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1 Introduction

Suppose the sale of the right to drill for oil to two wildcatters. The first one, the incumbent, has a high

marginal cost and a low fixed cost, whereas the second one, the entrant, has a low marginal cost and a

high fixed cost. In this case, it may be efficient to allocate the good to the incumbent if there is little

oil and to the entrant if there is much oil. However, Maskin (1992) has shown that this allocation, i.e.

the first best, is not implementable1 when the amount of oil is private information of the incumbent.

What is then the socially optimal allocation subject to implementability, i.e. the second best?

This paper studies this question in a general set-up in which the first best is not implementable.

We characterize the set of Bayesian incentive compatible mechanisms that maximize the expected

social surplus in the sale of an indivisible unit when buyers have interdependent values. We also show

that allowing for the possibility that the good remains unsold may increase the expected social surplus

even when allocating the good to no bidder generates less social surplus than allocating to any of the

bidders. In our analysis, however, we focus on mechanisms that always allocate the good to one of

the bidders.2

We use our characterization to study the efficiency properties of the English auction. We show

that this auction format has an equilibrium that implements the second best when there are only

two bidders. Besides, this is the unique equilibrium outcome3 when only one bidder has private

information about the bidders’ common value as in the wildcatter example. In this case, however,

there is no equilibrium that implements the second best if there are more than two bidders.

To take a glimpse of the intuition of our results consider the wildcatter example. Since the

incumbent knows the amount of oil, she knows her value. Hence, she has a unique weakly dominant

strategy as in a private value auction: to stay active until her value is reached. If the incumbent plays

this strategy, the entrant’s payoff when winning is equal to the difference between her value and the

incumbent’s, i.e. it is equal to the change in social surplus. It is thus not surprising that the entrant’s

best response implements the second best.

The above example also illustrates that the strategic analysis of the English auction when the first
1In this paper, we mean by implementable that the allocation is the equilibrium outcome to some game. This notion

of implementability is also called achievability. Note that it differs from the concept of full implementation. This latter

concept requires that the allocation is the unique equilibrium outcome to some game.
2This is without loss of generality if the seller’s value is sufficiently small relative to buyers’s valuations. An extreme

case is when not selling is not an option. To some extent this is the case of many public sector auctions.
3We restrict to equilibria in which bidders do not use weakly dominated strategies.
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best is not implementable is more complex than otherwise. Since the entrant’s value is greater than

the incumbent’s if and only if the latter is large enough, the entrant makes a loss if she wins at a low

price but a profit if she wins at a high price. Her best response must trade off these expected losses

and gains. As a consequence, the entrant may find it profitable to remain in the auction at prices at

which she makes a loss when the incumbent quits, i.e. there may be ex post regret in equilibrium.

The analysis is even more complex with more than one entrant, however it shares the feature than

in equilibrium entrants may remain in the auction at prices at which they make a loss if the incumbent

quits and they win. This possibility explains our results for more than two bidders. The fact that the

incumbent quits may prompt the remaining entrants to quit immediately to avoid losses. Under the

standard tie breaking rules, this “rush” implies that the entrant with highest value does not always

get the good and the application of our characterization shows that this is incompatible with second

best efficiency.

This source of inefficiencies in English auctions is very different from the one already pointed out

by Krishna (2003) for the case in which the first best is implementable with other mechanisms. Indeed,

we do not expect that the modifications of the English auction used to recover efficiency proposed by

Perry and Reny (2002) and Izmalkov (2003) work in our setup. Hence, they should be revised and

amended when second best efficiency is a concern.

The wildcatter example is special in that only one bidder has private information about the bidders’

common value. Under more general assumptions, the usual problem of multiplicity of equilibria of

the English auctions is also a concern here. Consider the following well-known example: two bidders

with value functions vi(s) = si + 2sj where si ∈ [0, 1] is the private type of Bidder i. The symmetric

equilibrium of the English auction implements the worst possible allocation: both bidders use the

same bid function b(si) = 3si and hence, the bidder with larger type, and thus lower value, wins the

auction. Our analysis shows that focusing on the symmetric equilibrium may be misleading as there

are other equilibria that implement the second best and there is no natural refinement to single out

an equilibrium.4

The rest of the paper is organized as follows. The related literature is in Section 2. We define

the formal set-up in Section 3. In Section 4, we study the implementation of the first best allocation.
4Chung and Ely (2001) have studied dominance solvability in auctions when the first best is implementable and a

single crossing condition is satisfied. With only two bidders their results select the efficient equilibrium of the English

auction. This is the symmetric equilibrium when bidders are symmetric. Their results, however, do not extend to our

context.
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Section 5 includes some motivating examples in which the first best is not implementable. The second

best efficient allocation is characterized in Section 6. We discuss the possibility that the good remains

unsold in Section 7. Section 8 discusses the implementability of the second best through an English

Auction and Section 9 concludes. We include two appendixes: Appendix A with the most technical

proofs and Appendix B with an extension of our model to multidimensional types.

2 Related Literature

Most of the papers that study the set of auction mechanisms that maximize the expected social

surplus subject to the buyers’ incentive compatibility constraints differ from ours in that they assume

conditions that guarantee that the incentive compatibility constraints are not binding. This is for

instance the case of Vickrey (1961), Krishna and Perry (1998), and Williams (1999), and most of the

analysis of Maskin (1992, 2000), and Dasgupta and Maskin (2000).

Maskin (1992, 2000), Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001), and Eso and

Maskin (2000) also consider the case in which the first best is not implementable. But their results

hinge on the assumption that bidders have multidimensional private information. They argue that in

this case an implementable allocation cannot depend on the type beyond a particular one-dimensional

reduction. The first best is usually not implementable because it requires conditioning on more

information than this one-dimensional reduction. Eso and Maskin (2000) define in this setup the

constraint efficient allocation. This is the allocation that maximizes expected social surplus when we

can only condition the allocation on the former one-dimensional reduction.

Although we assume for our main results a one-dimensional type space, we note in Appendix B that

our results may be used in the efficiency analysis based on the one-dimensional reduced types. The

reason is that our examples in Section 5 suggests that there are no general arguments that ensure that

the one-dimensional reduction verifies the conditions required for the constrained efficient allocation

to be implementable.

Another related branch of the literature, in particular Maskin (1992), Krishna (2003), Birulin and

Izmalkov (2003), Dubra, Echenique, and Manelli (2008), and Izmalkov (2003), analyzes whether there

is an equilibrium of the English auction that allocates the good efficiently when the efficient allocation

is implementable. They show that the answer, as in our model, depends on whether the number of

bidders is equal to two. The logic, however, differs as our results are due to the particular features of

the second best allocation. In fact, the English auction in our setup has an efficient equilibrium when
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the first best allocation is implementable, regardless of the number of bidders.

On the technical side, our work is related to Mussa and Rosen (1978) and Myerson (1981). They

analyze the allocation that maximizes the expected profits using a technique called ironing. We use this

technique to characterize the allocation that maximizes the expected social surplus. In a recent paper,

Boone and Goeree (2008) have used a simplified version of the ironing technique in an environment

closely related to our motivating example in Section 5.2. Their focus, as in Myerson (1981), is on the

revenue maximizing auction rather than on the maximum expected social surplus.

The problem of second best efficiency has also received attention in the context of two parties

that bargain with asymmetric information, see Myerson and Satterthwaite (1983). The difference

is that in their setup withdrawing the individual rationality constraints always makes the first best

implementable, whereas this is not the case in our setup. In fact, we consider the usual auction

environment in which the individual rationality constraints can be trivially met and it is only the

incentive compatibility constraints that may be binding.

3 The Model

One unit of an indivisible good is put up for sale to a set N ≡ {1, 2, ..., n} of n bidders. Let s =

(s1, ..., sn) ∈ Rn be a vector where si corresponds to the realization of an independent random variable

with distribution Fi and with a strictly positive density5 in a bounded support Si ⊂ R. Bidder i ∈ N

observes privately si and gets a von Neumann-Morgenstern utility vi(s) − p if she gets the good for

sale at price p, and utility −ej(sj)− p if Bidder j, j &= i, gets the good and i pays a price p. Thus, ej

denotes a negative externality6 produced by j on each of the other bidders.

We assume additive separability of the bidders’ value functions plus a symmetry assumption on

the common value component. Formally,7 vi(s) = ti(si) +
∑

i∈N qj(sj) for any i ∈ N , where ti(si) (ti

stands for taste) is the private value and
∑

i∈N qj(sj) (qj stands for quality) is the common value. We

also assume that ti, qi and ei are bounded, that vi(s) is a strictly increasing function of si, i.e. that
5Monteiro and Svaiter (2009) have recently shown how to extend Myerson’s (1981) analysis to general distribution

functions. Skreta (2007) also discusses this generalization in some detail.
6Note that we also allow for ej(sj) < 0 and thus for positive externalities.
7In the text, we usually give as primitives the vi’s functions for simplicity. A simple way to recover the ti’s and qi’s

from the vi’s when S = [0, 1]n is as follows: ti(si) = vi(0, ..., 0, si, 0, ..., 0)− vj(0, ..., 0, si, 0, ..., 0) + vj(0), for a j "= i, and

qi(si) = vj(0, ..., 0, si, 0, ..., 0)− vj(0). The functions ti and qi deduced in this way correspond to the normalization that

qi(0) = 0 for all i.
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φi(si) ≡ ti(si) + qi(si) is strictly increasing, and that hi(si) ≡ ti(si)− (n− 1)ei(si) is measurable and

at any point either right or left continuous.

Additive separability and independency of types are usual assumptions in Bayesian implementa-

tion. The former assumption is required as otherwise the set of Bayesian implementable allocations

does not have a natural-tractable characterization. The role of the latter assumption is to avoid the

optimality of sophisticated mechanisms a la Cremer and McLean (1985, 1988) that trivialize the im-

plementation problem in an unrealistic way. An alternative approach considered in the literature is

the study of ex post implementation. We discuss it in the Conclusions.

Although the independency assumption is usually unrealistic when there are common values, note

that this is not the case if only one bidder has private information about the common value. This is

the case of our motivating examples, see Section 5. There are other real life examples with common

values in which the independency assumption is reasonable, see Bergemann and Välimäki (2002).

Our symmetry assumption simplifies the characterization of the second best allocation. This

assumption is without loss of generality with only two bidders. The general case requires a more

complex approach. This assumption (together with additive separability) also implies that under the

assumptions of Section 8, the English auction implements the first best whenever it is implementable

and there are no externalities.8

4 Feasible Allocations and First Best Efficiency

Let an allocation be a measurable function p : S → [0, 1]n, where S ≡
∏n

i=1 Si, such that
∑n

i=1 pi(s) = 1

for any s ∈ S, where pi(s) denotes the probability that the good is allocated to i when the vector

of types is s ∈ S. Note that we do not allow for the possibility that the good remains unsold. This

is a common assumption in the papers that study the efficiency of the English auction, for instance

Maskin (2000), Krishna (2003), and Birulin and Izmalkov (2003). We show in Section 7 that one

reason is that there is very little hope except in very special cases that the English auction is efficient

when the efficient allocation requires no selling for some vector of types.

We are interested in the set of allocations that can be implemented. By the revelation principle,

there is no loss of generality in restricting to direct mechanisms. A direct mechanism is a pair of
8This is because under our symmetry and additive separability assumptions the single crossing condition, see below,

implies the average crossing condition and the cyclical crossing condition of Krishna (2003), and the generalized single

crossing condition of Birulin and Izmalkov (2003).
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measurable functions (p, x) where p is an allocation and x : S → Rn a payment function. In the direct

mechanism (p, x), each bidder announces a type, and pi(s) denotes the probability that i gets the good

and xi(s) her transfers to the auctioneer when the vector of announced types is s ∈ S.

The expected utility of Bidder i with type si who reports s′i when all the other bidders report

truthfully is equal to:

Ui(si, s
′
i) ≡ Qi(s′i, p)φi(si) + Ψi(s′i, p, x),

where9

Qi(s′i, p) ≡
∫

S−i

pi(s′i, s−i)f−i(s−i) ds−i,

and,

Ψi(s′i, p, x) ≡
∫

S−i




∑

j $=i

(
pi(s′i, s−i)qj(sj)− ej(sj)pj(s′i, s−i)

)
− xi(s′i, s−i)



 f−i(s−i) ds−i,

for S−i ≡
∏

j $=i Sj and f−i(s−i) ≡
∏

j $=i fj(sj).

Thus, we say that an allocation p is feasible if there exists a direct mechanism (p, x) that satisfies

the following Bayesian incentive compatibility constraint:10

Ui(si, si) = sup
s′i∈Si

{Ui(si, s
′
i)},

for all si ∈ Si and i ∈ N .

The following lemma characterizes the feasible allocation using a standard argument in mechanism

design, see for instance Myerson (1981), Rochet (1985) and McAfee and McMillan (1988):

Lemma 1. An allocation p is feasible if and only if Qi(si, p) is weakly increasing in si for all si ∈ [0, 1]

and i ∈ N .

