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Abstract

This paper discusses the estimation of Dynamic Stochastic General Equilibrium (DSGE) models

using hybrid models. These econometric tools provide the combination of an atheoretical statistical

representation and the theoretical features of the DSGE model. A review of hybrid models presents the

main aspects of these tools and why they are needed in the recent macroeconometric literature. Some

of these models are compared to classical econometrics models (such as Vector Autoregressive, Factor

Augmented VAR and Bayesian VAR) in a marginal data density analysis.
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"Dynamic equilibrium theory made a quantum leap between the early 1970s and the late 1990s.

In the comparatively brief space of 30 years, macroeconomists went from writing prototype

models of rational expectations (think of Lucas, 1972) to handling complex constructions like

the economy in Christiano, Eichenbaum, and Evans (2005). It was similar to jumping from the

Wright brothers to an Airbus 380 in one generation".

Jesus Fernández-Villaverde in "The Econometrics of DSGE Models"(2009, pag.2)

"A well-de�ned statistical model is one whose underlying assumptions are valid for the data

chosen"

Aris Spanos in "The Simultaneous-Equations Model Revisited: Statistical Adequacy and Identi-

�cation" (1990, pag.89)
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1 Introduction

The new micro-founded dynamic stochastic general equilibrium DSGE models appear to be particularly

suited for evaluating the consequences of alternative macroeconomic policies, as shown in the works of Smets

and Wouters (2003, 2004), Del Negro and Schorfheide (2004), Adolfson et al. (2008) and Christiano et

al. (2005). Model validation using DSGE models allows the econometrician to establish a link between

structural features of the economy and reduced form parameters, which was not always possible with the

usual large-scale macroeconomic models. For more than two decades, vector autoregressive models (VARs)

(Sims, 1980) have been used for macroeconomic modelling and forecasting.

On the side of the statistical representation, the VAR su¤ers from the over�tting due to the inclusion

of too many lags and too many variables, some of which may be insigni�cant. The problem of over�tting

results in multicollinearity and loss of degrees of freedom, leading to ine¢ cient estimates and large out-of-

sample forecasting errors. The use of "Minnesota" priors (Doan et al., 1984) has been proposed to shrink

the parameters space and thus overcome the curse of dimensionality.

On the other side, the calibrated DSGE models face many important challenges such as the fragility of

parameter estimates, statistical �t and the weak reliability of policy predictions as reported in Ireland (2004)

and Schorfheide (2010).

In recent years, Bayesian estimation of DSGE models has become popular for many reasons, mainly

because it is a system-based estimation approach that o¤ers the advantage of incorporating assumptions

about the parameters based on economic theory. These assumptions can reduce weak identi�cation issues.

One of the main reasons of the extensive use of Bayesian methods is that they a¤ord researchers the chance

to estimate and evaluate a wide variety of macro models that frequentist econometrics often �nd challenging.

Bayesian times series methods can be extremely useful in DSGE estimation and forecasting. The popularity

of the Bayesian approach is also explained by the increasing computational power available to estimate

and evaluate medium- to large-scale DSGE models using Markov chain Monte Carlo (MCMC) simulators.

The combination of rich structural models, novel solution algorithms and powerful simulation techniques

has allowed researchers to develop the so-called "New Macro-econometrics" (Fernández-Villaverde, 2009 and

Fernández-Villaverde et al., 2010). In this framework, the hybrid DSGE models have become popular for

dealing with some of the model misspeci�cations as well as the trade-o¤ between theoretical coherence and

empirical �t (Schorfheide, 2010). The hybrid models improve the state-space representation of a DSGE,

providing a complete analysis of the data law of motion and better capture the dynamic properties of the

DSGE models. Sargent (1989) and Altug (1989) proposed augmenting a DSGE model with measurement

error terms that follow a �rst order autoregressive process, known as the DSGE-AR approach. Ireland
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(2004) proposed a method that is similar to the DSGE-AR, but imposing no restriction on the measurement

errors, assuming that residuals follow a �rst-order vector autoregression (DSGE-VAR à l�Ireland). A di¤erent

approach called DSGE-VAR à la Del Negro and Schorfheide (2004)1 is based on the works of DeJong et al.

(1996) and Ingram and Whiteman (1994). The DSGE-VAR à la Del Negro and Schorfheide combines the

VAR representation as an econometric tool for empirical validation with prior information derived from

the DSGE model in estimation. The DSGE-FAVAR (Consolo et al., 2009) and the Augmented (B) VAR

model (Fernández-de-Córdoba and Torres, 2010) have been introduced to use latent variables in estimating

the DSGE. Other models add DSGE model with equations for non-modelled variables, such the DSGE-

DFM (Dynamic Factors Model) (Boivin and Giannoni, 2006) and the approach proposed by Schorfheide et

al. (2010). Instead, in Canova (2012), a hybrid model is proposed to correct the inability to capture the

long-run features of the data.

In the literature, there are several works2 which compares the forecasting performance of DSGE, con-

sidering some of the above mentioned hybrid models, against a simple VAR approach. Contrary to them,

in this paper, we discuss about the main aspects of the hybrid models. We evidence how they evolved and

how they have been used in several comparison exercise. An empirical exercise on US economy shows how

it is possible to compare some of these hybrid models to non-DSGE based approaches (VAR, BVAR, Factor

Augmented VAR) using the marginal data density3 (MDD).

The paper is set out as follows. Section 2 discusses the concept of model validation applied to DSGE

models. In Section 3, the hybrid models are analyzed in details. Section 4 compares some hybrid models to

a classical VAR, a Bayesian VAR, and a Factor-Augmented VAR. Section 5 concludes.

2 Model Validation

The starting point to understand the reason and the evolution of using hybrid models is the concept of

model validation. Model validation using DSGE models allows the econometrician to establish a link between

structural features of the economy and reduced form parameters, something that was not always possible with

the usual large-scale macroeconomic models. Improvements in computational power and the development of

new econometric methods are crucial to the popularity of the use of DSGE models. Moreover, very few papers

1Fernández-de-Córdoba and Torres (2010) refer to the Ireland methodology as the DSGE-VAR, while the Del Negro and
Schorfheide (2004) is called the VAR-DSGE. Some other authors use the term DSGE-VAR for the Del Negro and Schorfheide.
To avoid any misunderstanding, in this paper we use DSGE-VAR à l�Ireland and DSGE-VAR à la Del Negro and Schorfheide
to refer to these methodologies.

