(θ). Note that the set A(θ) contains at
most nX distinct points in C. There are two cases to consider.

Case nY > nε. For any θ ∈ Θ and any z ∈ C\A(θ), consider the identity(
InX 0nX×nY

C(θ)[zInX −A(θ)]−1 InY

)(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)
P(z;θ)

=
(
zInX −A(θ) B(θ)

0nY ×nX Hε(z; θ)

)
.

Note that det
(
zInX −A(θ)

)
6= 0 for any z /∈ A(θ) so the first matrix is well defined. Thus, for any

z ∈ C\A(θ),

rank
(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)
= rank

(
zInX −A(θ) B(θ)

0nY ×nX Hε(z; θ)

)
= rank (zInX −A(θ)) + rank Hε(z; θ).

Since det(zInX −A(θ)) 6= 0 for any z ∈ C\A(θ), the results follows.

Case nY < nε. For any z ∈ C\A(θ), det(zInX − A(θ)) 6= 0 and the following matrix equality
holds:(
zInX −A(θ) B(θ)
−C(θ) D(θ)

)(
−[zInX −A(θ)]−1B(θ) [zInX −A(θ)]−1

Inε 0nε×nX

)
R(z;θ)

=
(

0nX×nε InX
Hε(z; θ) −C(θ)[zInX −A(θ)]−1

)
Q(z;θ)

with rank R(z; θ) = nX + nε. Hence rank P(z; θ) = rank Q(z; θ) = rank Hε(z; θ) + nX . �
When D(θ) is invertible and P(z; θ) is square (nY = nε),

P(z; θ)
(

InX 0nX×nε
D−1(θ)C(θ) Inε

)
=
(
zInX − (A(θ)−B(θ)D−1(θ)C(θ)) B(θ)

0nY ×nX D(θ)

)
, ∀z ∈ C.

Since det(P(z; θ)) = det(D(θ)) det(zInX − (A(θ)−B(θ)D−1(θ)C(θ)), the zeros of det(P(z; θ)) are
the eigenvalues of A(θ) − B(θ)D−1(θ)C(θ), which is the test proposed in Fernandez-Villaverde,
Rubio-Ramirez, Sargent, and Watson (2007). In general, finding the values of z where a matrix of
the form zM−P (θ) drops rank and M is possibly singular or non-square is a generalized eigenvalue
problem, with z being the generalized eigenvalues (see, e.g., Laub and Moore, 1978). In our case,

M =
[

InX 0nX×nε
0nY ×nX 0nY ×nε

]
, P (θ) =

[
A(θ) −B(θ)
C(θ) −D(θ)

]
, and P(z; θ) = zM − P (θ). Thus, the rank test

can also be formulated as a generalized eigenvalue test.
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Proof of Proposition 1-S

The proof combines two results: the spectral factorization result and the similarity transformation.

Step 1. Spectral Factorization. The key argument is the following (e.g., Youla, 1961; Ander-
son, 1969; Kailath, Sayed, and Hassibi, 2000, p.205). Let r be the rank a.e. of the spectral density
ΩY (z; θ). If W (z; θ) is an nY × r matrix such that for all z ∈ C, ΩY (z; θ) = W (z; θ)W (z−1; θ)′,
and rank W (z; θ) = r for all |z| > 1, then W (z; θ) is a left-invertible (or minimum phase)
spectral factor that is unique up to a right multiplication by a constant orthogonal r × r ma-
trix V . That is to say, if W (z; θ0) and W (z; θ1) are two left-invertible spectral factors that
satisfy W (z; θ0)W (z−1; θ0)′ = W (z; θ1)W (z−1; θ1)′, then necessarily W (z; θ1) = W (z; θ0)V with
V ′V = V V ′ = Ir.