See proof in the Appendix.

We use the following natural definition:
9With some abuse of notation, we denote by pi(si, s−i) and pj(si, s−i) the function pi and pj , respectively, evaluated

at a vector whose l-th component is equal to the l-th component of s−i if l < i, it is equal to si if l = i and it is equal

to the l − 1-th component of s−i if l > i. We adopt the same convention for xi(si, s−i).
10We do not impose individual rationality constraints because they are trivially satisfied in our set-up. For instance,

the mechanism proposed in Lemma 1 verifies that all bidders’ types get non-negative utility.
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Definition: We say that an allocation p is first best efficient when ∀s ∈ S, pi(s) > 0 only if:

vi(s)− (n− 1)ei(si) = max{vj(s)− (n− 1)ej(sj)}n
j=1,

or equivalently,

hi(si) = max{hj(sj)}n
j=1

We adapt the following definition to our framework:11

Definition: We say that the single crossing condition is satisfied for bidder i if,

vi(s)− (n− 1)ei(si) > max{vj(s)− (n− 1)ej(sj)}j $=i

implies that

vi(s′)− (n− 1)ei(s′i) ≥ max{vj(s′)− (n− 1)ej(s′j)}j $=i,

for any s, s′ ∈ S such that s′i > si and sj = s′j for j &= i.

The interpretation of the single crossing condition is that if it is (first best) efficient to allocate

to Bidder i for some signal profile, it cannot be the case that increasing Bidder i’s type (keeping the

other types constant) makes it efficient to allocate to Bidder j &= i.

Our additive separability and symmetry assumptions allow for a condition simpler to check in

applications.

Lemma 2. The single crossing condition for Bidder i is satisfied if and only if for any si, s′i ∈ Si such

that s′i > si, the set,

{s−i ∈ S−i : max{hj(sj)}j $=i ∈ (hi(s′i), hi(si))}

is empty.
11The single crossing condition usually corresponds to the following alternative condition:

vi(s)− (n− 1)ei(si) ≥ max{vj(s)− (n− 1)ej(sj)}j $=i

implies that

vi(s
′)− (n− 1)ei(s

′
i) > max{vj(s

′)− (n− 1)ej(s
′
j)}j $=i,

for any s′i > si and s′j = sj for j "= i.

This alternative condition is sufficient for feasibility of the first best. If we add differentiability, it also implies the

single crossing condition of Dasgupta and Maskin (2000). We have used instead our definition to get also a necessary

condition.
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See proof in the Appendix.

Note that the condition in Lemma 2 basically says that hi(.) must be an increasing function at

any point at which a local variation changes the identity of the most efficient bidder.

Proposition 1. A necessary and sufficient condition for the first best to be feasible is that the single

crossing condition is satisfied for all bidders.

See proof in the Appendix.

Intuitively, if the single crossing condition fails, the first best allocation requires that we move

away the allocation of the object from Bidder i to some other bidder as we increase Bidder i’s type.

This implies that Bidder i’s probability of winning conditional on her type must decrease at some

point violating the conditions in Lemma 1.

That a version of our single crossing condition is sufficient for feasibility of the first best is well

known. The necessary part is a consequence of the additive structure of our model. Dasgupta and

Maskin (2000) have also proved that a single crossing condition is necessary for a more demanding

definition of feasibility of the first best.

5 Economic Applications

Consider the following examples in which the single crossing condition typically fails.

5.1 An Incumbent’s Model

This model formalizes a version of the wildcatters’ example mentioned in the Introduction. Suppose

the sale of a license to become a monopolist in a market with an inverse demand function P (Q) = 1− Q
s1

.

Suppose there is a set N of firms interested in the license. Firm 1 ∈ N is an incumbent that has zero

set-up costs to start to operate the license and a constant marginal cost c1. The other firms are

potential entrants. They incur in a set-up cost to start operating the license. We denote by −si, i &= 1

the set-up cost of Firm i. We assume that all the entrants have the same marginal cost c. We also

assume that c < c1 < 1. Thus, as in the example of the Introduction, the incumbent has the lowest

fixed cost but the highest marginal cost.

9



We assume that s1 is the realization of a random variable with a distribution function F1 and a

density in the support [s, s], 0 < s < s. We also assume that each si, i &= 1, is the realization of a

random variable with a distribution function Fi and a density in the support [−s (1−c)2

4 , 0]. The lower

bound of the support implies that an entrant always finds it profitable to buy the license at zero price,

whereas the upper bound ensures that there is an entrants’ type that values the license more than any

type of the incumbent. Finally, we assume that all the above random variables are independent, and

that si is private information of Firm i.

Proposition 2. In the model of this section, the first best is not feasible.

See proof in the Appendix.

The intuition is that the single crossing condition is not verified since an increase in the incumbent’s

type, increases her value less than the entrants’.

5.2 An Insider’s Model

Suppose the sale of a painting to a set N of risk neutral bidders. The painting may be an original

painting of a well-known (and priced) artist or a fake. Bidder i puts a value on the painting of τi +ρ if

the painting is original and otherwise a value of τi. We assume that each τi is equal to an independent

draw of a random variable with a distribution function Gi and a density in the support [t, t]. We

assume that τi is private information of Bidder i. One of the bidders, Bidder 1, is an expert art dealer

and she is the only one knowing whether the painting is original. The other bidders only know that

the ex ante probability that the picture is original is equal to α ∈ (0, 1).

We also assume that ρ + t > t. This assumption means that Bidder 1’s multidimensional type can

be mapped into a one dimensional type without losing information. Our results can be extended to

ρ + t ≤ t, but they require the framework of models with multidimensional types of Appendix B.

Proposition 3. In the model of this section, the first best is not feasible.

See proof in the Appendix.

The reason is that the single crossing condition for Bidder 1 is not verified. This is because an

increase in Bidder 1’s value from t to ρ + t implies that the painting is not a fake but an original.

10



Hence, the other bidder’s values increases by ρ, which is larger than the increase in Bidder 1’s value

ρ + t− t.

5.3 A Model with Negative Externalities

Suppose n local markets, each with a unit mass of consumers with reservation value 1 for the con-

sumption of the good. Suppose also a set N of n firms and n local markets. Each firm starts with

a branch in one of the local markets. Initially, no two firms have a branch at the same local market.

Firms can open new branches at a fixed cost C < 1 and serve any local market in which they have a

branch at a marginal cost c < 1.

Suppose that a seller puts up for sale a new technology that reduces the marginal costs of Firm i

by an amount si. Suppose that si is drawn from an independent distribution Fi with support [0, c].

If only one firm serves a market, its profits are equal to 1 minus the marginal cost. When more than

one firm serves a local market, we assume an outcome consistent with Bertrand competition: the firm

with the lowest marginal cost serves the market at a price equal to the second lowest marginal cost.12

As a consequence, a firm finds it profitable to open a branch in any of the other markets if and

only if she gets the new technology and the reduction in the marginal cost is sufficiently large, in

particular, si > C.

Proposition 4. In the model of this section, the first best is not feasible.

See proof in the Appendix.

The reason is that the single crossing condition for Firm i is not verified. To see why, note that

Firm i does not create any externality if its cost reduction is less than C, but it causes a negative

externality on each of the other firms equal to 1− c, otherwise. This means that for cost reductions of

Firm i sufficiently close to C but less than C, the first best may allocate to Firm i, but it may allocate

to some other firm for a greater cost reduction.

6 Second Best Efficiency

In light of Proposition 1, it is natural to define second best efficiency.
12In case of more than one firm with the lowest marginal cost, we assume that they split equally the demand at a price

equal to their common marginal cost.
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Definition: We say that an allocation p is second best efficient if it is feasible and it maximizes:
∫

S

n∑

i=1

(vi(s)− (n− 1)ei(si)) pi(s)f(s) ds,

or equivalently, ∫

S

n∑

i=1

hi(si)pi(s)f(s) ds,

where f(s) ≡
∏

i∈N fi(si)

Certainly, the set of second best allocations includes the first best allocation when the single

crossing condition is satisfied.

To simplify the notation, assume without loss of generality that Fi is uniform on [0, 1].13

Recall that it is first best efficient to allocate according to hi(si). However, this allocation is not

implementable when hi is not increasing. We next show how to derive from the hi functions some

functions that we denote by gi that are increasing and that determine the second best allocation like

the hi’s determine the first best.

Let Hi(si) ≡
∫ si

0 hi(s̃i) ds̃i for all i ∈ n and si ∈ [0, 1], and let Gi(si) : [0, 1] → R be the convex

hull of the function Hi (i.e. the highest convex function on [0, 1] such that Gi(si) ≤ Hi(si) for all

si ∈ [0, 1].) Formally:14

Gi(si) = min {wHi(r1) + (1− w)Hi(r2) : w, r1, r2 ∈ [0, 1] and wr1 + (1− w)r2 = si} .

Next lemma summarizes some properties of Gi, see Section 6 in Myerson (1981).

Lemma 3. Properties of Gi:

(a) Gi is convex.

(b) Gi(0) = Hi(0) and Gi(1) = Hi(1).

(c) Gi(si) ≤ Hi(si) for all si ∈ [0, 1].
13Lehmann (1988) already showed that there is no loss of generality in assuming that signals have a uniform marginal

distribution. To see why, suppose that the Fi’s were not uniform. Then, we could define a new vector of signals

s̃i ≡ Fi(si) and value functions ṽi(s̃) ≡ t̃i(s̃i) +
P

i∈N q̃j(s̃j) and ẽj(s̃j) where t̃i(s̃i) ≡ ti(F
−1
i (s̃i)), q̃j(s̃j) ≡ qj(F

−1
j (s̃j))

and ẽj(s̃j) ≡ ej(F
−1
j (s̃j)), for F−1(z) ≡ min{si ∈ [s, s] : F (s) ≥ z}. To see that each of the new signals s̃i’s has a uniform

distribution on [0, 1], note that the probability of {s̃i ≤ z} for z ∈ [0, 1] is equal to the probability of {Fi(si) ≤ z}, which

is equal to the probability of {si ≤ F−1
i (z)} and thus, it is equal to Fi(F

−1
i (z)) = z.

14See also Rockafellar (1970), Pag. 36.
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(d) If Gi(si) < Hi(si) in an open interval, then Gi is linear in the same open interval.

As a convex function Gi is differentiable except at countably many points, and its derivative is

a non-decreasing function. We define gi : [0, 1] → R to be the differential of Gi completed by right-

continuity.

Note that when hi is an increasing function then gi = hi, but this is not the case when hi is

decreasing in some interval. Suppose, for instance, that hi(si) = β − si. Then Hi(si) = βsi − s2
i /2,

and since it is concave, its convex hull is simply a straight line connecting (0, Hi(0)) and (1, Hi(1)),

i.e. Gi(si) = (β − 1
2)s1. Thus, gi(si) = (β − 1

2). Note that in this case gi is in fact the average value

of hi in [0, 1].

More generally, the function gi is equal to hi except in some intervals around the points at which hi

is not increasing. In these intervals, gi takes the average value of hi in the interval, i.e. the hi function

is “ironed out” in these intervals. The following example illustrates this point: hi(si) = 2si if si < 1/2,

and hi(si) = 2si−1 otherwise. It can be shown after some algebra that gi(si) = hi(si) = 2si if si < 1/4,

gi(si) = 1/2 (i.e. the average value of hi in [1/4, 3/4)) if si ∈ [1/4, 3/4) and gi(si) = hi(si) = 2si − 1

if si ≥ 3/4, see Figure 1.15

0.2 0.4 0.6 0.8 1.0
si

0.2

0.4

0.6

0.8

1.0

!hi, gi"

Figure 1: Ironing: the functions hi and gi (dashed) when hi is not increasing.

15Mussa and Rosen (1978), pp. 313-314, provide a similar illustration for the case of a price discriminating monopolist

that faces a non-monotonic marginal revenue.
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Proposition 5. A feasible allocation p∗ is second best efficient if and only if it maximizes:16

∫

S

n∑

i=1



gi(si) +
n∑

j=1

qj(sj)



 pi(s) ds +
n∑

i=1

∫

Si

(Gi(si)−Hi(si)) dQi(si, p). (1)

An allocation p∗ maximizes the above expression when ∀i ∈ N :

(i) p∗i (s) > 0 only if gi(si) = max{gj(sj)}j∈N a.e.

(ii) Qi(., p∗) is constant in any open interval in which Gi(si) < Hi(si).

See proof in the Appendix.

Note that an allocation that verifies condition (i) maximizes the first integral in Equation (1),

and if it verifies condition (ii), it also maximizes the second integral. To see the latter, recall that by

Lemma 3(c), the second integral is non-positive, whereas condition (ii) implies that it is zero.

We next illustrate the proposition with an example with two bidders.17

Example 1. N = {1, 2}, v1(s) = β + s1, v2(s) = γ + 2s1 and ei(si) = 0 for all i, where β, γ ≥ 0 and

β − γ ∈ (0, 1) .