2These include Smets and Wouters (2004), Ireland (2004), Del Negro and Schorfheide (2004), Del Negro et al. (2007),
Adolfson et al. (2008), Christo¤el et al. (2008), Rubaszek and Skrzypczynski (2008), Ghent (2009), Kolosa et al. (2009),
Consolo et al. (2009), Liu et al. (2009), Fernández-de-Córdoba and Torres (2010), Lees et al. (2011), and Bekiros and
Paccagnini (2012) among others.

3The marginal data density is de�ned as the integral of the likelihood function with respect to the prior density of the
parameters.
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discuss the main aspects of validating the DSGE model, despite its widespread use for forecasting (Edge

and Gürkaynak, 2011). The model validation involves selecting a loss function which measures the distance

between the set of economic statistics and the set of statistics obtained from the simulated data. Canova

(2005) explains that there are essentially four approaches to apply the concept of model validation to DSGE.

The �rst approach is based on an R2-type measure. In Watson (1993), the economic model is viewed as an

approximation of the stochastic data generating process, considering that in the statistical sense the model is

not true. The goodness-of-�t (R2-type) measure is introduced to provide an evaluation of the approximation.

The key ingredient of the measure is the size of the error needed to be added to the data generated by the

model for the autocovariance implied by the model plus the error to match the autocovariance of the observed

data. The second approach measures the distance using the sampling variability of the actual data. Some

examples of this approach are the GMM-based of Christiano and Eichenbaum (1992) and of Fève and Langot

(1994), the indirect approach of Cecchetti et al. (1993) and the frequency domain approach of Diebold et al.

(1998).4 The third approach measures the distance by using the sampling variability of the simulated data,

such as testing calibration, provide a simple way to judge the distance between population moments and the

statistics from a simulated macroeconomic model, as in Gregory and Smith (1991). This method has been

used by Soderlind (1994) and Cogley and Nason (1994) to evaluate their DSGE models. The fourth approach

measures the distance by using the sampling variability of both actual and simulated data, as discussed in

DeJong et al. (1996, 2000), Geweke (1999) and Schorfheide (2000).

The main di¤erence in the model validation, as pointed out by Canova (1994), is between the estimation

and the calibration5 approaches.

Essentially, the estimation approach tries to answer the question: "Given that the model is true, how false

is it?", while the calibration approach tries to answer: "Given that the model is false, how true is it?". In

the model testing process, an econometrician takes the model seriously as a DGP (data-generating process)

and analyzes whether the features of the speci�cation are at variance with the data. A calibrationist takes

the opposite view: the model, as a DGP for the data, is false. As the sample size grows, the data-generated

by the model will have more variation from the observed data. Statistical models rely on economic theory so

loosely that VAR can fail to uncover parameters that are truly structural. This disadvantage may be crucial

in policy evaluation exercises, since VAR can exhibit instability across periods when monetary and �scal

policies change. However, the VAR su¤ers from the over�tting due to the inclusion of too many lags and too

many variables, some of which may be insigni�cant. The problem of "over�tting" results in multicollinearity

and the loss of degrees of freedom, leading to ine¢ cient estimates and large out-of-sample forecasting errors.

4This approach is an extension of Watson (1993), proposing a spectral analysis.
5Kydland and Prescott (1982, 1991) identify calibration as embodying the approach to econometrics articulated and practiced

by Firsch (1933a,1933b).
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It is possible to overcome this problem by using what have become well-known as "Minnesota" priors (see

Doan et al., 1984). The use of "Minnesota" priors has been proposed to shrink the parameters space. The

basic principle behind this procedure is that all equations are centered around a random walk with drift.

This idea has been modi�ed by Kadiyala and Karlsson (1997) and Sims and Zha (1998). In Ingram and

Whiteman (1994), a RBC model is used to generate a prior for a reduced form VAR, as a development of the

"Minnesota" priors procedure. The key element is that the dimension of the observable vector exceeds the

dimension of the state vector. In Ingram and Whiteman (1996, 2000), a prior is placed on the parameters of

a simple linearized DSGE, which is then compared with a Bayesian VAR (BVAR) in a forecasting exercise.

Moreover, the calibrated DSGE models are typically too stylized to be taken directly to the data and

often yield fragile results, when traditional econometric methods are used for estimation (hypothesis testing,

forecasting evaluation) (Smets and Wouters, 2003, and Ireland, 2004).

Due to all these issues, macroeconometrics face the trade-o¤ between theoretical coherence and empirical

�t. To solve this dilemma, di¤erent attempts at hybrid models have been introduced to bridge the theory of

the DSGE model imposed by the restrictions and the estimation on the data. The hybrid models have been

introduced for dealing with some of the model misspeci�cations as well as the trade-o¤ between theoretical

coherence and empirical �t (Schorfheide, 2010).

3 Hybrid Models

The main of idea of hybrid models is to improve the state-space representation of a DSGE, providing a

complete analysis of the data law of motion and better capture the dynamic properties of the DSGE models.

Consider the following linear state-space representation of a DSGE model with no time-varying parame-

ters (�):

yt = 	0(�) + 	1(�)t+	s(�)st (1)

st = �1(�)st�1 +��(�)�t ,

where yt is a vector of (k � 1) observables, such as aggregate output, in�ation, and interest rates.

This vector represents the measurement equation. Instead, the vector st (n � 1) contains the unobserved

exogenous shock processes and the potentially unobserved endogenous state variables of the model. The

model speci�cation is completed by setting the initial state vector s0 and making distributional assumptions

for the vector of innovations �t (E [�t] = 0; E
h
�t�

0

t

i
= I and E [�t�t�j ] = 0 for j 6= 0).
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There exist essentially two approaches (see Schorfheide, 2010) to building empirical models that combine

the restrictions of a DSGE model with a pure statistical model: the additive hybrid models and hierarchical

hybrid models.

3.1 Additive Hybrid Models

The additive hybrid model augments the state-space model (1) with a latent process zt that bridges the gap

between data and theory:

yt = 	0(�) + 	1(�)t+	s(�)st + �0 + �1t+ �zzt (2)

st = �1(�)st�1 +��(�)�t

zt = �1zt�1 + ���t.

The process zt is called measurement error, and blames the collection of data rather than the DSGE

model construction for the gap between the theory and the data.

The main examples of additive hybrid models are: the DSGE-AR (Sargent, 1989, Altug, 1989), the

DSGE-VAR à l� Ireland (2004), the DSGE-DFM (Boivin and Giannoni, 2006), the Augmented (B)VAR

(Fernández-de-Córdoba and Torres, 2010), the DSGE with non-modelled variables (Schorfheide, Sill, and

Kryshko, 2010) and the Augmented DSGE for Trends (Canova, 2012).