Under Assumptions 2 and 4-S, the transfer function Hε(z; θ) is left-invertible in |z| > 1. Comb-
ing this with Assumption 1 gives rank W (z; θ) = rank (Hε(z; θ)Lε(θ)) = nε, for all |z| > 1. By
Lemma 1 and Assumption 1, ΩY (z; θ) = Hε(z; θ)Σε(θ)Hε(z−1; θ)′ is of rank nε a.e. in C. Hence,
W (z; θ) a left-invertible spectral factor. Using the above spectral factorization result it then follows
that ΩY (z; θ1) = ΩY (z; θ0) for all z ∈ C if and only if there is an orthogonal nε×nε matrix V , such
that

Hε(z; θ1)Lε(θ1) = Hε(z; θ0)Lε(θ0)V, for every z ∈ C. (12)

Step 2. Necessity and sufficiency of the similarity transforms follow from Theorem 3.10 Antsaklis
and Michel (1997). It remains to combine the result of (12) with the similarity transform. From
(12)

D(θ1)Lε(θ1)
D(θ1)

+C(θ1)[zInX −A(θ1)]−1B(θ1)Lε(θ1)
B(θ1)

= D(θ0)Lε(θ0)V
D(θ0)

+C(θ0)[zInX −A(θ0)]−1B(θ0)Lε(θ0)V
B(θ0)

.

The system (A(θ),B(θ), C(θ),D(θ)) is minimal whenever (A(θ), B(θ), C(θ), D(θ)) is minimal, which
holds under Assumption 5-S. Thus the above equality can only hold if there exists a full rank nX ×
nX matrix T such that D(θ1) = D(θ0), A(θ1) = TA(θ0)T−1, B(θ1) = TB(θ0), C(θ1) = C(θ0)T−1,
that is D(θ1)Lε(θ1) = D(θ0)Lε(θ0)V , A(θ1) = TA(θ0)T−1, B(θ1)Lε(θ1) = TB(θ0)Lε(θ0)V , C(θ1) =
C(θ0)T−1. Letting U ≡ Lε(θ0)V Lε(θ1)−1, be a full rank nε×nε matrix so that UΣε(θ1)U ′ = Σε(θ0)
gives the desired result. �

Proof of Lemma 2-S

The proof is in two steps.

Sufficiency: Consider the contrapositive. Suppose that θ0 is not locally identifiable. Then
there exists an infinite sequence of parameter vectors {θ1, . . . , θk, . . .} (of dimension nθ) approach-
ing θ0 such that ΩY (z; θk) = ΩY (z; θ0) for all z ∈ C. By Proposition 1-S, this implies that there
exist infinite sequences of full rank nX × nX matrices {T1, . . . , Tk, . . .} and full rank nε × nε ma-
trices {U1, . . . , Uk, . . .} such that: TkA(θk)T−1

k = A(θ0), TkB(θk)Uk = B(θ0), C(θk)T−1
k = C(θ0),

D(θk)Uk = D(θ0), U−1
k Σ(θk)U−1

k

′ = Σ(θ0), i.e. δS(θk, Tk, Uk) = δS(θ0, InX , Inε). In order to show
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that the mapping δS is not locally injective, it suffices to show that the sequences {T1, . . . , Tk, . . .}
and {U1, . . . , Uk, . . .} approach InX and Inε , respectively. For this, note that:

O(θk) ≡


C(θk)

C(θk)A(θk)
...

C(θk)AnX−1(θk)

 =


C(θ0)Tk

C(θ0)TkT−1
k A(θ0)Tk
...

C(θ0)TkT−1
k AnX−1(θ0)Tk

 = O(θ0)Tk,

where O(θ) is the observability matrix of (A(θ), C(θ)). Since for all θ, the system is observable,
rank O(θ0) = nX and a left inverse exists which gives Tk =

[
O(θ0)′O(θ0)

]−1O(θ0)′O(θk). By
continuity of O(θ), O(θk) approaches O(θ0) as θk approaches θ0, so Tk approaches InX . To show
that Uk approaches Inε , take any |z| > 1 and note that

P(z; θ0) =
(
zInX −A(θ0) B(θ0)
−C(θ0) D(θ0)

)
=
(
zInX −A(θk) B(θk)Uk
−C(θk) D(θk)Uk

)
= P(z; θk)

(
InX 0
0 Uk

)
.