It is straightforward that h1(s1) = β − s1 and h2(s2) = γ, and hence the first best allocation is to

give the good to Bidder 1 if β− s1 > γ and otherwise to Bidder 2. This is not feasible since it implies

that the probability that Bidder 1 gets the good is decreasing in her type and thus the feasibility

condition of Lemma 1 is not met. Note that g1(s1) = β − 1/2, and g2(s2) = γ. Thus, by application

of Proposition 5, the second best is to allocate to Bidder 1 if β − 1/2 > γ and to allocate to Bidder 2

if β − 1/2 < γ.18

To understand why this allocation is second best efficient note that there are only two allocations

that can potentially be second best: to allocate the good to Bidder 1 for any s1, or to allocate the
16We denote by

R
E

ϕ(x)dF (x) the Lebesgue-Stieljes integral of ϕ with respect to F in E. In particular, for any feasible

allocation p, we denote by
R

Si
ϕ(si)dQi(si, p) the Lebesgue-Stieljes integral of ϕ with respect to Qi(., p) in Si.

17To make it simpler, in our example only Bidder 1 has private information, or equivalently, v1(s) and v2(s) are

constant with respect to s2. Although this departs from our general assumptions, the only difference is that the incentive

compatibility constraints for Bidder 2 are trivially satisfied and thus the conditions of Lemma 1 only need to hold for

Bidder 1.
18Note that in the case β− 1/2 = γ the second best only requires that Q1(s1, p

∗) is constant in s1 in the open interval

(0, 1).
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good to Bidder 2 for any s1. The reason for this is that the greater s1 is, the less desirable from an

efficient point of view is to allocate to Bidder 1, whereas the feasibility condition requires that if we

allocate to Bidder 1 for some type s1 with some probability we must allocate to Bidder 1 with greater

probability for higher types. Between these two candidates, the former is second best if Bidder 1 has

greater value than Bidder 2 on average, i.e if β− 1/2 > γ, whereas the latter is second best otherwise.

This is precisely what our application of Proposition 5 says.

7 Second Best when the Good may Remain Unsold

In this section, we depart from one assumption that we use in the rest of the paper, that is that the

good is always allocated to one of the bidders. We start with an example that illustrates that the

English auction is not in general first best efficient when the first best requires allocating to no bidder

for some vector of types.

Example 2. N = {1, 2}, v1(s) = v2(s) = s1 + s2 and ei(si) = 0 for all i, and the social surplus of

allocating to no bidder is equal to 1/2.

It is easy to see that the efficient allocation of the example requires that the good is allocated

to no bidder if s1 + s2 < 1/2. This cannot be implemented in an English auction with an entry fee

and/or a reserve price. The reason is that these instruments induce an entry equilibrium in which

bidders use threshold strategies. As a consequence, the good is allocated to no bidder for sets of types

{(s1, s2) ∈ [0, 1]2 : s1 ≤ s1, s2 ≤ s2} for some si ∈ [0, 1].

Formally, in this section we assume that an allocation must verify the condition that for any

s ∈ [0, 1]n,
∑

i pi(s) ≤ 1 rather than the more restrictive condition that we assume in the rest of the

paper that
∑

i pi(s) = 1. Note that the probability with which the good remains unsold is equal to

1−
∑

i pi(s). We only consider the case in which the social surplus of not allocating the good to any

bidder is constant and normalize it to be zero.

To distinguish from the analysis in the remaining of the paper, we refer to the allocation that

maximizes social surplus when the good may remain unsold, as second best efficient with no selling.

Next proposition gives sufficient conditions under which allowing for the good to remain unsold does

not improve expected social surplus.

Proposition 6. If maxi∈N gi(si) +
∑n

j=1 qj(s) ≥ 0, then any second best efficient allocation is also

second best efficient with no selling.
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Proof. The proof is direct. The condition of the proposition implies that the proof of Proposition 5

does not require that the good is always allocated to one bidder. !

The condition ensures that the set of allocations that maximizes the first integral in Equation (1)

always allocate the good to one bidder. To interpret it recall that the social surplus of allocating to

i is equal to vi(s) − (n − 1)ei(si) = hi(si) +
∑n

j=1 qj(s) and that gi is a version of hi in which the

non-monotone parts of hi are iron-out by taking mean values. Note that this means that when hi is

weakly increasing for one bidder and the social value of allocating the good to this bidder is greater

than the social value of allocating to no bidder, i.e. vi(s) − (n − 1)ei(si) ≥ 0, ∀si, the condition in

Proposition 6 is verified. This is the case in the examples of Sections 5.1 and 5.2.

We next show by means of an example that the possibility that the good remains unsold may

increase the expected social surplus even when allocating the good to no bidder generates less social

surplus than allocating to any of the bidders.

Example 3. N = {1, 2}, vi(s) = si + 2sj and ei(si) = 0 for i, j ∈ {1, 2} and i &= j.

In this example, hi(si) = −si, Hi(si) = − s2
i
2 , and thus, Gi(si) = − si

2 and gi(si) = −1
2 . Hence, the

corresponding Equation (1) to Example 3 is:
∫

[0,1]2

∑

i=1,2

(
−1

2
+ 2s1 + 2s2

)
pi(s) ds +

∑

i=1,2

∫ 1

0

(
−si

2
+

s2
i

2

)
dQi(si, p). (2)

Thus, maximizing the first integral requires that a.e. p1(s) + p2(s) = 0 for s1 + s2 ≤ 1/4 and

p1(s) + p2(s) = 1 otherwise, and maximizing the second integral requires that Qi(., p) is constant in

(0, 1) for i = 1, 2. The allocation described in Figure 2 satisfies both conditions19 and it is therefore

second best efficient with no selling.

In the above example it is (first best) efficient to allocate the good to Bidder 2 when her signal is

low and Bidder 1’s signal is high. Similarly, it is efficient to allocate the good to Bidder 1 when her

signal is low and Bidder 2’s signal is high. But this allocation is difficult to implement because both

bidders have very little incentives to report truthfully when their signal is high. In fact, if we do not

allow for not selling, we cannot do better than ignoring bidders’ signals and allocate the object with

equal probability between the bidders. This may be easily shown applying Proposition 5.

The allocation in Figure 2 differs from the random allocation described in the paragraph above in

that the former does not allocate the good to any bidder in the triangle in the lower-left corner and
19Note that for this allocation Q1(s1, p) = Q2(s2, p) = 31

64 for any s1, s2 ∈ [0, 1].
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Figure 2: Second best allocation (p1(s), p2(s)) for Example 3

that it allocates more often to Bidder 2 in the rectangle in the lower-right corner and more often to

Bidder 1 in the rectangle in the upper-left corner. The reason why this improves expected surplus is

that the efficiency loss of not allocating the good to any bidder in the triangle is small, both values

are close to zero, whereas the good is allocated more efficiently in the rectangles.

The above example may give the reader the impression that the second best efficient allocation

with no selling is characterized by the allocation that maximizes both integrals in Equation (1) simul-

taneously. The following slight modification of Example 3 shows that this is not correct:20

Example 4. N = {1, 2}, v1(s1, s2) = s1 + 2s2 + ε and v2(s1, s2) = s2 + 2s1 with ε > 0 and small, and

ei(si) = 0 for i, j ∈ {1, 2} and i &= j.
20We have chosen an asymmetric counter-example because it makes the argument more transparent. The reader

may found in the supplementary material in the authors’ web pages that the following is a symmetric counter-example:

N = {1, 2}, vi(s) = 20 · 1[.9,1](sj) + (si + sj) + 1[1/2,1](si) + 1[1/2,1](sj) and ei(si) = 0.
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It may be shown that the maximization of the first integral in Equation (1) requires that p satisfies

a.e. that p(s) = (0, 0) if s1 + s2 < 1
4 −

ε
2 , and p(s) = (1, 0), otherwise. Any such allocation verifies

that Q1(s1, p) is strictly increasing in s1 for s1 ∈ [0, 1
4 −

ε
2 ]. However, the maximization of the second

integral of the corresponding Equation (1) requires that p verifies that Q1(s1, p) is constant in s1 in

the open interval (0, 1).

Finally, we conclude by showing that the condition in Proposition 6 is not necessary for the second

best to be also second best with no selling:21

Example 5. N = {1, 2}, v1(s) = 1/4 and v2(s) = s1 − 1, and ei(si) = 0 for all i.

In this example, h1(s1) = 1/4 − s1, q1(s1) = s1, g1(s1) = −1/4, h2(s2) = g2(s2) = −1 and

q2(s2) = 0. Thus, maxi∈N gi(si) +
∑n

j=1 qj(sj) = s1 − 1/4, which is negative for s1 < 1/4. However,

it is efficient to always allocate to Bidder 1.

8 The English Auction

In this section we analyze whether the second best can be implemented with an English auction. In

particular, we assume the model of the English auction described by Krishna (2003). This auction

model is a variation of the Japanese auction proposed by Milgrom and Weber (1982) in which the

identity of the bidders is observable.

We introduce two additional assumptions. The first one is a simplification, we assume that the

functions hi’s are continuous. This assumption implies:

Lemma 4. The functions gi’s are continuous. Moreover:

(a) gi(si) = hi(si) if Gi(si) = Hi(si) and si ∈ (0, 1).

(b) gi(0) ≤ hi(0) with strict inequality only if Gi(ε) < Hi(ε) for any ε > 0 small enough.

(c) gi(1) ≥ hi(1) with strict inequality only if Gi(1− ε) < Hi(1− ε) for any ε > 0 small enough.

See proof in the Appendix.

21To make the example more transparent, we have violated one of our assumptions, namely that φ1(s1) is strictly

increasing. Note, however, that this can be easily fixed changing v1 to 1/4 + εs1 and v2 to s1− 1 + εs2. For ε sufficiently

small, this change generates the appropriate counterexample.
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The second assumption is that ζi(si) ≡ qi(si)+ei(si) is non-decreasing. All the examples in Section

5 verify this assumption. To understand this assumption consider, first, the case with no externalities,

i.e. ei(si) = 0. Then our assumption is equivalent to assume that each bidder’s value is an increasing

function of all bidders’ types. This assumption is common to all the papers that study the first best

efficiency of English auctions, see Maskin (2000), Krishna (2003) and Birulin and Izmalkov (2003).

The reason is that it is well-known that when we relax this assumption the English auction may not be

first best efficient even when the first best can be implemented with other mechanisms. We expect this

assumption to be satisfied more often in our framework than when the first best is implementable.22

With externalities, our assumption is verified when the negative externalities induced by a bidder do

not decrease too fast as we increase her type.

8.1 An English Auction with Only Two Bidders

Suppose in this subsection that n = 2. We shall show that in this case, the English auction implements

the second best efficient allocation. We start with an example:

Example 6. N = {1, 2}, v1(s) = s1 + 1, v2(s) = s2 + 2s1 and ei(si) = 0 for all i.

The analysis of the second best in this example is very similar to Example 1: h1(s1) = 1 − s1,

g1(s1) = 1/2 and h2(s2) = g2(s2) = s2, the single crossing condition is not satisfied and it is second

best to allocate to Bidder 2 if and only if g2(s2) ≥ g(s1), i.e. s2 ≥ 1/2.

Note that Bidder 1 has no uncertainty about her value. Hence, by the same arguments as in private

value auctions, her unique weakly dominant strategy is to bid her value s1 + 1. In this case, Bidder

2’s utility when she wins is equal to the difference between Bidder 2’s value and Bidder 1’s value, i.e.

Bidder 2 gets the change in social surplus. Thus, it is not surprising that she finds it optimal to submit

a bid that maximizes the expected social surplus. In particular, note that when Bidder 1 with type s1

bids p ≡ s1 +1 and Bidder 2 wins, Bidder 2 gets profits s2 +2s1−p = s2 +2(p−1)−p = s2 +p−2, and

thus the greater the price, the more profitable it is for Bidder 2 to win the auction. As a consequence,

Bidder 2’s best response is either to submit a bid that always loses, e.g. b = 1, or a bid that always

wins, e.g. b = 2. The former option is optimal if and only if the average value of p is larger than

2− s2. Since p = s1 + 1, this is verified if and only if s2 ≥ 1/2 as required by the second best.
22This is because the fact that the single crossing condition fails implies that there are points at which the function hi

is locally decreasing, see Lemma 2. Since with no externalities qi(si) = φi(si) − hi(si) and we normalize types so that

φi(si) is increasing, this means that qi is locally increasing, and hence our assumption is locally verified, at these points.
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Note that the structure of this equilibrium is more involved than in the more standard model in

which the single crossing condition is satisfied. The difference is that Bidder 2 may be active at prices

at which she makes a loss if she wins, i.e. there may be ex-post regret. For instance, this occurs in

the example if s2 = 0.6 and s1 = 0. The reason why this is profitable for Bidder 2 is that winning at

higher prices is sufficiently profitable to offset the losses at lower prices.