3.1.1 The DSGE-AR method

Sargent (1989) and Altug (1989) proposed an approach to solving DSGE models, by augmenting the model

with unobservable errors as described in equation (2).

A matrix �1 governs the persistence of the residuals; the covariance matrix, Et�t�
0
t = V , is uncorrelated.

In this speci�cation the �t �s generate the comovements between the observables, whereas the elements of zt

pick up idionsyncratic dynamics which are not explained by the structural part of the hybrid model. However,

if we set 	0; 	1 and �z to zero, the DSGE model components can be used to describe the �uctuations of

yt around a deterministic trend path, ignoring the common trend restrictions of the structural model. For

instance, Smets and Wouters (2003) estimated their model using this pattern with a two-step procedure. In

the �rst step, the deterministic trends are extracted from the data; in the second step, the DSGE model is

estimated using linear detrended observations.

Sargent (1989) and Altug (1989) assume that the measurement errors are uncorrelated with the data
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generated by the model, hence the matrices �1 and V are diagonal and the residuals are uncorrelated across

variables:

�1 =

266664
y 0 0

0 c 0

0 0 l

377775

V =

266664
v2y 0 0

0 v2c 0

0 0 v2l

377775 :

Essentially, this methodology combines the DSGE model with an AR model for the measurement resid-

uals.

3.1.2 The DSGE-VAR à l�Ireland

Ireland (2004) proposed a more general framework for measurement errors, allowing the residuals to follow

an unconstrained, �rst-order vector autoregression. This multivariate approach has the main advantage of

imposing no restrictions on the cross-correlation of the measurement errors, allowing it to capture all the

movements and co-movements in the data not explained by the DSGE model. The matrices �1 and V are

given by:

�1 =

266664
y yc yl

cy c cl

ly lc l

377775

V =

266664
v2y vyc vyl

vcy v2c vcl

vly vlc v2l

377775 :

This multivariate approach is more �exible and general in the treatment of measurement errors, but

some empirical evidence (such as Fernández-de-Córdoba and Torres, 2010) shows the forecast performance

of the traditional DSGE-AR outperforms the DSGE-VAR à l�Ireland. Malley and Woitek (2010) propose an

extension, allowing for a vector autoregressive moving average (VARMA) process to describe the movements

and co-movements of the model�s errors not explained by the basic RBC model.
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3.1.3 The DSGE-DFM

Macroeconomists have access to large cross-sections of aggregate variables that include measures of sectorial

economic activities and prices as well as numerous �nancial variables. Hybrid models can also be used to link

DSGE models with aggregate variables that are not explicitly modelled. Using these additional variables in

the estimation potentially sharpens inference about latent state variables:

yt = 	0(�) + 	1(�)t+	s(�)st + zy;t (3)

st = �1(�)st�1 +�"(�)"t (4)

xt = �0 + �1t+ �sst + zx;t; (5)

where yt is the vector of the observable variables that are described by the DSGE model and xt is a large

vector of non-modelled variables.

Since the structure of this model resembles that of a dynamic factor model (DFM), e.g. Sargent and

Sims (1977), Geweke (1977), and Stock and Watson (1989), Schorfheide (2010) refers to the system (3) to

(5) as an example of a combination of DSGE and DFM (Boivin and Giannoni, 2006). Roughly speaking,

the vector of factors is given by the state variables associated with the DGSE model. The processes zy;t and

zx;t are uncorrelated across series and model idiosyncratic but potentially serially correlated movements (or

measurement errors) in the observables. Moreover, equation (4) links the variables xt to the DSGE model.

This relation generates comovements between the yt�s and the xt�s and allows the computation of impulse

responses to the structural shocks �t:

3.1.4 The Augmented (B)VAR

The Augmented (B)VAR (Fernández-de-Córdoba and Torres, 2010) is a combination of the unrestricted

VAR with the DSGE model and is conducted by increasing the size of the VAR representation. In this

methodology, xt is a vector of observable economic variables assumed to drive the dynamics of the econ-

omy. The structural approach assumes that DSGE models contain additional economic information, not

fully captured by xt. The additional information is summarized by using a vector of unobserved variables

zt. Fernández-de-Córdoba and Torres (2010) explain that these non-observed variables can be total factor

productivity, marginal productivity, or any other information given by the economic model, but they do not

belong to the observed variable set.

The joint dynamics of (xt; zt) are given by the following transition equation:

8



264 xt

zt

375 = �(L)
264 xt�1

zt�1

375+
264 "xt

"zt

375
This system cannot be estimated directly since zt are non-observed, but zt can be obtained using the

DSGE model to create a new variable Zt, which is used to expand the size of the VAR. It is possible to

construct a VAR with the following speci�cation:

264 xt

Zt

375 =
264 �11(L) �12(L)

�21(L) �22(L)

375
264 xt�1

Zt�1

375+
264 "xt

"zt

375
where xt are the macroeconomic data that the DSGE model seeks to explain and Zt is a vector derived

from the DSGE model. If the model speci�cation is correct, the relation between xt and Zt should then

capture additional economic information relevant to modelling the dynamics of xt. A standard unrestricted

VAR implies that �12(L) = 0:

3.1.5 DSGE with non-modelled variables

Schorfheide et al. (2010) develop a method of generating a DSGE model-based forecast for variables that do

not explicitly appear in the model (non-core variables). They consider the following representation:

yt = 	0(�) + 	s(�)&t (6)

st = �1(�)st�1 +�"(�)"t

where eq (6) is the measurement equation, where &t = [s0t; s
0
t�1M

0
s(�)]

0 includes the state variables of the

model (st), the lagged variables for the growth rates, s0t�1M
0
s(�)

6 . To this state space representation, we add

an auxiliary regression:

zt = �0 + bs0tjt�s + �t
where the bs0tjt is derived by the Kalman Filter to obtain estimates of the latent state variables, based on the

DSGE model parameter estimates. �t is a variable-speci�c noise process, �t = ��t�1+ �t and �t � N(0; �2�):

This augmented state-space can be interpreted as a factor model. The factors are given by the state

variables of the DSGE model, while the measurement equation associated with the DSGE model describes

6 In Schorfheide et al. (2010), they assume the lagged values of output, consumption, investment, and real wages. These
variables are part of the set of the endogenous state variables, in which we have capital and interest rate.
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the way in which the core macroeconomic variables load on factors, and the auxiliary regression describes

the way in which additional (non-core) macroeconomic variables load on the factors. This representation

is a simpli�ed version of the DSGE-DFM since the DSGE with non-modelled variables do not attempt to

estimate the DSGE model and the auxiliary regression simultaneously.