Since rank P(z; θk) = nx + nε a left inverse exists and:(
InX 0
0 Uk

)
=
[
P(z; θk)′P(z; θk)

]−1[P(z; θk)′P(z; θ0)
]
.

It follows from continuity that Uk approaches Inε as θk approaches θ0. This shows that δS is not
injective in the neighborhood of (θ0, InX , Inε).

Necessity: To show that θ0 locally identifiable implies local injectivity of δS, consider (θ1, T, U)
with θ1 ∈ Θ, T and U full rank nX×nX and nε×nε matrices, respectively, such that δS(θ1, T, U) =
δS(θ0, InX , Inε). That is, TA(θ1)T−1 = A(θ0), TB(θ1)U = B(θ0), C(θ1)T−1 = C(θ0), D(θ1)U =
D(θ0), and U−1Σ(θ1)U−1′ = Σ(θ0). This implies that ΩY (z; θ1) = ΩY (z; θ0) for all z ∈ C. Since θ0 is
locally identifiable, there exists a neighborhood in which θ1 = θ0. To show that δS is locally injective
it suffices to show that θ1 = θ0 implies T = InX and U = Inε . For this, consider again the observabil-
ity matrices and note thatO(θ1)T−1 = O(θ0). Under observability, rank O(θ1) = rank O(θ0) = nX
so θ1 = θ0 implies T = InX . We can then use left-invertibility of P(z; θ1) and P(z; θ0) in |z| > 1 to
show that U = Inε . Hence, δS is locally injective. �

Proof of Proposition 2-S

The proof consists of two parts: the first establishes the rank condition; the second derives the
order condition. Let vech be the operator for the column-wise vectorization with the upper
portion excluded. In order to ‘invert’ the vech operator, we use an n2 × n(n + 1)/2 duplication
matrix Gn which is a matrix of 0s and 1s, with a single 1 in each row. Thus for any n×n symmetric
matrix S, vec (S) = Gnvech (S). The matrix Gn is full column rank and we let En = (G′nGn)−1G′n
be its left-inverse. Then EnGn = In(n+1)/2 and GnEn = (1/2)[In2 + Pn,n], where Pn,n is the n2 × n2

permutation matrix that transforms vec X into vec X ′, i.e. Pn,nvec X = vec X ′. Note that
Pn,n = P−1

n,n and Pn,n = P ′n,n. In addition, rank(In2 + Pn,n) = n(n+1)
2 .
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Rank condition Direct computations of the partial derivatives of δS(θ, T, U) give:

∂δS(θ, T, U)
∂θ

=


(T−1′ ⊗ T )∂vec A(θ)

∂θ

(U ′ ⊗ T )∂vec B(θ)
∂θ

(T−1′ ⊗ InY )∂vec C(θ)
∂θ

(U ′ ⊗ InY )∂vec D(θ)
∂θ

Enε(U−1 ⊗ U−1)Gnε
∂vech Σ(θ)

∂θ

 , (13)

∂δS(θ, T, U)
∂vec T

=



(
T−1′ ⊗ T

)[(
A(θ)′ ⊗ InX )− (InX ⊗A(θ))

](
InX ⊗ T−1

)(
U ′ ⊗ T

)[
B(θ)′ ⊗ InX

](
InX ⊗ T−1

)
−
(
T−1′ ⊗ InY

)[
InX ⊗ C(θ)

](
InX ⊗ T−1

)
0nY nε×n2

X

0nε(nε+1)
2

×n2
X

 , (14)

and

∂δ(θ, T, U)
∂vec U

=


0n2

X×n2
ε(

U ′ ⊗ T
)[

Inε ⊗B(θ)
](
U−1′ ⊗ Inε

)
0nY nX×n2

ε(
U ′ ⊗ InY

)[
Inε ⊗D(θ)