The following lemma generalizes this example. Note that this lemma analyzes the case in which

one bidder has no uncertainty with respect to her willingness to pay for the object, and it includes,

as particular cases, the insider and the incumbent’s models of Sections 5.1 and 5.2.

Proposition 7. If q2(s2) = e2(s2) = 0 for any s2 ∈ [0, 1], then any equilibrium of the English auction

in non-weakly dominated strategies implements the second best.

See proof in the Appendix.

Next, we show how this result extends to the general case. As we shall see, there always exists an

equilibrium that implements the second best efficient allocation but in some cases there may be other

equilibria that are not second best efficient.

We follow three steps. First, we propose a bid function for each bidder; second, we prove that the

good is allocated according to the second best allocation when bidders use the proposed bid functions;

and finally, we show that the proposed bid functions are an equilibrium of the English auction. Next,

we discuss uniqueness.

We start with some auxiliary definitions.

sj
i (sj) ≡






0 if gj(sj) < gi(0)

1 if gj(sj) > gi(1)

min{si : gi(si) = gj(sj)} o.w.

This is the lowest type of Bidder i that it is consistent with allocating the good to Bidder i in the

second best efficient allocation when j’s type is equal to sj . Similarly, we let sj
i (si) be defined as

sj
i (si) above but replacing min by max. Hence, sj

i (si) denotes the greatest type of Bidder i that it is

consistent with allocating the good to Bidder j in the second best efficient allocation when j’s type is

equal to sj .

Let b∗1(s1) ≡ ve
1(s1, s1

2(s1)), and b∗2(s2) ≡ ve
2(s2

1(s2), s2), where ve
i (si, sj) ≡ vi(si, sj) + ej(sj) (this is

ve
i (si, sj) = φi(si) + ζj(sj)). Thus, we propose that Bidder 1 (resp. Bidder 2) bids her willingness to
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pay for the object when the alternative is that the good goes to the other bidder and conditional on

the hypothetical event that the signal of the other bidder is equal to s1
2(s1) (resp. s2

1(s2).)

Next lemma and its corollary shows that these bid functions implement a second best efficient

allocation. Actually, this is the second best allocation that gives the good to Bidder 1 in as many

cases as possible. It is easy to see that there is a symmetric equilibrium that implements the second

best allocation that gives the good to Bidder 2 in as many cases as possible.

Lemma 5.

• b∗1(s1) ≥ b∗2(s2) if and only if g1(s1) ≥ g2(s2).

• b∗1(s1) < b∗2(s2) if and only if g1(s1) < g2(s2).

See proof in the Appendix.

Corollary 1. The allocation induced by (b∗1, b∗2) is second best efficient.

See proof in the Appendix.

Note that when Bidder 2 plays b∗2, Bidder 1 wins if and only if Bidder 2’s type is below a certain

threshold which depends on Bidder 1’s bid. This means that the expected payoffs of Bidder 1 are

equal to the expected difference between her value and Bidder 2’s bid for all Bidder 2’s types below

the corresponding threshold. This difference is equal to ve
1(s1, s2) − ve

2(s2
1(s2), s2), which is equal to

the variation in social surplus, ve
1(s1, s2) − ve

2(s1, s2), plus the term ve
2(s1, s2) − ve

2(s2
1(s2), s2). The

expected value of the variation of the social surplus is maximized when Bidder 1’s bid picks a second

best efficient allocation, whereas the expected value of the latter term is maximized when Bidder 1’s

bid picks a threshold ŝ2 such that s1 = s2
1(ŝ2). By application of Lemma 5 and Corollary 1, we know

that both maxima are achieved when Bidder 1 uses b∗1. Hence, b∗1 is a best response to b∗2. A similar

arguments shows that b∗2 is a best response to b∗1. Consequently:

Proposition 8. The bid functions (b∗1, b∗2) form a Bayesian Nash equilibrium of the English auction.

See proof in the Appendix.

We can thus conclude from Corollary 1 and Proposition 8,
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Corollary 2. The English auction has an equilibrium that implements the second best when there are

two bidders.

The reader may worry that the above bid functions are identity dependent. We shall argue that

in general this is not a problem. Let Ki ≡ {k ∈ R : ∃(s, s) &= ∅, gi(si) = k,∀si ∈ (s, s)}, this is the set

of points in the range of gi that correspond to a flat in its graph.

Lemma 6. If K1 ∩K2 = ∅, then si
j(si) = si

j(si) almost everywhere.

See proof in the Appendix.

Thus, this lemma together with the fact that asymmetries only arise when si
j(si) &= si

j(si) imply

that when K1∩K2 = ∅ asymmetries only occur in a set of types with zero measure, and thus, could be

removed without upsetting the equilibrium. Moreover, we expect K1∩K2 = ∅ to hold true generically

since the sets Ki’s are countable.23

Nevertheless, the issue of asymmetries remains when bidders are symmetric, i.e. when φ1 = φ2,

and ζ1 = ζ2. In this case, K1 ∩ K2 &= ∅, and in fact, the symmetric equilibrium is not second best

efficient if the single crossing conditions does not hold. To see why, recall Example 2 and note that the

only symmetric equilibrium is b(si) = 3si, i = 1, 2. Unlike our proposed strategies, b∗1(s1) = s1 +2 and

b∗2(s2) = s2, this equilibrium allocates the good to the bidder with higher type, which is not second

best efficient.

Indeed, the English auction has more problems of multiplicity of equilibria when the single crossing

condition fails than when it holds, even when K1 ∩ K2 = ∅. The following example provides an

illustration of this point.

Example 7. N = {1, 2}, v1(s1, s2) = s1 + 3
2s2 and v2(s1, s2) = s2 + 2s1, and e1(s1) = e2(s2) = 0.

In this example h1(s1) = −s1 and h2(s2) = −1
2s2. Thus, g1(s1) = −1

2 and g2(s2) = −1
4 , and

consequently, the second best allocation is to give the good to Bidder 2 for any realization of the

bidders’ types. This is the allocation that is implemented by our proposed equilibrium applied to this

example: b∗1(s1) = s1, b∗2(s2) = s2 + 2. However, there exist other equilibria that do not implement

the second best, for instance,24 b1(s1) = s1 + 3
2 , b2(s2) = s2.

23A simple argument is as follows. Let g−1
i (k) ≡ min{si ∈ [0, 1] : gi(si) = k}. It is easy to see that if gi is constant

and equal to k in an open interval, then the function g−1
i is discontinuous at k by definition. Finally, note that the set

of the discontinuities of g−1
i must be countable since g−1

i is increasing.
24Bidder 1 does not have incentives to deviate because she wins with probability one at a price that it is always less
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8.2 An English Auction with More than Two Bidders

In this section, we study the case in which there are more than two bidders, i.e. n > 2. We shall see

that the English auction does not always implement the second best. We start with an example. In

this example and in the rest of the section, it is important that we describe the tie-breaking rule. We

shall assume the good is allocated with equal probability among the bidders that tie.25 We conjecture

that any other tie-breaking rule that does not condition on the bidders’ types would imply similar

results.

Example 8. N = {1, 2, 3}, v1(s) = s1 + 1
2 , v2(s) = s2 +2s1, v3(s) = s3 +2s1 and ei(si) = 0 for all i.

In this example, h1(s1) = 1
2−s1, g1(s1) = 0, and hi(si) = gi(si) = si, i ∈ {2, 3}. Hence, it is second

best efficient to allocate to Bidder 2 if s2 > s3 and to Bidder 3, otherwise. Note that, as in Example

6, Bidder 1 has a unique weakly dominant strategy: to remain in the auction until the price reaches

her value s1 + 1
2 . We show in the next lemma that there is no equilibrium of the English auction that

implements the second best efficient allocation when Bidder 1 uses her weakly dominant strategy.

Lemma 7. In Example 8, there is no equilibrium of the English auction in non-weakly dominated26

strategies that implements the second best efficient allocation.

Proof. To simplify, we refer in the proof to an equilibrium in non-weakly dominated strategies as an

equilibrium. The proof has two steps. First, we show by contradiction that in any equilibrium that

implements the second best, the strategies of both Bidder 2 and Bidder 3 must specify that types

strictly less than 1/2 quit at a price less than Bidder 1’s minimum bid (i.e. 1
2) in information sets

in which no bidder has quit yet. Second, we argue that if this is the case Bidder 3 has a profitable

deviation.

than her value, whereas Bidder 2 does not have incentives to deviate because any bid p ∈ [b1(0), b1(1)], gives Bidder 2

expected payoffs
R b−1

1 (p)

0

`
s2 + 2s1 − (s1 + 3

2 )
´

ds1 ≤ 0 for any s2 ∈ [0, 1]. Moreover, Bidder 2 does not have incentives

to bid above b1(1) because these bids give the same expected payoffs as a bid b1(1).
25In our auction, the price increases continuously until one bidder or more quit. Then, the price is stopped and the

following algorithm is repeated: (1) If there are no more active bidders, the good is allocated with equal probability

among the bidders that last quitted at the current price. Otherwise, (2) the identity of the bidders that still remain active

is announced. (3) After the announcement, bidders that still remain active declare independently and simultaneously

whether they quit. If no bidder quits, the price is increased again from the current level. If some bidder quits, we go to

(1).
26Actually, the lemma (also Proposition 9) only requires that Bidder 1 uses her weakly dominant strategy.
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STEP 1: Suppose Bidder 1 plays her weakly dominant strategy and quits at a price p arbitrarily

close to 1/2, and both Bidder 2 and 3 are still active and have types s2 and s3 strictly less than 1/2.

Then Bidder 2 and 3 put a value in getting the good equal to s2 + 2(p − 1/2) and s3 + 2(p − 1/2),

respectively. These values are less than the price p if p is close to 1/2. Hence, they both quit

immediately after Bidder 1 and tie. Our tie breaking rule implies that the induced allocation is not

second best efficient.

STEP 2: Suppose now that Bidder 2 quits at a price p ≤ 1
2 when she has a type s2 in information

sets in which no bidder has quit yet. Then, second best efficiency requires that Bidders 3 with a type

s3 in (0, s2) also quits at a price strictly less than p in the same information sets. In this case, Bidder

3 has a profitable deviation. In this deviation Bidder 3 remains in the auction until either the price

reaches 1
2 or Bidder 2 quits. In the former case, Bidder 3 quits, and in the latter, Bidder 3 remains

active until Bidder 1 quits. This deviation lets Bidder 3 win additionally when Bidder 2 has a type in

the set (s3, s2). In this case, Bidder 3 pays Bidder 1’s bid and gets strictly positive expected payoffs:
∫ 1

0

(
s3 + 2s1 − (s1 +

1
2
)
)

ds1 = s3 +
∫ 1

0
(s1 −

1
2
) ds1 = s3 > 0.

!

Intuitively, if Bidders 2 and 3 have a low type and are still active when Bidder 1 quits at a price

close to 1/2 a “rush” occurs: both bidders find out that their values are less than the price. Thus, the

need to select the most efficient bidder between Bidder 2 and Bidder 3 before a rush may occur binds

Bidders 2 and Bidder 3 drop out prices to a level that is incompatible with their private incentives.

Hence the impossibility.

The above result generalizes when Bidder 1 has no uncertainty about the value she puts in winning

and under no externalities as follows:

Proposition 9. Suppose n > 2 and ei(si) = qi(si) = 0 for i &= 1 and si ∈ [0, 1]. There is no

equilibrium in non-weakly dominated strategies of the English auction that implements the second best

efficient allocation, if:

g1(s̃1) < max
j $=1,i

{hj(s̃j)} = hi(s̃i) < h1(s̃1). (3)

for some vector s̃ ∈ (0, 1)n.

See proof in the Appendix.
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In particular, the conditions in the above lemma are the same as in Proposition 7 plus the assump-

tion that n > 2 and that when the single crossing condition fails for Bidder 1 there exists a vector of

types for which the first best allocates the good to Bidder 1 but the second best allocates the good

to either i or j depending on their types. Note that we would expect the conditions of the lemma to

hold in general in the models of Section 5.1 and 5.2. However, the above impossibility result does not

necessarily hold once we move sufficiently away from the conditions of the above lemma. To see why,

note the following generalization of Example 8.

Example 9. N = {1, 2, 3}, v1(s) = s1 + 1
2 + α(s2 + s3), v2(s) = s2 + 2s1 + α(s2 + s3), v3(s) =

s3 + 2s1 + α(s2 + s3), and ei(si) = 0 for all i.

In this example, h1(s1) = −s1 + 1
2 , g1(s1) = 0 and hi(si) = gi(si) = si, i : 2, 3. Note that the

second best allocation is as in Example 8. Moreover, for values of α close to zero, we expect that a

variation of the arguments in Lemma 7 can be used to show that the second best is not implementable

with an English auction. However, if α is sufficiently large, there is some multiplicity of equilibria that

allows for an equilibrium that avoids the possibility of a “rush” by making bidders bid sufficiently low

in information sets in which no bidder has quit yet. As next lemma shows, this is enough to guarantee

that the second best can be implemented with an English auction.