3.1.6 The Augmented DSGE for Trends

One of the most discussed problem in using a DSGE model for estimation is its inability to capture the

long-run features of the data. Canova (2012) proposes a way to correct these problems using a hybrid model:

yt = 	0(�) + 	s(�)st + �0 + �zzt (7)

st = �1(�)st�1 +�"(�)"t

zt = �1zt�1 + �2zt�1 + ���t

zt = zt�1 + vt:

Depending on the restrictions imposed on the variances of �t and �t, the process zt is integrated of order

one or two and can generate a variety of stochastic trend dynamics.

3.2 Hierarchical Hybrid Models

The second class of hybrid models used for estimating the DSGE model is the hierarchical hybrid.

Consider the following modi�cation of the additive hybrid model:

yt = �0 + �1t+ �sst (8)

st = �1zt�1 + ���t,

where

�i = 	i(�) + �
	
i ; i = 0; 1; s (9)

�i = �i(�) + �
�
i ; i = 1; �:

In this setup, 	i(�) and �i(�) are interpreted as restrictions on the unrestricted state-space matrices �i

10



and �i; instead, the disturbances, �	i and �
�
i can capture deviations from the restriction functions 	i(�) and

�i(�). This kind of hybrid model is related to Bayesian econometrics, since the stochastic restrictions (9)

correspond to a prior distribution of the unrestricted state-space matrices conditional on the DSGE model

parameters �:

In the literature, there are essentially two examples of hierarchical hybrid models: the DSGE-VAR (Del

Negro and Schorfheide, 2004) and the DSGE-FAVAR (Consolo et al., 2009).

3.2.1 The DSGE-VAR

The basic idea of the DSGE-VAR (Del Negro and Schorfheide, 2004) approach is to use the DSGE model to

build prior distributions for the VAR. The starting point for the estimation is an unrestricted VAR of order

p:

Yt = �0 +�1Yt�1 + :::+�pYt�p + ut. (10)

In compact format:

Y = X�+ U (11)

Y is a (T � n) matrix with rows Y 0t ; X is a (T � k) matrix (k = 1 + np; p =number of lags) with rows

X 0
t = [1; Y

0
t�1; :::; Y

0
t�p], U is a (T � n) matrix with rows u0t and � is a (k � n) = [�0;�1;:::;�p]0:

The one-step-ahead forecast errors ut have a multivariate normal distribution N(0;�u) conditional on

past observations of Y:

The log-likelihood function of the data is a function of � and �u:

L(Y j�;�u) / j�uj�
T
2 exp

�
�1
2
tr
�
��1u (Y 0Y � �0X 0Y � Y 0X�+ �0X 0X�)

��
: (12)

The prior distribution for the VAR parameters proposed by Del Negro and Schorfheide (2004) is based

on the statistical representation of the DSGE model given by a VAR approximation.

Let ��xx; �
�
yy; �

�
xy and �

�
yx be the theoretical second-order moments of the variables Y and X implied by

the DSGE model, where:

�� (�) = ���1xx (�) ��xy (�) (13)

�� (�) = ��yy (�)� ��yx (�) ���1xx (�) ��xy (�) :
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The moments are the dummy observation priors used in the mixture model. These vectors can be

interpreted as the probability limits of the coe¢ cients in a VAR estimated on the arti�cial observations

generated by the DSGE model.

Conditional on the vector of structural parameters in the DSGE model �, the prior distributions for the

VAR parameters p(�;�uj�) are of the Inverted-Wishart (IW) and Normal forms:

�u j� � IW ((�T��u (�) ; �T � k; n) (14)

� j�u; � � N
�
�� (�) ;�u 
 (�T�XX (�))�1

�
;

where the parameter � controls the degree of model misspeci�cation with respect to the VAR: for small

values of � the discrepancy between the VAR and the DSGE-VAR is large and a sizeable distance is gen-

erated between the unrestricted VAR and DSGE estimators. Large values of � correspond to small model

misspeci�cation and for � = 1 beliefs about DSGE misspeci�cation degenerate to a point mass at zero.

Bayesian estimation could be interpreted as estimation based on a sample in which data are augmented

by a hypothetical sample in which observations are generated by the DSGE model, the so-called dummy

prior observations (Theil and Goldberg, 1961, and Ingram and Whiteman, 1994). Within this framework �

determines the length of the hypothetical sample.

The posterior distributions of the VAR parameters are also of the Inverted-Wishart and Normal forms.

Given the prior distribution, posterior distributions are derived by the Bayes theorem:

�u j�; Y � IW

�
(�+ 1)T

^

�u;b (�) ; (�+ 1)T � k; n
�

(15)

� j�u; �; Y � N

�
^

�b (�) ;�u 
 [�T�XX (�) +X0X]
�1
�

(16)

^

�b (�) = (�T�XX (�) +X
0X)

�1
(�T�XY (�) +X

0Y)

^

�u;b (�) =
1

(�+ 1)T

�
(�T�Y Y (�) +Y

0Y)� (�T�XY (�) +X0Y)
^

�b (�)

�
;

where the matrices
^

�b (�) and
^

�u;b (�) have the interpretation of maximum likelihood estimates of the VAR

parameters based on the combined sample of actual observations and arti�cial observations generated by the

DSGE. Equations (15) and (16) show that the smaller � is; the closer the estimates are to the OLS estimates

of an unrestricted VAR. Instead, the higher � is, the closer the VAR estimates will be tilted towards the

parameters in the VAR approximation of the DSGE model (
^

�b (�) and
^

�u;b (�)).
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In order to obtain a non-degenerate prior density (14), which is a necessary condition for the existence

of a well-de�ned Inverse-Wishart distribution and for computing meaningful marginal likelihoods, � has to

be greater than �MIN , such that: �MIN � n+k
T ; k = 1+ p� n, where p =lags and n =endogenous variables.

Hence, the optimal lambda must be greater than or equal to the minimum lambda
�b� � �MIN

�
.

Essentially, the DSGE-VAR tool allows the econometrician to draw posterior inferences about the DSGE

model parameters �: Del Negro and Schorfheide (2004) explain that the posterior estimate of � has the

interpretation of a minimum-distance estimator, where the discrepancy between the OLS estimates of the

unrestricted VAR parameters and the VAR representation of the DSGE model is a sort of distance function.

The estimated posterior of parameter vector � depends on the hyperparameter �. When � ! 0, in the

posterior the parameters are not informative, so the DSGE model is of no use in explaining the data.

Unfortunately, the posteriors (16) and (15) do not have a closed form and we need a numerical method to

solve the problem. The posterior simulator used by Del Negro and Schorfheide (2004) is the Markov Chain

Monte Carlo Method and the algorithm used is the Metropolis-Hastings acceptance method. This procedure

generates a Markov Chain from the posterior distribution of � and this Markov Chain is used for Monte

Carlo simulations. See Del Negro and Schorfheide (2004) for more details.