](
U−1′ ⊗ Inε

)
−Enε

(
U−1 ⊗ U−1

)
Gnε
[
2Enε(Σ(θ)⊗ Inε)

](
U−1′ ⊗ Inε

)

 . (15)

Now let ∆(θ) ≡
(
∂δ(θ,InX ,Inε )

∂θ

∂δ(θ,InX ,Inε )

∂vec T

∂δ(θ,InX ,Inε )

∂vec U

)
, that is,

∆(θ) =



∂vec A(θ)
∂θ

[(
A(θ)′ ⊗ InX )− (InX ⊗A(θ))

]
0n2

X×n2
ε

∂vec B(θ)
∂θ

[
B(θ)′ ⊗ InX

] [
Inε ⊗B(θ)

]
∂vec C(θ)

∂θ −
[
InX ⊗ C(θ)

]
0nY nX×n2

ε
∂vec D(θ)

∂θ 0nY nε×n2
X

[
Inε ⊗D(θ)

]
∂vech Σ(θ)

∂θ 0nε(nε+1)
2

×n2
X

−2Enε
[
Σ(θ)⊗ Inε .

]


. (16)

We can write
(
∂δ(θ,T,U)

∂θ
∂δ(θ,T,U)
∂vec T

∂δ(θ,T,U)
∂vec U

)
= M(T,U)∆(θ)N(T,U), whereM(T,U) andN(T,U)

are, respectively, an nS
Λ × nS

Λ diagonal matrix and an (nθ + n2
X + n2

ε ) × (nθ + n2
X + n2

ε ) diagonal
matrix defined as:

M(T,U) ≡


T−1′ ⊗ T

U ′ ⊗ T
T−1′ ⊗ InY

U ′ ⊗ InY
Enε(U−1 ⊗ U−1)Gnε


N(T,U) ≡

Idnθ
IdnX ⊗ T−1

U−1′ ⊗ Inε

 .
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The nε(nε+1)
2 × nε(nε+1)

2 matrix Enε(U−1 ⊗ U−1)Gnε is nonsingular if and only if U is nonsingular.
Since T and U are full rank, both M(T,U) and N(T,U) are full rank,

rank
(
∂δ(θ,T,U)

∂θ
∂δ(θ,T,U)
∂vec T

∂δ(θ,T,U)
∂vec U

)
= rank ∆(θ).

If the rank of ∆(θ) remains constant in a neighborhood of θ0, then the rank of the partial derivatives
of δ remains constant in a neighborhood of (θ0, InX , Inε).

Order Condition The necessary (order) condition is established by counting the number of rows
in the matrix ∆(θ) in (16). This yields rank ∆(θ) 6 nS

Λ = n2
X + nXnε + nY nX + nY nε + nε(nε+1)

2 ,
hence a necessary order condition is that nθ 6 nY nX + nε(nX + nY − nε) + nε(nε+1)

2 . �

Proof of Proposition 1-NS

Unlike in the singular case, the spectral factor W (z; θ) is now a square matrix of size nY ×nY . We
can no longer directly consider Hε(z; θ)Lε(θ). Instead, we work with the innovations representation
for Yt. We proceed in three steps.

Step 1. The existence of the innovations representation depends on the existence of the positive
semi-definite solutions to the discrete algebraic Ricatti equation (DARE):

Σ(θ) = A(θ)Σ(θ)A(θ)′ +B(θ)Σε(θ)B(θ)′ (17)

−
[
A(θ)Σ(θ)C(θ)′ +B(θ)Σε(θ)D(θ)′

] [
C(θ)Σ(θ)C(θ)′ +D(θ)Σε(θ)D(θ)′

]−1 [
C(θ)Σ(θ)A(θ)′ +D(θ)Σε(θ)B(θ)′

]
Under Assumptions 2 (stability) and 4-NS (positive definiteness), Lemma E.3.2 of Kailath, Sayed,

and Hassibi (2000) shows that there always exists a maximal positive semi-definite solution Σ(θ)
to the DARE (17). Moreover, if