Lemma 8. There exists a perfect Bayesian equilibrium in non-weakly dominated strategies that im-

plements the second best allocation in Example 9 when α = 1. In this equilibrium:

• Bidder 1 bids s1 + 1
2 , Bidder j &= 1 bids 3sj + 2, in information sets in which no bidder has left

the auction yet.

• Bidder i &= 1 bids 3si + 2p− 1 in information sets in which Bidder 1 has quit at price p.

• Bidder 1 bids s1 + 1
2 + p−2

3 , and Bidder j &= 1 bids 2sj + p−2
3 + 2 in information sets in which

Bidder i &= 1, j has quit at price p.

Proof. It is easy to see that the proposed strategies implement the second best: Bidder 1 quits first,

followed by the bidder with lower type between Bidder 2 and 3. To show that it is an equilibrium,

note that Bidder 1 cannot improve with a downward deviation as it does not change the outcome. In

an upward deviation, Bidder 1 pays a price when she wins equal to 2s2 + s3 + 2 if s2 ≥ s3 (s2 < s3

is symmetric), which is greater than her value s1 + s2 + s3 + 1/2, and thus makes the deviation

unprofitable. Finally, note that when all bidders but i &= 1 follow the proposed strategy, Bidder i pays
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a price 3sj + s1, j &= 1, i, when she wins. This price is less that Bidder i’s value if and only if si > sj .

Since our proposed strategy makes Bidder i win in these cases and lose otherwise, she does not have

incentives to deviate. !

Note that the strategies in the lemma are such that in information sets in which no bidder has

quit yet Bidder 1 bids as if the types of s2 and s3 were zero, whereas Bidder 2 and Bidder 3 bid as

if they both had the same type and Bidder 1 had her highest possible type. Note also that Bidder 1

always quits first.

In the previous examples of this section we assumed no externalities. As we shall show next,

externalities cause efficiency losses in an English auction that go beyond the problem of feasibility of

the first best. To illustrate this point we study two examples in which the single crossing conditions

holds and hence the first best is feasible. The first example displays positive externalities and the

second one negative externalities.

Example 10. N = {1, 2, 3}, v1(s) = s1 + 1, v2(s) = s2 + 1, v3(s) = s3 + 1, e2(s2) = e3(s3) = 0 and

e1(s1) = −1/2.

Bidder 1 has a weakly dominant strategy, to quit at price b1(s1) = s1 +1 and the first best efficient

allocation is to allocate always to Bidder 1. But, this cannot occur in an equilibrium in which Bidder

1 bids b1(s1) = s1 + 1 because Bidder 2 with a type s2 > 1/2 finds it strictly profitable to outbid

Bidder 1 for prices less than s2 + 1/2. Clearly, Bidder 2 does not internalize the positive externality

that allocating the good to Bidder 1 has on Bidder 3.

Example 11. N = {1, 2, 3}, v1(s) = 2,27 v2(s) = s2 + 1, v3(s) = s3 + 1, e2(s2) = e3(s3) = 0 and

e1(s1) = 1.

Bidder 1 finds it weakly dominant to bid b1(s1) = 2 and the first best efficient allocation is that

the good is allocated to Bidder 2 if s2 ≥ s3, and to Bidder 3, otherwise. Note that when Bidder 1 bids

b1(s1) = 2, Bidder i, i ∈ {2, 3}, with type si finds it optimal to outbid Bidder 1 in any continuation

game in which only Bidder 1 and i are active. In this case, Bidder i gets a payoff si + 1 − 2, which

is negative if si < 1. Thus, in any equilibrium in which Bidders 2 and Bidder 3 use this continuation

strategy, they both have strict incentives to quit first when all bidders are still active. Consequently,

either Bidder 2 or Bidder 3 must quit with positive probability at price 0, which is incompatible with
27To make the argument more transparent, we have deviated slightly from the general assumptions of Section 3 and

we allow v1 to be constant on s1.
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the first best efficient allocation. Intuitively, Bidder 2 and 3 do not want Bidder 1 to win, but they

both prefer that it is the other bidder who pays the high price necessary to outbid Bidder 1.28

9 Conclusions

We study mechanisms that maximize the expected social surplus deriving from the sale of a (single-

unit) object subject to Bayesian incentive compatibility constraints. An alternative approach is the

equivalent analysis under ex post incentive compatible constraints. Since there is a close connection

between ex post implementation and Bayesian implementation, see for instance Chung and Ely (2002),

we expect that our characterization of the second best can be easily adapted to the analysis of this

alternative framework.

As a matter of fact, the set of second best allocations that we characterize includes an allocation

that it is ex post implementable.29 However, this extension presents an additional difficulty. Second

best efficiency requires trading off the cost of implementing inefficiently for different vectors of types.

Under Bayesian implementation, the common prior gives natural weights for this comparison, but this

is not the case under ex post implementation.

The corresponding analysis of the English auction also presents a major problem. The English

auction does not always have an ex post equilibrium when the conditions for the implementation of

the first best are violated, at least when we restrict to non-weakly dominated strategies. This is the

case in the wildcatter example when it is second best that the entrant wins since all its Bayesian

equilibria display ex post regret, see the Introduction.30

28A related argument was pointed out by Jehiel and Moldovanu (1996) and Hoppe, Jehiel, and Moldovanu (2006) to

argue that externalities may induce strategic non participation in auctions.
29This may be shown by noting that an allocation such that for any s, pi(s) = 1 if gi(si) = maxj∈N{gj(sj)} and

i ≤ arg maxj∈N{gj(sj)} satisfies the conditions in Proposition 5 and since the gi’s are increasing, it also satisfies the

conditions for ex post implementability provided by Bikhchandani, Chatterji, and Sen (2006).
30This is formally shown in Example 6, which has the same qualitative features as the wildcatter example.
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Appendix

A Proofs

Proof of Lemma 1

Proof. We first prove the “only if”-part. Suppose a feasible allocation p. Then, there exists a direct

mechanism (p, x) for which:

Vi(si) ≡ Ui(si, si) ≥ Ui(si, s
′
i)

= Qi(s′i, p)φi(si) + Ψi(s′i, p, x)

= Qi(s′i, p)φi(s′i) + Ψi(s′i, p, x) + Qi(s′i, p)(φi(si)− φi(s′i))

= Vi(s′i) + Qi(s′i, p)(φi(si)− φi(s′i)),

for all si, s′i ∈ Si, i ∈ N . Hence, we have that for si > s′i, Vi(si) ≥ Vi(s′i), and hence,

Qi(s′i, p) ≤ Vi(si)− Vi(s′i)
φi(si)− φi(s′i)

,

and applying the same inequality with the roles of si and s′i interchanged,

Qi(si, p) ≥ Vi(si)− Vi(s′i)
φi(si)− φi(s′i)

.

Thus, Qi(si, p) ≥ Qi(s′i, p) as desired.

To prove the “if”-part, suppose an allocation p for which Qi(., p) is increasing, for all i ∈ N . Note

first that by assumption φi(.) is a strictly increasing function, and thus invertible in [φi(0), φi(1)]. Let

Ṽi(y) ≡
∫ y
φi(0)

Qi(φ−1
i (ỹ), p) dỹ for y ∈ [φi(0), φi(1)] and,

xi(s) ≡ Qi(si, p)φi(si) +
∑

j $=i

(pi(si, s−i)qj(sj)− ej(sj)pj(si, s−i))− Ṽi(φi(si)),

for any s ∈ S. This means that Ψi(si, p, x) = Ṽi(φi(si)) − Qi(si, p)φi(si), for any si ∈ Si, and hence

that Ṽi(φi(si)) = Ui(si, si) for the direct mechanism (p, x). We shall show that this direct mechanism

satisfies the Bayesian incentive compatibility constraints. To see why, note that for any si, s′i ∈ Si

Ui(si, si) = Ṽi(φi(si))

≥ Ṽi(φi(s′i)) + Qi(φ−1
i (φi(s′i)), p)

(
φi(si)− φi(s′i)

)

= Qi(s′i, p)φi(s′i) + Ψi(s′i, p, x) + Qi(s′i, p)
(
φi(si)− φi(s′i)

)

= Qi(s′i, p)φi(si) + Ψi(s′i, p, x)

= Ui(si, s
′
i),
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where the inequality is a consequence of Ṽi being a convex function and Qi(φ−1
i (y), p) ∈ ∂Ṽi(y) by

definition of Ṽi. !

Proof of Lemma 2

Proof. Substracting
∑

j qj(sj) from the two sides of the inequalities that define the single crossing

condition, one gets that the single crossing condition is equivalent to say that for any i ∈ N , s ∈ S

and s′i ∈ Si such that s′i > si:

hi(si) > max{hj(sj)}j $=i implies hi(s′i) ≥ max{hj(sj)}j $=i. (4)

This is equivalent to say that for any i ∈ N , si, s′i ∈ Si and s′i > si, it is verified that Ai(si) ⊂ Bi(s′i) for

Ai(si) ≡ {s−i ∈ S−i : hi(si) > max{hj(sj)}j $=i} and Bi(s′i) ≡ {s−i ∈ S−i : hi(s′i) ≥ max{hj(sj)}j $=i}.

This is equivalent to say that for any i ∈ N , si, s′i ∈ Si and s′i > si, it is verified that Ai(si) ∩ [S−i \

Bi(s′i)] = ∅, which corresponds to the condition in the lemma. !

Proof of Proposition 1

Proof. For the sufficient part, note that an allocation such that pi(s) = 0 if hi(si) &= maxj∈N hj(sj),

and pi(s) = 1
m(s) , otherwise, where m(s) denotes the cardinality of {k ∈ N : hk(sk) = maxj∈N hj(sj)}

is first best efficient and satisfy the feasibility conditions of Lemma 1 if the condition in the Lemma

2 is satisfied.

Next, let J i(si) ≡ {s−i : max{hj(sj)}j $=i ≤ hi(si)}, J i(si) ≡ {s−i : max{hj(sj)}j $=i < hi(si)} and

µi(A) ≡
∫
A

∏
j $=i fj(sj) ds−i for A ⊂ S−i. Note that for any first best efficient allocation p∗:

µi (J i(si)) ≤ Qi(si, p
∗) ≤ µi

(
J i(si)

)
.

We prove the necessary part by contradiction. Suppose that the single crossing condition does not

hold. Then, by Lemma 2 there exists a bidder i ∈ N with types s′i > si and a vector s−i ∈ S−i such

that max{hj(sj)}j $=i ∈ (hi(s′i), hi(si)). By either right or left continuity of the hj(.)’s, there exists

an open set O ⊂ S−i such that max{hj(s′j)}j $=i ∈ (hi(s′i), hi(si)) for any s′−i ∈ O. By definition,

J i(s′i) ∩O = ∅ and J i(s′i) ∪O ⊂ J i(si). Thus, for any first best efficient allocation p∗,

Qi(s′i, p
∗) ≤ µi

(
J i(s′i)

)
< µi

(
J i(s′i)

)
+ µi(O) = µi

(
J i(s′i) ∪O

)
≤ µi (J i(si)) ≤ Qi(si, p

∗),

which implies a violation of the feasibility conditions of Lemma 1. !
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Proof of Proposition 2

Proof. The model in the section in the notation of Section 3 corresponds to:

v1(s) = s1
(1− c1)2

4
and e1(s1) = 0,

vi(s) = s1
(1− c)2

4
+ si and ei(si) = 0 for i &= 1.

Thus, t1(s1) = h1(s1) = s1

(
(1−c1)2

4 − (1−c)2

4

)
, q1(s1) = s1

(1−c)2

4 , e1(s1) = 0, and tj(sj) = hj(sj) = sj ,

qj(sj) = 0 and ej(sj) = 0, for j &= 1.

Note that h1(s) > h1(s), hj(−s (1−c)2

4 ) < h1(s) and hj(0) > h1(s), j &= 1. Hence, by continuity

of hj there exists an sj ∈ [−s (1−c)2

4 , 0] such that hj(sj) ∈ (h1(s), h1(s)). Consequently, we can apply

Lemma 2 for si = s and s′i = s, and i = 1 to show that the single crossing condition for Bidder 1 is

not verified, and thus the proof follows by application of Proposition 1. !

Proof of Proposition 3

Proof. The model in the notation of Section 3 corresponds to: v1(s) = s1, e1(s1) = 0, vi(s) =

si + 1[t+ρ,t+ρ](s1) and31 ei(si) = 0, i &= 1, where s1 has a distribution

F1(s1) =






αG1(s1) if s1 < t

α if s1 ∈ [t, ρ + t)

α + (1− α)G1(s1 − ρ) otherwise,

with support [t, t] ∪ [t + ρ, t + ρ] and si, i &= 1, is distributed according to Gi(.). Note that according

to this convention, s1 ∈ [t + ρ, t + ρ] indicates that the painting is original.