The optimal � is given by maximizing the log of the marginal data density:

b� = argmax
�>�MIN

ln p(Y j�)

According to the optimal lambda
�b��, a corresponding optimal mixture model is chosen. This hybrid

model is called DSGE-VAR
�b�� and b� is the weight of the priors. It can also be interpreted as the restriction

of the theoretical model on the actual data.

Unfortunately, Del Negro and Schorfheide (2004) do not propose any statistical tool to verify the power

of their procedure. Moreover, Del Negro, Schorfheide, Smets and Wouters (2007b) explain "...the goal of

our article is not to develop a classical test of the hypothesis that the DSGE model restrictions are satis�ed;

instead, we stress the Bayesian interpretation of the marginal likelihood function of p(�jY ), which does not

require any cuto¤ or critical values. ... ".

3.2.2 The DSGE-FAVAR

In the DSGE-FAVAR (Consolo et al., 2009), the statistical representation is a Factor Augmented VAR

instead of a VAR model. A FAVAR benchmark for the evaluation of the previous DSGE model will take the

following speci�cation:
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0B@ Yt

Ft

1CA =

264 �11(L) �12(L)

�21(L) �22(L)

375
0B@ Yt�1

Ft�1

1CA+
0B@ uZt

uFt

1CA (17)

where Yt are the observable variables included in the DSGE model and Ft is a small vector of unobserved

factors extracted from a large data-set of macroeconomic time series, which capture additional economic

information relevant to modelling the dynamics of Yt. The system reduces to the standard VAR used to

evaluate DSGE models if �12(L) = 0:

Importantly, and di¤erently from Boivin and Giannoni (2006), the FAVAR is not interpreted as the

reduced form of a DSGE model at hand. In fact, in this case the restrictions implied by the DSGE model on

a general FAVAR are very di¢ cult to trace and model evaluation becomes even more di¢ cult to implement. A

very tightly parameterized theory model can have a very highly parameterized reduced form if one is prepared

to accept that the relevant theoretical concepts in the model are a combination of many macroeconomic and

�nancial variables. The remaining part of the procedure is implemented in the same way as the DSGE-VAR.

3.3 Hybrid Models Comparison

Hybrid models were introduced to estimate and to perform forecasting analysis. Table 1 compares the

di¤erent hybrid models, considering the way the DSGE model is estimated. In additive hybrid models, we

note the use of the marginal likelihood estimation for the DSGE-AR and for the DSGE-VAR à l�Ireland.

Instead, for the other additive, the contribution are performed using Bayesian estimation. In the DSGE-

trend, we �nd estimation both in Bayesian and marginal likelihood terms. The hierarchical hybrid models

are estimated using only Bayesian tools. Even if the main issue in using DSGE is the forecasting, not all

of the above mentioned hybrid models are presented in a forecasting exercise. The DSGE-AR, the DSGE-

DFM, and the DSGE-trend are not shown in a forecasting horse-race. Instead, in the others, a forecasting

comparison is implemented to assess the power of the new hybrid models introduced. In all these forecasting

exercises, the proposed hybrid model outperforms the other models in the comparison. Moreover, a lot

of paper show some of the hybrid models in forecasting application for di¤erent countries, using di¤erent

approaches. For example, Adolfson et al. (2008), Ali et al. (2008), Ghent (2009), Kolosa et al. (2009),

Consolo et al. (2009), Malley and Woitek (2010), Lees et al. (2011), and Bekiros and Paccagnini (2012)

among others. An interesting comparison is proposed by Warne, Coenen, and Christo¤el (2012) propose the

issue of forecasting with DSGE and DSGE-VAR models, focusing on Bayesian estimation of the predictive

distribution and its mean and covariance. They introduce the predictive likelihood as a natural model

selection in Bayesian literature and a tool for point and density forecasts.
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In this paper, we compare the two hierarchical hybrid models, the DSGE-VAR and the DSGE-FAVAR,

using the marginal data density, i.e. the integral of the likelihood function with respect to the prior density

of the parameters. We use this analysis, in a comparison with a classical VAR, a Bayesian VAR, and a

Factor-Augmented VAR, estimating a simple DSGE model.

Table 1: Comparison

ESTIMATION MAIN CONTRIBUTION for DSGE FORECASTING
ADDITIVE

DSGEAR
Altug (1989), Sargent (1989) Maximum Likelihood introduce a univariate

measurement (AR) NO

DSGEVAR à l'Ireland
Ireland (2004) Maximum Likelihood introduce a multivariate

measurement (VAR) YES

DSGEDFM
Boivin and Giannoni (2006) Bayesian latent variables

added to statespace NO

DSGE with nonmodelled variables
Schorfheide, Sill, and Kryshko (2010) Bayesian

auxiliary regressions like measurement equations
in a DFM linking noncore variables to statespace of
DSGE

YES

Augmented (B) VAR
FernandézdeCordoba and Torres (2010) Bayesian nonobserved variables

from DSGE added to state space YES

DSGE for trends
Canova (2012)

Maximum Likelihood
Bayesian detrend equation for variables

added to state space NO

HIERARCHICAL
DSGEVAR
Del Negro and Schorfheide (2004) Bayesian VAR representation added

by artificial data from DSGE YES

DSGEFAVAR
Consolo, Favero, and Paccagnini (2009) Bayesian FAVAR representation added

by artificial data from DSGE YES

4 An Empirical Exercise

4.1 The Simple DSGE Model

Simple DSGE models with forward-looking features are usually referred to as a benchmarks in the literature.

In a DSGE setup the economy is made up of four components. The �rst component is the representative

household with habit persistent preferences. This household maximizes an additively separable utility func-

tion which is separable into consumption, real money balances and hours worked over an in�nite lifetime.