Σa(θ) ≡ C(θ)Σ(θ)C(θ)′ +D(θ)Σε(θ)D(θ)′ (18)

K(θ) ≡
[
A(θ)Σ(θ)C(θ)′ +B(θ)Σε(θ)D(θ)′

]
Σ−1
a (θ) (19)

then all the eigenvalues of A(θ)−K(θ)C(θ) lie inside the closed unit disc (Lemma E.4.1 in Kailath,
Sayed, and Hassibi, 2000). Thus Yt has the following innovations representation:

X̂t+1|t+1 = A(θ)X̂t|t +K(θ)at+1 (20a)

Yt+1 = C(θ)X̂t|t + at+1 (20b)

where X̂t|t be the optimal linear predictor of Xt based on the history Y t, and at+1 = Yt+1−C(θ)X̂t|t
is the one-step ahead forecast error of Yt+1, at ∼ WN(0,Σa(θ)). Hence, for all z ∈ C, ΩY (z; θ) =
Ha(z; θ)Σa(θ)Ha(z−1; θ)′, with the transfer function Ha(z; θ) = InY + C(θ)

(
zInX −A(θ)

)−1
K(θ)

Step 2. Spectral Factorization It must first be shown that rank Ha(z; θ) = nY for all
|z| > 1. As in Hansen and Sargent (2005), the proof is based on the property that for any
conformable matrices a, b, c, d with a, d invertible, det(a) det(d + ca−1b) = det(d) det(a + bd−1c).
Now, let a ≡ zInX −A(θ), b ≡ K(θ), c ≡ C(θ), and d ≡ InX . Since A(θ) is stable, a is invertible (so
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is d) and det(zInX − A(θ)) det
(
InX + C(θ)[zInX − A(θ)]−1K(θ)

)
= det(zInX − A(θ) + K(θ)C(θ)).

Equivalently,

detHa(z; θ) = det
(
InX + C(θ)[zInX −A(θ)]−1K(θ)

)
=

det
(
zInX − [A(θ)−K(θ)C(θ)]

)
det(zInX −A(θ))

. (21)

Since det
(
zInX − [A(θ)−K(θ)C(θ)]

)
6= 0 for all |z| > 1, it follows that rank Ha(z; θ) = nY for all

|z| > 1. Now, under Assumption 4-NS, Σa(θ) in (18) is positive definite with La(θ) as its Cholesky
decomposition. Then rank W (z; θ) = rank (Ha(z; θ)La(θ)) = nY , for all |z| > 1. In addition, it
follows from (21) and ΩY (z; θ) = Ha(z; θ)Σa(θ)Ha(z−1; θ)′ that the rank of ΩY (z; θ) equals nY
a.e. in C. Hence, W (z; θ) = Ha(z; θ)La(θ) is a left-invertible spectral factor. By the spectral
factorization result of Youla (1961) and Anderson (1969), ΩY (z; θ1) = ΩY (z; θ0) for all z ∈ C if and
only if there is an orthogonal nY × nY matrix V such that

Ha(z; θ1)La(θ1) = Ha(z; θ0)La(θ0)V, for every z ∈ C. (22)

Step 3. From (22),

La(θ1)
D(θ1)

+C(θ1)[zInX −A(θ1)]−1K(θ1)La(θ1)
B(θ1)

= La(θ0)V
D(θ0)

+C(θ0)[zInX −A(θ0)]−1K(θ0)La(θ0)V
B(θ0)

.