In this application we have that t1(s1) = h1(s1) = s1 − 1[t+ρ,t+ρ](s1), q1(s1) = 1[t+ρ,t+ρ](si),

ti(si) = hi(si) = si and qi(si) = 0 for i &= 1, and it is easy to verify that the single crossing condition

is violated for Bidder 1. To see why, apply Lemma 2 to s1 = t − ε and s′1 = t + ρ + ε for ε > 0 and

small enough. Thus, the proof follows by application of Proposition 1. !

Proof of Proposition 4

Proof. This model in terms of the notation of Section 3 corresponds: vi(s) = ti(si) = si, and ei(si) = 0

if si ≤ C, and vi(s) = ti(si) = si + (n− 1)(si − C) and ei(si) = 1− c, otherwise (note that qi(si) = 0

for any si). As consequence, hi(si) = si for si ≤ C and hi(si) = si− (n− 1)(C +1− c− si), otherwise.
311X(x) is an indicator function that takes value 1 when x ∈ X and otherwise takes value 0.
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In this case, the single crossing condition is violated for any bidder. To see why, apply Lemma 2 to

si = C − ε and si = C + ε, and sj ∈ (C − ε, C) for all j &= i, and ε > 0 and small enough. Thus, the

proof follows by application of Proposition 1. !

Proof of Proposition 5

Proof. The second best maximizes:

∫

S

n∑

i=1

(vi(t)− (n− 1)ei(s)) pi(s) ds =
∫

S

n∑

i=1



hi(si) +
n∑

j=1

qj(sj)



 pi(s) ds. (5)

Next note that using integration by parts (see Hewitt (1960)) and Lemma 3 (b) we can show that,

∫

S
(hi(si)− gi(si)) pi(s)ds =

∫

Si

(hi(si)− gi(si))Qi(si, p) dsi =
∫

Si

Qi(si, p) dHi(si)−
∫

Si

Qi(si, p) dGi(si) =

−
∫

Si

(Hi(si)−Gi(si)) dQi(si, p).

Consequently, the expressions in Equation (5) are equal to the expression in Equation (1) as

desired.

It is easy to see that an allocation maximizes the first integral in the equation above if and only it

satisfies (i). Moreover, since Qi(., p) is increasing for any p feasible by Lemma 1, and Gi(si) ≤ Hi(si),

by Lemma 3 (c), a feasible allocation maximizes the second integral if and only if it satisfies (ii).

This completes the proof since the set of feasible allocations that satisfy (i) and (ii) is not empty.

For instance, pi(s) = 0 if gi(si) &= maxj∈N gj(sj), and otherwise, pi(s) = 1
m(s) , where m(s) denotes

the cardinality of {k ∈ N : gk(sk) = maxj∈N gj(sj)}. The monotonicity of gi(si) ensures that the

allocation is feasible. !

Proof of Lemma 4

Proof. The function gi cannot be discontinuous at points in an open interval in which Gi(si) = Hi(si)

by continuity of hi, or at points in an open interval in which Gi(si) &= Hi(si) by Lemma 3 (d). Take

now a point s∗i ∈ (0, 1) and an open interval O that includes s∗i and such that Hi(si) = Gi(si) if si ∈ O

and si < s∗i and Hi(si) > Gi(si) if si ∈ O and si > s∗i (the other case is symmetric). Then the left

derivative of Gi is equal to hi(s∗i ) and the right derivative is bounded above by hi(s∗i ). Moreover, by
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the convexity of Gi the left derivative of Gi must be less than or equal to the right derivative. As a

consequence, Gi is differentiable at s∗i and its differential gi(s∗i ) is equal to hi(s∗i ). Continuity at 0 and

1 together with the last two items of the lemma are direct consequences of Lemma 3 (b) and (c) and

the boundedness of hi. !

Proof of Proposition 7

Proof. By the same argument as in Example 6, Bidder 1 has a unique weakly dominant strategy, to

bid until b1(s1) ≡ t1(s1)+q1(s1). We show next that the resulting allocation when Bidder 1 bids b1(s1)

and Bidder 2 plays a best response to b1(s1) is second best efficient. First, note that b1 is continuous

and strictly increasing, and hence, its inverse b−1
1 exists. Bidder 2 wins the auction with a bid b if and

only if s1 ≤ b−1
1 (b). Thus, Bidder 2’s expected payoffs when she bids b ∈ [b1(0), b1(1)] are equal to:

∫ b−1
1 (b)

0
(t2(s2) + q1(s̃1)− b1(s̃1)) ds̃1 −

∫ 1

b−1
1 (b)

e1(s̃1) ds̃1

=
∫ b−1

1 (b)

0
(t2(s2) + q1(s̃1) + e1(s̃1)− b1(s̃1)) ds̃1 −

∫ 1

0
e1(s̃1) ds̃1

=
∫ b−1

1 (b)

0
(h2(s2)− h1(s̃1)) ds̃1 −

∫ 1

0
e1(s̃1) ds̃1

=
∫ b−1

1 (b)

0
(g2(s2)− g1(s̃1)) ds̃1 −

(
H1(b−1

1 (b))−G1(b−1
1 (b))

)
−

∫ 1

0
e1(s̃1) ds̃1,

where in the third step we have used that h2 is increasing under the assumptions of the lemma and

thus g2(s2) = h2(s2).

Let s2
1(s2) be the maximum of the set {s1 ∈ [0, 1] : g1(s1) = g2(s2)} if non-empty; s2

1(s2) = 1,

if g2(s2) > g1(1); and s2
1(s2) = 0, if g2(s2) < g1(0). Note that b = b1(s2

1(s2)) maximizes the last

expression, and in particular the first two terms. That it maximizes the first term is direct from the

definition of s2
1. To show that it also maximizes the second term, note that by Lemma 3 (c), this

second term can only be negative or zero. Thus, it is sufficient to show that for b = b1(s2
1(s2)) it is

equal to zero. This is direct from the definition of s2
1 and Lemma 3 (b) and (d). Consequently, any

maximum to the above expression must maximize the first two terms. We shall show that this implies

that the induced allocation satisfies both conditions in Proposition 5. The maximization of the first

term implies directly condition (i). Condition (ii) holds trivially for i = 2 since g2 = h2, i.e. G2 = H2.

Finally, note that the maximization of the second term implies that no type of Bidder 2 bids at points

in which H1(b−1
1 (b)) > G1(b−1

1 (b)), and thus condition (ii) is also satisfied for i = 1. !
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Proof of Lemma 5

Proof. We only prove the first item. The second one is simply the negation of the first one. We first

show the “if” part. Consider first the case g1(0) > g2(1). By monotonicity of the bid functions, we

only need to show that g1(0) > g2(1) implies that b1(0) ≥ b2(1). Note that it is easy to see that

b1(0) − b2(1) = φ1(0) + ζ2(1) − (φ2(1) + ζ1(0)) = h1(0) − h2(1), which is greater than g1(0) − g2(1)

by Lemma 4, and thus non-negative as desired. Consider now the case g1(0) ≤ g2(1). In this case,

g1(s1) ≥ g2(s2) and continuity of the gi’s, see Lemma 4, implies that there exists a s′1 ≤ s1 and a

s′2 ≥ s2 such that g1(s′1) = g2(s′2), s′1 = s2
1(s′2) and s′2 = s1

2(s′1). Thus:

b∗1(s1)− b∗2(s2) ≥ b∗1(s
′
1)− b∗2(s

′
2) =

[
φ1(s′1)− ζ1(s2

1(s
′
2))

]
−

[
φ2(s′2)− ζ2(s1

2(s
′
1))

]
=

[
φ1(s2

1(s
′
2))− ζ1(s2

1(s
′
2))

]
−

[
φ2(s1

2(s
′
1))− ζ2(s1

2(s
′
1))

]
=

h1(s2
1(s

′
2))− h2(s1

2(s
′
1)).

We next argue that the last expression is weakly greater than g1(s2
1(s′2))− g2(s1

2(s′1)). To see why, we

argue that h1(s2
1(s′2)) ≥ g1(s2

1(s′2)) and h2(s1
2(s′1)) ≤ g2(s1

2(s′1)). We only show the former inequality

since the latter one has a symmetric proof. Lemma 3 (d), Lemma 4 (a) and the definition of s2
1 implies

that if s2
1(s′2) ∈ (0, 1) then h1(s2

1(s′2)) = g1(s2
1(s′2)). Thus, by Lemma 4, we only need to show that if

s2
1(s′2) = 1 then it cannot be that G1(1 − ε) < H1(1 − ε) for any ε close to zero. By contradiction,

suppose that s2
1(s′2) = 1 and G1(1− ε) < H1(1− ε) for any ε close to zero. Then, g2(s′2) = g1(1) and

g1(s1) is flat for any s1 in (1− ε, 1] by Lemma 3 (d), which contradicts that s2
1(s′2) = 1.

Thus, the “if” part follows from the fact that g1(s2
1(s′2))−g2(s1

2(s′1)) is equal to zero since g1(s′1) =

g2(s′2), s′1 = s2
1(s′2) and s′2 = s1

2(s′1).

We prove the “only if” part by contradiction. We shall show that g2(s2) > g1(s1) implies that

b2(s2) > b1(s1). The proof is similar to the “if” part. The case g2(0) > g1(1) is symmetric to the

case g1(0) > g2(1) above. In the case g2(0) ≤ g1(1), g2(s2) > g1(s1) implies that there exists a strictly

decreasing sequence {s2,m} starting at s2 and a strictly increasing sequence {s1,m} starting at s1 with

respective limits s′2 and s′1 that satisfy g2(s′2) = g1(s′1), s′2 = s1
2(s′1) and s′1 = s2

1(s′2). Note that

along the sequence g2(s2,m) > g1(s1,m) and hence, s2,m ≥ s1
2(s1,m) and s1,m ≤ s2

1(s2,m). Using these
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properties and the monotonicity of the bid functions and ζi we have that:

b∗2(s2)− b∗1(s1) > lim
m→∞

[b∗2(s2,m)− b∗1(s1,m)] =

lim
m→∞

[(
φ2(s2,m)− ζ2(s1

2(s1,m))
)
−

(
φ1(s1,m)− ζ1(s2

1(s2,m))
)]

=

lim
m→∞

[(
h2(s2,m) + ζ2(s2,m)− ζ2(s1

2(s1,m))
)
−

(
h1(s1,m) + ζ1(s1,m)− ζ1(s2

1(s2,m))
)]
≥

lim
m→∞

[h2(s2,m)− h1(s1,m)] = h2(s1
2(s

′
1))− h1(s2

1(s
′
2)),

which by the same arguments as in the ”if” part is non-negative as desired. !

Proof of Corollary 1

Proof. That the allocation induced by (b∗1, b∗2) satisfies condition (i) in Proposition 5 is direct from

Lemma 5. To check condition (ii), note that for the allocation induced by (b∗1, b∗2), Lemma 5 implies

that:

Q1(s1, p) =
∫

{s2:g1(s1)≥g2(s2)}
p1(s1, s2) ds2,

since ties occur with zero probability. Thus, in any open interval in which H1(s1) > G1(s1) Lemma 3

(d) implies that Q1(s1, p) is constant as required by condition (ii). A similar argument shows that Q2

also satisfies (ii). !

Proof of Proposition 8

Proof. We only show that Bidder 1 finds it optimal to bid according to b∗1 when Bidder 2 plays b∗2. The

corresponding proof for Bidder 2 is similar.32 Let u1(s1, b) be the expected utility of Bidder 1 when she

has a private type s1, submits a bid b, and Bidder 2 uses the bid function b∗2. We only show that Bidder

1 does not have incentives to deviate downwards, i.e. u1(s1, b∗1(s1))− u1(s1, b) ≥ 0 for b < b∗1(s1). The

analysis of incentives to deviate upwards, i.e. b > b∗1(s1), is symmetric. Downward deviations only

affect the payoffs when Bidder 1 wins with b∗1(s1) and loses with b, i.e. when33 b∗2(s2) ∈ (b, b∗1(s1)].