The household gains utility from consumption relative to the level of technology, real balances of money, and

disutility from hours worked. The household earns interest from holding government bonds and earns real

pro�ts from the �rms. Moreover, the representative household pays lump-sum taxes to the government. The
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second component is a perfectly competitive, representative �nal goods producer which is assumed to use a

continuum of intermediate goods as inputs, and the prices for these inputs are given. The producers of these

intermediate goods are monopolistic �rms which use labour as the only input. The production technology is

the same for all the monopolistic �rms. Nominal rigidities are introduced in terms of price adjustment costs

for the monopolistic �rms. Each �rm maximizes its pro�ts over an in�nite lifetime by choosing its labour

input and its price. The third component is the government which spends in each period a fraction of the

total output, which �uctuates exogenously. The government issues bonds and levies lump-sum taxes, which

are the main part of its budget constraint. The last component is the monetary authority, which follows a

Taylor rule regarding the in�ation target and the output gap. There are three economic shocks: an exoge-

nous monetary policy shock (in the monetary policy rule), and two autoregressive processes, AR(1), which

model government spending and technology shocks. To solve the model, optimality conditions are derived

for the maximization problems. After linearization around the steady-state, the economy is described by the

following system of equations:

~xt = Et[~xt+1]�
1

�
( ~Rt � Et[~�t+1]) + (1� �g)~gt + �Z

1

�
~zt (18)

~�t = �Et[~�t+1] + �[~xt � ~gt] (19)

~Rt = �R ~Rt�1 + (1� �R)( 1~�t +  2~xt) + �R;t (20)

~gt = �g~gt�1 + �g;t (21)

~zt = �z~zt�1 + �z;t; (22)

where x is the detrended output (divided by the non-stationary technology process), � is the gross in�ation

rate, and R is the gross nominal interest rate. The tilde denotes percentage deviations from a steady state or,

in the case of output, from a trend path (King 2000; Woodford 2003). The model can be solved by applying

the algorithm proposed by Sims (2002). De�ne the vector of variables ~Zt =
�
~xt; ~�t; ~Rt; ~gt; ~zt; Et~xt+1; Et~�t+1

�
and the vector of shocks as �t = (�R;t; �g;t; �z;t). Therefore the previous set of equations, (18) - (22), can be
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recasted into a set of matrices (�0;�1;C;	;�) accordingly to the de�nition of the vectors ~Zt and �t

�0~Zt = C+ �1~Zt�1 +	�t +��t (23)

where C is a vector of constants, �t is an exogenously evolving random disturbance and �t is a vector of

expectations errors,
�
Et
�
�t+1

�
= 0

�
; not given exogenously but to be treated as part of the model solution.

In order to provide the mapping between the observable data and those computed as deviations from the

steady state of the model we set the following measurement equations as in Del Negro and Schorfheide (2004)

� lnxt = ln  +�~xt + ~zt

� lnPt = ln�
� + ~�t

lnRat = 4
h
(ln r� + ln��) + ~Rt

i (24)

which can be also casted into matrices as

Yt = �0 (�) +�1 (�) ~Zt + vt (25)

where Yt = (� lnxt;� lnPt; lnRt)
0, vt = 0 and �0 and �1 are de�ned accordingly. For completeness,

we write the matrices T, R, �0 and �1 as a function of the structural parameters in the model, � =0B@ ln ; ln��; ln r�; �; � ;  1;  2;

�R; �g; �Z ; �R; �g; �Z

1CA
0

. Such a formulation derives from the rational expectations solution. The

evolution of the variables of interest, Yt, is therefore determined by (23) and (25) which impose a set of

restrictions across the parameters on the moving average (MA)representation (Fernández-Villaverde et al.,

2007; Ravenna, 2007) . Given that the MA representation can be very closely approximated by a �nite order

VAR representation, Del Negro and Schorfheide (2004) propose to evaluate the DSGE model by assessing

the validity of the restrictions imposed by such a model with respect to an unrestricted VAR representation.

The choice of the variables to be included in the VAR is however completely driven by those entering in

the DSGE model regardless of the statistical goodness of the unrestricted VAR. Policy variables set by

optimization - typically included eZt - are naturally endogenous as optimal policy requires some response to
current and expected developments of the economy. Expectations at time t for some of the variables of the

systems at time t+ 1 are also included in the vector Zt;whenever the model is forward-looking. Models like

(23) can be solved using standard numerical techniques as in Sims (2002) and the solution can be expressed

as follows
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eZt = A0 +A1
eZt�1 +R�t: (26)

4.2 Comparison Strategy

In this paper, we compare the marginal data density of the two hierarchical hybrid models, the DSGE-VAR

à la Del Negro and Schorfheide (2004) and the DSGE-FAVAR, with the marginal data density of three

econometrics models: the Classical VAR, the Bayesian VAR, and the Factor Augmented VAR.

4.2.1 Marginal Data Density

In the Bayesian framework, the likelihood function is reweighted by a prior density. The prior is useful to

add information which is contained in the estimation sample. Since priors are always subject to revisions,

the shift from prior to posterior distribution can be considered as an indicator of the di¤erent sources of

information. If the likelihood function peaks at a value that is at odds with the information that has been

used to construct the prior distribution, then the marginal data density (MDD) of the DSGE model is de�ned

as:

p(Y ) =

Z
L(�jY )p(�)d�

The marginal data density is the integral of the likelihood (L(�jY )) taken according to the prior distribution

(p(�)), that is the weighted average of likelihood where the weights are given by priors. The MDD can be

used to compare di¤erent models Mi; p(Y jMi): We can rewrite the log-marginal data density as:

ln(p(Y jM) =
TX
t=1

ln p(ytjY t�1;M) =

=
TX
t=1

ln

�Z
p(ytjY t�1; �;M)p(�jY t�1;M)d�

�

where ln(p(Y jM) can be interpreted as a predictive score (Good, 1952) and the model comparison based

on posterior odds captures the relative one-step-ahead predictive performance. To compute the MDD, we

consider the Geweke (1999) modi�ed harmonic mean estimator. Harmonic mean estimators are based on

the identity:

1

p(Y )
=

Z
f(�)

L(�jY )p(�)p(�jY )d�
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where f(�) has the property that
R
f(�)d� = 1 (Gelfand and Dey, 1994). Conditional on the choice of f(�),

an estimator is:

bpG(Y ) = " 1

nsim

nsimX
s=1

f(�(s))

L(�(s)jY )p(�(s))

#�1
(27)

where �(s) is drawn from the posterior p(�jY ): For a numerical approximation e¢ cient, f(�) should be chosen

so that the summands are of equal magnitude. Geweke (1999) proposed to use the density of a truncated

multivariate normal distribution:

f(�) = ��1(2�)�
d
2 jV�j�

1
2 exp

�
�0:5(� � �)0V �1� (� � �)

�
�I
n
(� � �)0V �1� (� � �) � F�1

�2d
(��)

o

In the above � and V� are the posterior mean and covariance matrix computed from the output of the

posterior simulator, d is the dimension of the parameter vector, F�2d is the cumulative density function of a

�2 random variable with d degrees of freedom, and � 2 (0; 1). If the posterior of � is in fact normal then the

summands in eq. (27) are approximately constant.