Minimality of (A(θ),K(θ), C(θ), InY ) which is ensured by Assumption 5-NS, implies minimality of
(A(θ),B(θ), C(θ),D(θ)). Using the argument as in the singular case, the above equality holds only
if there exists a full rank nX ×nX matrix T such that D(θ1) = D(θ0), A(θ1) = TA(θ0)T−1, B(θ1) =
TB(θ0), C(θ1) = C(θ0)T−1. Equivalently, La(θ1) = La(θ0)V , A(θ1) = TA(θ0)T−1, K(θ1)La(θ1) =
TK(θ0)La(θ0)V , C(θ1) = C(θ0)T−1. Now uniqueness of Cholesky decomposition implies V = InY .
Thus La(θ1) = La(θ0), and the result follows. �

Proof of Proposition 2-NS

The proof follows directly from the proof of Proposition 2-S and is hence omitted.

Proofs of Propositions 3 and 4

The proofs are analogous to those of Propositions 2-S and 2-NS.

Proof of Lemma 3

Recall that Λ ≡ ΛNS = ((vec A)′, (vec K)′, (vec C)′, (vech Σa)′)′. For any j > 0 and J > 0, let

h(j; θ) ≡ ha(j; θ)La(θ)

hJ(θ) ≡
(
ha(0; θ)La(θ) ha(1; θ)La(θ) . . . ha(J ; θ)La(θ)

)
∆h(j; θ) ≡ ∂vec h(j;θ)

∂θ

,
∂vec hJ(θ)

∂Λ
=


∂vec h(0;θ)

∂Λ
...

∂vec h(J ;θ)
∂Λ

 .

Direct computations show that for any j > 0,

∂vec h(j; θ)
∂Λ

=
(

(La(θ)′ ⊗ InY )Ha(j; θ) (InY ⊗ ha(j; θ))
∂vec La(θ)
∂vech Σa(θ)

)
,
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where Ha(j; θ) is the j-th row of Ha(θ) defined by

Hε(θ) =



0n2
Y ×n

2
X

0n2
Y ×nXnY

0n2
Y ×nY nX

0n2
Y ×n

2
X

InY ⊗ C(θ) K(θ)′ ⊗ InY
...

...
...∑j

k=1K(θ)′Aj−k(θ)′ ⊗ C(θ)A(θ)k−1 InY ⊗ C(θ)A(θ)j K(θ)′Aj(θ)′ ⊗ InY
...

...
...

 .

Proof of (i) To show that for any j > 0, ∂vec h(j;θ)
∂Λ ·∆T (θ) = 0n2

Y ×n
2
X

(where ∆T (θ) = ∆NS
T (θ)),

write:

∂vec h(j; θ)
∂Λ

·∆T (θ) =
[
(La(θ)′ ⊗ InY )Ha(j; θ)

]
·

[(A(θ)′ ⊗ InX )− (InX ⊗A(θ))
][

K(θ)′ ⊗ InX
]

−
[
InX ⊗ C(θ)

]


+
[
(InY ⊗ ha(j; θ))

∂vec La(θ)
∂vech Σa(θ)

]
· 0nY (nY +1)

2
×n2

X

= 0n2
Y ×n

2
X
,

where the second equality follows by direct computations. This establishes result (i) of the lemma.

Proof of (ii) To show that rank hJ(θ) = rank h2nX−2(θ) for all J > 2nX − 2 we use the Cayley-
Hamilton theorem which ensures that for any minimal system (A(θ),K(θ), C(θ), InY ), rank (CN (θ)′ON (θ)′) =
rank (CnX (θ)′OnX (θ)′), for all N > nX , where CN (θ) and ON (θ) are the controllability and the
observability matrices of order N , i.e.

CN (θ) ≡
(
K(θ) . . . A(θ)N−1K(θ)

)
and ON (θ) ≡

 C(θ)
...

C(θ)A(θ)N−1

 .

Take N = nX + 1. Then K(θ)′A2nX−1(θ)C(θ)′ is a linear combination of (K(θ)′AnX−1(θ)′C(θ)′,
. . . ,K(θ)′A2nX−2(θ)′C(θ)′). Therefore, La(θ)′K(θ)′A2nX−1(θ)′C(θ)′ is a linear combination of
(La(θ)′K(θ)′AnX−1(θ)′C(θ)′, . . . , La(θ)′K(θ)′A2nX−2(θ)′C(θ)′). Thus, rank h2nX−1(θ) = rank h2nX−2(θ).
The result holds recursively for any J > 2nX − 2.