Recall also from Lemma 5 that b∗1(s1) ≥ b∗2(s2) is equivalent to g1(s1) ≥ g2(s2), which implies: (a)

s1 ≥ s2
1(s2) and (b) g1(s2

1(s2)) ≥ g2(s2). Moreover, by monotonicity of the bid functions we have that

{s2 : b∗2(s2) ∈ (b, b∗1(s1)]} = {s2 : s2 ∈ (τ2(b), s1
2(s1)]} for some τ2(b) ∈ [0, s1

2(s1)]. Note also that if
32This proof together with the proof that upward deviations are not profitable, see below, is available at the authors’

websites.
33Note that ties occur with probability zero and thus the conclusions do not change whether considering the boundaries

of the interval of bids close or open.
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Bidder 1 wins, she gets a good with value v1(s1, s2) and pays Bidder 2’s bid and if Bidder 1 loses she

suffers a negative externality equal to e2(s2). Thus, the change in utility when Bidder 1 wins is equal

to ve
1(s1, s2)− ve

2(s2, s2
1(s2)) = φ1(s1) + ζ2(s2)− φ2(s2)− ζ1(s2

1(s2)). Thus,

u1(s1, b
∗
1(s1))− u1(s1, b) =

∫ s1
2(s1)

τ2(b)

(
φ1(s1) + ζ2(s2)− φ2(s2)− ζ1(s2

1(s2))
)

ds2 =

∫ s1
2(s1)

τ2(b)

[
φ1(s1)− ζ1(s2

1(s2))
]
− [φ2(s2)− ζ2(s2)] ds2 ≥

∫ s1
2(s1)

τ2(b)

[
φ1(s2

1(s2))− ζ1(s2
1(s2))

]
− [φ2(s2)− ζ2(s2)] ds2 =

∫ s1
2(s1)

τ2(b)

[
h1(s2

1(s2))− h2(s2)
]

ds2 ≥

∫ s1
2(s1)

τ2(b)
(g2(s2)− h2(s2)) ds2

where we use that φ1 is strictly increasing and (a) in the first inequality. As for the second inequality,

we use that h1(s2
1(s2)) ≥ g1(s2

1(s2)) and (b). To see why h1(s2
1(s2)) ≥ g1(s2

1(s2)), we argue by

contradiction. Suppose that h1(s2
1(s2)) < g1(s2

1(s2)), then Lemma 4 implies that s2
1(s2) > 0 and thus

by continuity there exists an interval (a, s2
1(s2)], with a &= s2

1(s2) such that any s1 in this interval

verifies that h1(s1) < g1(s1) and hence that H1(s1) &= G1(s1). By application of Lemma 3 (d) we have

that g1(s1) is constant in (a, s2
1(s2)], which contradicts the definition of s2

1(s2).

Finally, we argue that
∫ s1

2(s1)
τ2(b) (g2(s2)− h2(s2)) ds2 is non-negative. This integral is equal to

[
G2(s1

2(s1))−H2(s1
2(s1))

]
+ [H2(τ2(b))−G2(τ2(b))] .

The second difference is non-negative by Lemma 3 (c). We next argue that the first one is equal

to zero. If s1
2(s1) is either zero or one, this is because of Lemma 3 (b); otherwise, it is because

G2(s1
2(s1)) < H2(s1

2(s1)) would imply that g2 is constant around s1
2(s1) by Lemma 3 (d), which is a

contradiction with the definition of s1
2(s1). !

Proof of Lemma 6

Proof. Since any increasing function can be discontinuous in at most countably many points and si
j

is increasing, it is sufficient to show that at any point si ∈ [0, 1] for which si
j(si) < si

j(si), the function

si
j is discontinuous. To prove so, suppose a point si at which δ ≡ si

j(si) − si
j(si) > 0. Then, by
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definition of si
j and si

j , the function gj is constant and equal to gi(si) in the interval (si
j(si), si

j(si)).

This means that gi is strictly increasing at si since it cannot be constant because K1∩K2 = ∅. Hence,

si
j(si) < si

j(si + ε), and consequently si
j(si) + δ < si

j(si + ε), for any ε > 0. This implies that si
j is

discontinuous at si. !

Proof of Proposition 9

Proof. As in the proof of Lemma 7, we refer to an equilibrium in non-weakly dominated strategies

simply as an equilibrium. We denote by b1(s1) ≡ t1(s1) + q1(s1) Bidder 1’s unique weakly dominant

strategy. Finally, note that under the assumptions of the lemma, the functions hi’s, i &= 1, are strictly

increasing (since hi = φi) and thus hi = gi for i &= 1.

The proof is also sketched in two steps. We first provide three necessary conditions that must be

satisfied in an equilibrium that implements the second best:34

(i) For any vector of types s ∈ [0, 1]n that satisfies:

g1(s1) < max
j $={1,i}

{hj(sj)} < hi(si) < h1(s1),

only Bidder i and 1 can be active along the equilibrium path when the price is equal to b1(s1).

We prove the claim by contradiction. We shall argue that if Bidder 1, Bidder i, and Bidder

l &= {1, i} are active at a price p ≡ b1(s1) in the equilibrium path induced by the above vector

of types, then both Bidder i and l quit immediately if Bidder 1 quits. Hence, there is a tie and

thus a contradiction since our tie-breaking rule does not ensure the second best allocation. To

understand why Bidder i quits immediately after Bidder 1 in the previous argument, note first

that in the equilibrium path Bidder i infers from Bidder 1 quitting at price p that Bidder 1’s

type is equal to s1. Thus, Bidder i infers that her value is equal to ti(si) + q1(s1), which is

strictly less than the price p = b1(s1) since

ti(si) + q1(s1) − b1(s1) = ti(si) + q1(s1) − t1(s1) − q1(s1) = hi(si) − h1(s1) < 0. (6)

Note also that by a similar argument Bidder l also infers that her value is less than the price.

This explains why both Bidder i and l must quit immediately after Bidder 1 in equilibrium.
34The structure of the proof generalizes the proof of Lemma 7. Basically, the necessary condition (i) corresponds to

the first step in the proof of Lemma 7, the necessary conditions (ii) and (iii) only play an auxiliary role, and what follows

corresponds to the second step.
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(ii) Bidder i, i &= 1, with type si does not win at a price p > b1(si
1(si)) in the equilibrium path when

Bidder 1 bids p, and thus has a type s1 ≡ b−1
1 (p) > si

1(si). The reason is that the implemented

allocation would not be second best because s1 > si
1(si) implies that g1(s1) > gi(si).

(iii) Bidder i, i &= 1, with type si does not win in the equilibrium path at a price strictly greater

than ti(si) + q1(b−1
1 (p)) when Bidder 1 quits at a price p and thus has a type s1 = b−1

1 (p). The

reason is that Bidder i does not find it profitable to win at these prices, and hence she would

have a profitable deviation, to quit at price ti(si) + q1(b−1
1 (p)) if higher than p, or immediately

after Bidder 1 otherwise.

We complete the proof by showing that there is a profitable deviation when Bidder 1 uses her unique

weakly dominant strategy and all the other bidders a vector of strategies that verifies conditions (i)-(iii)

above and that allocates the good according to the second best.

Let s̃ ∈ (0, 1)n be a vector that verifies the conditions in the statement of the lemma. The profitable

deviation exists for a Bidder i, i &= 1, with type s̃i. To describe it, let sinf(si) denote the infimum of

the set {s1 : hi(si) < h1(s1)} if not empty and note that sinf(si) is right-continuous since h1 and hi

are continuous and hi increasing. Thus, there exists an ε̂ > 0 small enough such that hi(s̃i) < h1(s1)

for any s1 ∈ (sinf(s̃i), sinf(s̃i + ε̂)].

The proposed deviation is that Bidder i with type s̃i plays the action prescribed by her strategy

but for a type35 s̃i + ε̂ (rather than her true type s̃i) unless either of the following two cases occur:

(a) that the price reaches b1(si
1(s̃i)) when Bidder 1 is active; or (b) that Bidder 1 has already quit at

price p, and the price is equal or above ti(s̃i) + q1(b−1
1 (p)). In either of these two cases, the deviation

prescribes that Bidder i quits immediately.

Since the original strategies implemented the second best and satisfy (ii) and (iii) this deviation

lets Bidder i win in all the cases in which she was already winning with the original strategy (and

at the same price). Moreover, Bidder i’s deviation lets her win in some additional cases. To simplify

the description of these additional cases, we shall restrict in what follows to the symmetric case in

which hl = hk for any l, k &= 1 (and thus gl = gk). The extension to the general case is straightforward

but requires a cumbersome notation. Thus, the only additional cases in which i may win with the

deviation are when the maximum of the other bidders types but 1 is in (s̃i, s̃i + ε̂), and Bidder 1 has a
35The reason why the proof of this lemma is more complex than the proof of Lemma 7 is that we must make sure

that the game does not move to an out-of-equilibrium path after the deviation since conditions (i)-(iii) only apply in the

equilibrium path.
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type less than si
1(s̃i), see a) above. The original strategy did not let i win in these cases because it is

not second best efficient. We show next what happens under the deviation in these cases depending

on the value of Bidder 1’s type s1:

• If s1 ∈ [0, sinf(s̃i)]: then, hi(s̃i) ≥ h1(s1) and thus, ti(s̃i) + q1(s1) ≥ b1(s1) by a similar argument

as in Equation (6). As a consequence, condition (b) above ensures that i gets non-negative

payoffs with the deviation if she wins.

• If s1 ∈ (sinf(s̃i), sinf(s̃i + ε̂)]: then, hi(s̃i) < h1(s1) by definition of ε̂, or equivalently ti(s̃i) +

q1(s1) − b1(s1) < 0, again by a similar argument as in Equation (6). Thus condition (b) above

means that i quits immediately after 1 if i is still active and as a consequence, if i wins, she pays

1’s bid.

• If s1 ∈ (sinf(s̃i + ε̂), si
1(s̃i)], Bidder i wins with the deviation and pays 1’s bid. This is because

condition (i) implies that only Bidder 1 and i are active when the price goes above b1(sinf(s̃i+ ε̂)).

To see why condition (i) applies, note that s1 ≤ si
1(s̃i) means that g1(s1) ≤ gi(s̃i) and that

gi(si) = hi(s̃i) ≤ hi(s̃i + ε̂) since hi is increasing. Moreover, for any s1 arbitrarily close but above

sinf(s̃i + ε̂), we have hi(s̃i + ε̂) < h1(s1). Putting together these facts, we get g1(s1) < hi(s̃i + ε̂) <

h1(s1) as required.

Denote by ρ(s1) the probability with which i wins conditional on s1 and on the maximum of

{sj}j $=1,i being in (s̃i, s̃i + ε̂) when i plays her deviation and all the other bidders follow the proposed

strategies. Note that our previous arguments imply that ρ(s1) = 1 if s1 ∈ (sinf(s̃i + ε̂), si
1(s̃i)]. We

next use ρ to show that Bidder i gets strictly positive utility with the deviation in the last two cases
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above:

∫ si
1(s̃i)

sinf(s̃i)
(ti(s̃i) + q1(s1)− b1(s1)) ρ(s1) ds1 =

∫ si
1(s̃i)

sinf(s̃i)
(hi(s̃i)− h1(s1)) ρ(s1) ds1 ≥

∫ si
1(s̃i)

sinf(s̃i)
(hi(s̃i)− h1(s1)) ds1 =

∫ si
1(s̃i)

sinf(s̃i)
(g1(s̃1)− h1(s1)) ds1 +

∫ si
1(s̃i)

sinf(s̃i)
(hi(s̃i)− g1(s1)) ds1 =

(
G1(si

1(s̃i))−H1(si
1(s̃i))

)
− (G1(sinf(s̃i))−H1(sinf(s̃i))) +

∫ si
1(s̃i)

sinf(s̃i)
(hi(s̃i)− g1(s1)) ds1 ≥

∫ si
1(s̃i)

sinf(s̃i)
(hi(s̃i)− g1(s1)) ds1 > 0,

where in the first inequality we use that ρ(s1) = 1 if s1 ∈ (sinf(s̃i + ε̂), si
1(s̃i)] and that hi(s̃i) < h1(s1)

for s1 ∈ (sinf(s̃i), sinf(s̃i + ε̂)] by definition of ε̂; in the second inequality we use the same arguments as

in the last paragraph of the proof of Proposition 8; and in the last inequality we use that gi(s̃i) ≥ g1(s1)

(and that hi = gi) for s1 ≤ si
1(s̃i), and strictly if s1 ∈ (sinf(s̃i), si

1(s̃i)) by definition of si
1 and si

1. Note

(sinf(s̃i), si
1(s̃i)) is non-empty because sinf(s̃i) < s̃1 and s̃1 < si

1(s̃i). The former inequality can be

proved using that the vector s̃ verifies Equation (3) and the definition of sinf , and the latter one using

also that s̃ verifies Equation (3) and the definition of si
1.

As a consequence, the proposed deviation is profitable as desired. !

B Multidimensional Type Models

In this appendix we extend our analysis to a family of problems with a multidimensional type space.

We shall show that under certain assumptions the analysis of these models can be done with an

equivalent model with a one-dimensional type space. This analysis allows the extension of the models

in Section 5.

Suppose that Bidder i’s private information is a three dimensional vector ŝi = (t̂i, q̂i, êi) that it is

drawn according to an independent distribution F̂i with support in a bounded set Ŝi ⊂ R3. We shall

assume that this distribution is such that the induced distribution of t̂i + q̂i, say F i, has a strictly

positive density f i in all the support Si ⊂ R. Denote by Ŝ =
∏n

i=1 Ŝi and by S =
∏n

i=1 Si. We assume
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that Bidder i gets utility t̂i +
∑n

j=1 q̂j − b if she wins and pays b, and utility −êj − b if j &= i wins and

Bidder i pays b.