4.2.2 Classical VAR

As suggested by Sims (1980), the standard unrestricted VAR, has the following compact format

Yt = Xt�+U (28)

where Yt is a (T � n) matrix with rows Y 0t ; and X is a (T � k) matrix (k = 1+ np; p =number of lags) with

rows X 0
t = [1; Y

0
t�1; :::; Y

0
t�p]. U is a (T � n) matrix with rows u0t, � is a (k � n) = [�0;�1;:::;�p]0, while the

one-step ahead forecast errors ut have a multivariate N(0;�u) conditional on past observations of Y:

4.2.3 Bayesian VAR

The BayesianVAR, as described in Litterman (1981), Doan et al. (1984), Todd (1984), Litterman (1986)

and Spencer (1993) has become a widely popular approach to dealing with overparameterization. One of

main problems in using VAR models is that many parameters need to be estimated, although some of them

may be insigni�cant. Instead of eliminating longer lags, the Bayesian VAR imposes restrictions on these

coe¢ cients by assuming that they are more likely to be near zero than the coe¢ cients on shorter lags.

Obviously, if there are strong e¤ects from less important variables, the data can counter this assumption.
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Usually, the restrictions are imposed by specifying normal prior distributions with zero means and small

standard deviations for all coe¢ cients, with a decreasing standard deviation as the lags increase. The only

exception is the coe¢ cient on a variable�s �rst lag that has a mean of unity7 .

Formally speaking, these prior means can be written as follows

�i � N(1; �2�i) and �j � N(0; �2�j ); (29)

where �i denotes the coe¢ cients associated with the lagged dependent variables in each equation of the

VAR, while �j represents any other coe¢ cient. The prior variances �2�i and �
2
�j
specify the uncertainty of

the prior means, �i = 1 and �j = 0, respectively. In this study, we impose their prior mean on the �rst own

lag for variables in growth rate, such as a white noise setting (Del Negro and Schorfheide 2004; Adolfson et

al. 2007; Banbura et al. 2010). Instead, for level variables, we use the classical Minnesota prior (Del Negro

and Schorfheide, 2004). The speci�cation of the standard deviation of the distribution of the prior imposed

on variable j in equation i at lag m, for all i; j and m, denoted by S(i; j;m), is speci�ed as follows

S(i; j;m) = [w � g(m)� F (i; j)] �̂i
�̂j
; (30)

where

F (i; j) =

8><>: 1 if i = j

kij otherwise, 0 � kij � 1
(31)

is the tightness of variable j in equation i relative to variable i and by increasing the interaction, i.e. it is

possible for the value of kij to loosen the prior (Dua and Ray, 1995). The ratio �̂i
�̂j
consists of estimated

standard errors of the univariate autoregression, for variables i and j. This ratio scales the variables to

account for di¤erences in the units of measurement, without taking into account the magnitudes of the

variables. The term w measures the standard deviation on the �rst lag, and also indicates the overall

tightness. A decrease in the value of w results in a tighter prior. The function g(m) = m�d; d > 0 is the

measurement of the tightness on lag m relative to lag 1, and is assumed to have a harmonic shape with a

decay of d, which tightens the prior on increasing lags. Following the standard Minnesota prior settings, we

choose the overall tightness (w) to be equal to 0.3, while the lag decay (d) is 1 and the interaction parameter

(kij) is set equal to 0.5.

7Litterman (1981) used a di¤use prior for the constant. The means of the prior are popularly called the "Minnesota Priors"
due to the development of the idea at the University of Minnesota and the Federal Reserve Bank at Minneapolis.
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4.2.4 Factor Augmented VAR

Bernanke et al. (2005) estimate a VAR augmented by factors where the factors can be considered as an

"exhaustive summary of the information " of a huge macroeconomics dataset.

LetXt denote an N�1 vector of economic time series andYt a vector ofM�1 observable macroeconomic

variables which are a subset of Xt: In this context, most of the information contained in Xt is captured by

Ft, a k�1 vector of unobserved factors. The factors are interpreted as an addition to the observed variables,

as common forces driving the dynamics of the economy. The relation between the "informational" time series

Xt, the observed variables Yt and the factors Ft is represented by the following dynamic factor model:

Xt = �
fF+�yYt + et (32)

where �f is a N�k matrix of factor loadings, �y is a N�M matrix of coe¢ cients that bridge the observable

Yt and the macroeconomic dataset, and et is the vector of N � 1 error terms. These terms are mean zero,

normal distributed, and uncorrelated with a small cross-correlation. In fact, the estimator allows for some

cross-correlation in et that must vanish as N goes to in�nity. This representation nests also models where

Xt depends on lagged values of the factors (Stock and Watson, 2002). For the estimation of the FAVAR

model equation (32), we follow the two-step principal components approach proposed by Bernanke et al.

(2005). More details are reported in Bernanke et al. (2005) and Consolo et al. (2009). As in Bernanke et al.

(2005), we partition the matrix Xt in two categories of information variables: slow-moving and fast-moving.

Slow-moving variables (e.g., real variables such as wages or spending) do not respond contemporaneously to

unanticipated changes in monetary policy, while fast-moving (e.g., interest rates) respond contemporaneously

to monetary shocks. We proceed to extracting two factors from slow variables and one factor from fast

variables and we call them respectively "slow factors" and "fast factor". After having determined the

number of factors, as suggested by Bai and Ng (2000), we specify a Factor Augmented VAR by considering

only one-lag of the factors according to BIC criterion. The potential identi�cation of the macroeconomic

shocks can be performed according to Bernanke et al. (2005) using the Cholesky decomposition.

4.3 Data

We use US economy data. Three quarterly time series from 1970:1 to 2010:4 are implemented in estimation.

The data for real output growth come from the Bureau of Economic Analysis (Gross Domestic Product-

SAAR, Billions Chained 2005$). The data for in�ation come from the Bureau of Labor Statistics (CPI-U:

All Items, seasonally adjusted, 1982-1984=100). GDP and CPI are taken in �rst di¤erence logarithmic

transformation. The interest rate series are constructed as in, Galì and Gertler (2000); for each quarter the
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interest rate is computed as the average federal funds rate (source: Haver Analytics) during the �rst month

of the quarter, including business days only. These three time series represent the three equations of the

DSGE model. In order to construct the FAVAR we proceed to extract factors from a balanced panel of

109 monthly and quarterly macroeconomic and �nancial time series, following the dataset built by Stock

and Watson (2002). The dataset involves several measures of industrial production, interest rates, various

price indices, employment and other important macroeconomic and also �nancial variables. In this set-up,

the number of informational time series N is large (larger than time period T ) and must be greater than

the number of factors and observed variables in the FAVAR system (k + M � N). In the panel data

used, there are some variables in monthly format, which are transformed into a quarterly data using end-

of-period observations. All series have been transformed to induce stationarity. The series are taken the

level or transformed into logarithms, �rst or second di¤erence (in level or logarithms) according to series

characteristics (see the Appendix for a description of all series and details of the transformations).