Proof of (iii) Combining ∆(θ) =
(
∆Λ(θ) ∆T (θ)

)
and result (i) gives:

∂h2nX−2(θ)
∂Λ

·∆(θ) =
(

∆h2nX−2
(θ) 0(2nX−1)n2

Y ×n
2
X

)
. (23)

Necessity: We need to show that rank ∆h2nX−2
(θ0) = nθ implies rank ∆(θ0) = nθ + n2

X . Now,
rank ∆h2nX−2

(θ0) = nθ implies that rank ∆Λ(θ0) = nθ because from (23), rank ∆h2nX−2
(θ0) 6

rank ∆Λ(θ0) 6 nθ. Then proceed by contradiction: assume that rank ∆h2nX−2
(θ0) = nθ and that

rank ∆(θ0) < nθ + n2
X . Then, rank ∆Λ(θ0) = nθ and rank ∆(θ0) < nθ + n2

X . This means that at
least one column of ∆Λ(θ0), say CΛ(θ0), can be written as a linear combination of the columns of
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∆T (θ0). Using (23), it follows that ∂h2nX−2(θ0)

∂Λ CΛ(θ0) = 0(2nX−1)n2
Y ×1. This implies ∆h2nX−2

(θ0)
has one zero column, which is a contradiction.

Sufficiency: We need to show that rank ∆(θ0) = nθ + n2
X implies rank ∆h2nX−2

(θ0) = nθ. Now,

rank ∆(θ0) = nθ + n2
X implies rank ∆Λ(θ0) = nθ, and rank ∆T (θ0) = n2

X . First, we show that
when the system is minimal state and left-invertible,

N
(
∂h2nX−2(θ0)

∂Λ

)
= span

(
∆T (θ0)

)
, (24)

where N
(∂h2nX−2(θ0)

∂Λ

)
is the null space of ∂h2nX−2(θ0)

∂Λ and span
(
∆T (θ0)

)
denotes the subspace

spanned by the columns of ∆T (θ0). For this, consider a Taylor expansion of vec h2nX−2(θ) around

θ = θ0: vec h2nX−2(θ0 + δ) = vec h2nX−2(θ0) + ∂h2nX−2(θ0)

∂Λ ∆Λ(θ0)δ∗, where δ∗ ∈ (0, δ). Under
minimality and left-invertibility, (10) are the only transformations leading to the same h2nX−2.
That is, vec h2nX−2(θ0 + δ) = vec h2nX−2(θ0) if and only if ∆Λ(θ0)δ∗ ∈ span

(
∆T (θ0)

)
. Combining

this with the Taylor expansion gives:

∂h2nX−2(θ0)
∂Λ

∆Λ(θ0)δ∗ = 0(2nX−1)n2
Y
⇐⇒ ∆Λ(θ0)δ∗ ∈ span

(
∆T (θ0)

)
,

so (24) holds. To show that this implies that rank ∆h2nX−2
(θ0) = rank

(∂h2nX−2(θ0)

∂Λ ·∆Λ(θ0)
)

= nθ,

we proceed by contradiction. Suppose that rank
(∂h2nX−2(θ0)

∂Λ ·∆Λ(θ0)
)
< nθ. Then there ex-

ists a nonzero linear combination of the columns of ∆Λ(θ0) which belongs to the null space

N
(∂h2nX−2(θ0)

∂Λ

)
. Using (24) then there exists a nonzero linear combination of the columns of

∆Λ(θ0) which can be written as a linear combination of the columns of ∆T (θ0). This violates the
assumption that rank ∆(θ0) = nθ + n2

X and thus leads to a contradiction. �
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