By the revelation principle, there is no loss of generality in restricting to direct mechanisms. A

direct mechanism is a pair (p̂, x̂), where p̂ : Ŝ → [0, 1]n and x̂ : Ŝ → Rn such that
∑n

i=1 p̂i(ŝ) = 1 and

where p̂i(ŝ) denotes the probability that Bidder i gets the good and x̂i(ŝ) denotes the payments of i to

the auctioneer when the announced vector of types is equal to ŝ. We shall refer to p̂ as an allocation∗.

The expected utility of Bidder i with type ŝi that reports ŝ′i when all the other bidders report

truthfully is equal to:

Ûi(ŝi, ŝ
′
i) ≡ Q̂i(ŝ′i, p̂)(t̂i + q̂i) + Ψ̂i(ŝ′i, p̂, x̂),

where

Q̂i(ŝi, p̂) ≡
∫

Ŝ−i

p̂i(ŝi, ŝ−i) dF̂−i(ŝ−i),

and,

Ψ̂i(ŝi, p̂, x̂) ≡
∫

Ŝ−i



p̂i(ŝi, ŝ−i)
∑

j $=i

q̂j − x̂i(ŝi, ŝ−i)−
∑

j $=i

p̂j(ŝi, ŝ−i)êj



 dF̂−i(ŝ−i),

for F̂−i(ŝ−i) ≡
∏

j $=i F̂j(ŝj) and Ŝ−i ≡
∏

j $=i Ŝj .

Thus, we say that an allocation∗ p̂ : S → [0, 1]n is feasible∗ if there exists a direct mechanism (p̂, x̂)

that satisfies the following Bayesian incentive compatibility constraint:

Ûi(ŝi, ŝi) = sup
ŝ′i∈Ŝi

{Ûi(ŝi, ŝ
′
i)},

for all ŝi ∈ Ŝi and i ∈ N .

We shall show that we can study second best efficiency in the model of this section, using the

results in the model of Section 3:

Definition: Let the following be the uni-dimensional equivalent to a model as in Section 3 in which

for all i ∈ N and si ∈ Si:

Si = Si, Fi(si) = F i(si),

ti(si) =
∫

Ŝi(si)
t̂i

dF̂i(ŝi)
f i(si)

, qi(si) =
∫

Ŝi(si)
q̂i

dF̂i(ŝi)
f i(si)

, and ei(si) =
∫

Ŝi(si)
êi

dF̂i(ŝi)
f i(si)

,

where Ŝi(si) ≡ {ŝi ∈ Ŝi : t̂i + q̂i = si}.

Definition: Let the uni-dimensional version of an allocation∗ p̂ be a function p : S → [0, 1]n where

pi(s) =
∫

Ŝ1(s1)
...

∫

Ŝn(sn)
p̂(ŝ)

dF̂n(ŝn)
fn(sn)

...
dF̂1(ŝ1)
f1(s1)

.
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Lemma 9. The allocation∗ p̂ is feasible∗ if and only if its uni-dimensional version p is feasible and

Q̂i(ŝi, p̂) ∈ [Qi(t̂i + q̂i, p)−, Qi(t̂i + q̂i, p)+] for any ŝi ∈ Ŝi and i ∈ N .36

Proof. Note that using the definition of the uni-dimensional version, we can show that,

Q(si, p) =
∫

Ŝi(si)
Q̂i(ŝi, p̂)

dF̂i(ŝi)
f i(si)

where p is the uni-dimensional version of p̂. Thus, by application of Lemma 1, p is feasible and

Q̂i(ŝi, p̂) ∈ [Qi(t̂i + q̂i, p)−, Qi(t̂i + q̂i, p)+] if and only if there exists a vector of increasing functions

Qi : Si → [0, 1], i ∈ N , such that Q̂i(ŝi, p̂) ∈ [Qi(ti + qi)−,Qi(ti + qi)+] for any ŝi ∈ Ŝi and i ∈ N , or

what is the same, if and only if there exists a set of increasing convex functions v̂i : Si → R+, i ∈ N ,

such that Q̂i(ŝi, p̂) ∈ ∂v̂(t̂i + q̂i) for any ŝi ∈ Ŝi and i ∈ N , see Rockafellar (1970).

Thus, to prove the lemma it is sufficient to show the following equivalent statement:

The allocation∗ p̂ is feasible∗ if and only if there exists a set of increasing convex functions

v̂i : Si → R+, i ∈ N , such that Q̂i(ŝi, p̂) ∈ ∂v̂(t̂i + q̂i) for any ŝi ∈ Ŝi and i ∈ N .

We first prove the “only if”-part. Suppose a feasible∗ allocation∗ p̂ : Ŝ → [0, 1]n, and let Vi(ŝi) ≡

Ûi(ŝi, ŝi). Then,

Vi(ŝi) ≥ Ûi(ŝi, ŝ
′
i)

= Q̂i(ŝ′i, p̂)(t̂i + q̂i) + Ψ̂i(ŝ′i, p̂, x̂)

= Q̂i(ŝ′i, p̂)(t̂′i + q̂′i) + Ψ̂i(ŝ′i, p̂, x̂) + Q̂i(ŝ′i, p̂)(t̂i + q̂i − t̂′i − q̂′i)

= Vi(ŝ′i) + Q̂i(ŝ′i, p̂)(t̂i + q̂i − t̂′i − q̂′i),

for all ŝi, ŝ′i ∈ Ŝi, i ∈ N , and some x̂ : Ŝ → Rn.
36We denote by Qi(x0, p)− and Qi(x0, p)+ the limits

lim

x→ x0

x < x0

Qi(x, p) and lim

x→ x0

x > x0

Qi(x, p)

respectively. To avoid problems at the infimum and supremum of Si, we shall adopt the convention that Qi(inf Si, p)− =

Qi(inf Si, p) and Qi(sup Si, p)+ = Qi(sup Si, p). We adopt the same notation and conventions for the functions Qi in

the proof of the lemma.
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The above inequality applied twice, one with the roles of ŝi and ŝ′i interchanged, to any two vectors

ŝi, ŝ′i ∈ Ŝi such that t̂i + q̂i = t̂′i + q̂′i, implies that Vi(ŝi) = Vi(ŝ′i). Consequently, there exists a function

vi : Si → R such that Vi(ŝi) = vi(t̂i + q̂i) for any ŝi ∈ Ŝi. Moreover, vi is convex because Vi is

convex. Note that Vi must be convex because it is equal to the maximum of some linear functions

by the incentive compatibility constraint. Finally, note that the above inequality together with the

definition of vi implies that vi(y) ≥ vi(t̂i + q̂i) + Q̂i(ŝi, p̂)(y − (t̂i + q̂i)) for any y in Si. This means

that Q̂i(ŝi, p̂) ∈ ∂vi(t̂i + q̂i) as desired.

To prove the “if”-part, suppose a function ṽ that satisfies the conditions of the lemma for an

allocation∗ p̂, and let x̂ : Ŝ → Rn be such that Ψ̂i(ŝi, p̂, x̂) = v̂i(t̂i + q̂i) − (t̂i + q̂i)Q̂i(ŝi, p̂) for any

i ∈ N . We shall show that the direct mechanism (p̂, x̂) satisfies the Bayesian incentive compatibility

constraints. To see why, note that for any ŝi, ŝ′i ∈ Ŝi:

Vi(ŝi) = ṽi(t̂i + q̂i) ≥ ṽi(t̂′i + q̂′i) + Q̂i(ŝ′i, p̂)(t̂i + q̂i − t̂′i − q̂′i)

= Q̂i(ŝ′i, p̂)(t̂′i + q̂′i) + Ψ̂i(ŝ′i, p̂, x̂) + Q̂i(ŝ′i, p̂)(t̂i + q̂i − t̂′i − q̂′i)

= Q̂i(ŝ′i, p̂)(t̂i + q̂i) + Ψ̂i(ŝ′i, p̂, x̂) = Ûi(ŝi, ŝ
′
i),

where the inequality is a consequence of Q̂i(ŝ′i, p̂) ∈ ∂ṽi(t̂′i + q̂′i). !

Now, we can state the main result of this appendix:

Proposition 10. A feasible∗ allocation∗ p̂∗ is a solution to the problem,

max
∫

Ŝ

n∑

i=1



t̂i +
n∑

j=1

q̂j − (n− 1)êi



 p̂i(ŝ) dF̂ (ŝ),

if and only if its uni-dimensional version p∗ is second best efficient for the uni-dimensional equivalent

model.

Proof. Take any p̂ feasible and such that
∑

i∈N p̂i(ŝ) = 1 for all ŝ ∈ Ŝ, and denote by p its one-

dimensional version. Then we can deduce the lemma from the following sequence of algebraic trans-

formations and the fact that by Lemma 9, feasibility∗ of p̂ requires feasibility of p:
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∫

Ŝ

n∑

i=1



t̂i +
n∑

j=1

q̂j − (n− 1)êi



 p̂i(ŝ) dF̂ (ŝ) =

∫

Ŝ

n∑

i=1

(
t̂i − (n− 1)êi

)
p̂i(ŝ) F̂ (dŝ) +

∫

Ŝ

n∑

i=1

p̂i(ŝ)
n∑

j=1

q̂j dF̂ (ŝ) =

n∑

i=1

∫

Ŝi

(
t̂i − (n− 1)êi

)
Q̂i(ŝi, p̂) dF̂i(ŝi) +

∫

Ŝ

n∑

j=1

q̂j dF̂ (ŝ) =

n∑

i=1

∫

Si

∫

Ŝi(si)

(
t̂i − (n− 1)êi

)
Q̂i(ŝi, p̂)

dF̂i(ŝi)
f i(si)

f i(si) dsi +
n∑

j=1

∫

Ŝ
q̂j dF̂ (ŝ) =

n∑

i=1

∫

Si

∫

Ŝi(si)

(
t̂i − (n− 1)êi

)
Q̂i(ŝi, p̂)

dF̂i(ŝi)
f i(si)

f i(si) dsi +
n∑

j=1

∫

Ŝj

q̂j dF̂j(ŝj) =

n∑

i=1

∫

Si

(ti(si)− (n− 1)ei(si))Qi(si, p)f i(si) dsi +
n∑

j=1

∫

Sj

∫

Ŝj(sj)
q̂j

dF̂j(ŝj)
f j(sj)

f j(sj) dsj =

n∑

i=1

∫

S
(ti(si)− (n− 1)ei(si)) p(s)f(s)ds +

n∑

j=1

∫

Sj

qj(sj) f j(sj) dsj =

n∑

i=1

∫

S
(ti(si)− (n− 1)ei(si)) p(s)f(s)ds +

n∑

j=1

∫

Sj

qj(sj)
n∑

i=1

pi(s) f j(sj) dsj =

n∑

i=1

∫

S
(ti(si)− (n− 1)ei(si)) p(s)f(s)ds +

n∑

i=1

∫

S




n∑

j=1

qj(sj)



 pi(s) f(s) ds =

n∑

i=1

∫

S



ti(si) +
n∑

j=1

qj(sj)− (n− 1)ei(si)



 pi(s)f(s)ds,

where we have used: in step 2, that
∑n

j=1 p̂(ŝ) = 1; in step 4, independency of the F̂i’s; in Step 5, that

Q̂i(ŝi, p̂) = Qi(si, p) a.e., see below; and in step 7, that
∑n

i=1 pi(s) = 1.

To see why Q̂i(ŝi, p̂) = Qi(si, p) a.e., note that Lemma 9 and p̂ feasible∗ imply that p is feasible, and

thus Qi(., p) increasing by Lemma 1, and hence continuous a.e. As a consequence, applying Lemma 9

again we get that Q̂i(ŝi, p̂) = Qi(si, p). !

Finally, we provide as an application an example that generalizes the model in Section 5.2 to the

cases not covered there, i.e. ρ + t ≤ t.

Example 12. Suppose a set N = {1, 2, ..., n}, and that F̂1 has full support on Ŝ1 = [t, t]×{0, ρ}×{0}

and F̂i on Ŝi = [t, t] × {0} ×{ 0} for i &= 1. Suppose also that t̂1 and q̂1 are independent and t̂1 has
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a marginal distribution G with strictly positive density g over the support and q̂1 takes value 0 with

probability α ∈ (0, 1) and ρ with probability 1− α. Finally, suppose ρ + t ≤ t.

In the above example q1(s1) = ρ g(s1−ρ)(1−α)
g(s1)α+g(s1−ρ)(1−α) , if s1 > ρ and zero, otherwise; t1(s1) = s1 −

q1(s1), e1(s1) = 0, ti(si) = si, qi(si) = ei(s1) = 0 for i &= 1. Thus, its uni-dimensional version violates

the single crossing condition. To see why, apply Lemma 2 to s1 = ρ + t− ε and s′1 = ρ + t + ε noting

that h1(s1) = t1(s1), and thus that h1(ρ + t− ε) = ρ + t− ε >ρ + t + ε− q1(ρ + t + ε) = h1(ρ + t + ε)

for ε > 0 and small enough.
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