4.4 Estimation of linearized DSGE Models

The DSGE-VAR and the DSGE-FAVAR are implemented following the Del Negro and Schorfheide algorithm,

as reported in Del Negro and Schorfheide (2004) and explained in Lees et al. (2011). The �rst step is to specify

the prior for the DSGE model parameters. This involves determining the prior distributions of the DSGE

parameters and the key parameters of those distributions (such as measures of location and dispersion).

Table 2 lists the prior distribution for the structural parameters of the DSGE model which are adopted from

Del Negro and Schorfheide (2004)8 . Second, the DSGE priors have been speci�ed, the model is transformed

into state space form, thus linking the theoretical model to the observation equations. Restrictions on the

admissible parameter space for the estimation also need to be speci�ed. Using the csminwel procedure of

Sims, one estimates the DSGE parameters with the highest posterior probability. The rational expectations

solution from csminwel provides the (DSGE restricted) reduced form for the rational expectations model

(Sims, 2002). Third, the posterior mode for the DSGE parameters is available, the Metropolis-Hastings

algorithm can be used to explore the posterior distribution of �. Since the VAR parameters �conditional

on both � and � �are conjugate, it is straightforward to determine the posterior distribution of the VAR

parameters. Fourth, the VAR parameters that maximize the posterior distribution are a weighted function

of the expected moments from the DSGE model and the moments of the unrestricted VAR. The VAR

8The model parameters ln ; ln��; ln r�; �R; �g ; and �z are scaled by 100 to convert them into percentages. The
Inverse Gamma priors are of the form p(�j�; s) / ����1e��s2=2�2 , where v=4 and s equals 0.2, 0.5, and 0.7, respectively.
Approximately 1.5% of the prior mass lies in the indeterminacy region of the parameter space. The prior is truncated
to restrict it to the determinacy region of the DSGE model, to avoid multiple equilibria typical in rational expectations
models.
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parameters at the posterior mode are given from these DSGE and unrestricted VAR moments. Searching

over a grid of � values, one can �nd the optimal � value that maximizes the marginal data density.

Table 2: Prior Distributions for the DSGE model parameters

Name Range Density Starting value Mean Standard deviation

ln  R Normal 0.500 0.500 0.250

ln�� R Normal 1.000 1.000 0.500

ln r� R+ Gamma 0.500 0.500 0.250

� R+ Gamma 0.040 0.030 0.150

� R+ Gamma 3.000 3.000 0.500

 1 R+ Gamma 1.500 1.500 0.250

 2 R+ Gamma 0.300 0.125 0.100

�R [0; 1) Beta 0.400 0.500 0.200

�G [0; 1) Beta 0.800 0.800 0.100

�Z [0; 1) Beta 0.200 0.200 0.100

�R R+ Inv.Gamma 0.100 0.100 0.139

�G R+ Inv.Gamma 0.300 0.350 0.323

�Z R+ Inv.Gamma 0.400 0.875 0.430

4.5 Estimation results: log of Marginal Data Density

The DSGE-VAR and the DSGE-FAVAR are estimated with a di¤erent number of lags on the sample spanning

from 1970:1 to 2010:4. The key elements of the priors are estimated using a VAR from a training sample of

10 years of data (1960:1-1969:4).

First, we report estimation results for the log of Marginal Data Density (MDD). In particular, following

Del Negro and Schorfheide (2006), we adopt the MDD as a measure of model �t, which arises naturally

in the computation of posterior model odds. The prior distribution for the DSGE model parameters (�),

which are similar to the priors used by Del Negro and Schorfheide (2004), were already illustrated in Table

2. This MDD measure has two dimensions: goodness of in-sample �t on the one hand and a penalty for

model complexity or degrees of freedom on the other hand. The parameter � is chosen from a grid which is

unbounded from above. In our empirical exercise, the log of the MDD is computed over a discrete interval,

ln p(Y j�;M): The minimum value, �min = n+k
T , is model dependent and is related to the existence of a
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well-de�ned Inverse-Wishart distribution. For completeness, it is worth mentioning that � = 0 refers to the

VAR and the FAVAR model with no prior and it is not possible to compute the marginal likelihood in this

particular case. Importantly, �min depends on the degrees of freedom in the VAR or FAVAR and therefore,

given estimation on the same number of available observations, �min for a DSGE-FAVAR will always be

larger than �min for a DSGE-VAR9 . As suggested by An and Schorfheide (2007) and Adolfson et al. (2008),

we check that the DSGE-VAR(1) model is a good approximation of the DSGE model10 .

Table 3 shows the main results related to the DSGE-VAR and to the DSGE-FAVAR implemented using

a di¤erent number of lags (from 1 up to 4)11 . Each minimum � (�MIN ) is given by the features of the

model (number of observations, number of endogenous variables, number of lags), and the optimal lambda

(b�) is calculated using the Markov Chain Monte Carlo with Metropolis Hastings acceptance method (with

110,000 replications, we discard the �rst 10,000 ones). ln p(Y jM) is the log marginal data density for the

DSGE model speci�cations computed based on Geweke�s (1999) modi�ed harmonic mean estimator. The

Bayes factor (ratio of posterior odds to prior odds) (An and Schorfheide, 2007) helps us to understand the

improvement of the log marginal data density of a speci�c model compared to a benchmark model (M),

which in this case are the DSGE-VAR (4) and DSGE-FAVAR(4), since we select four lags as maximum.

9 For the DSGE-VAR, the lambda grid is given by � =
�

0, 0.07, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.25,
0.30, 0,35, 0.40, 0.50, 0.60, 0.70, 0.80, 0.9, 1, 2, 5, 10

�
. For the

DSGE-FAVAR, the lambda grid is given by � =

�
0, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25, 0.30, 0,35, 0.40,

0.50, 0.60, 0.70, 0.80, 0.9, 1, 2, 5, 10

�
: In both lambda

intervals, we consider the �MIN across lags from 1 to 4.
10We compare the marginal data density of a DSGE-VAR(1) with the marginal data density of a DSGE model calculated

using the state space representation. For details, see An and Schorfheide (2007).
11We select the maximum of four lags according to AIC and BIC on US data for the VAR representation. Instead, for factors,

we select one lag according to Information Criteria.
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Table 3: Optimal lambda for the DSGE-VAR and DSGE-FAVAR for the sample 1960Q4-2010Q4

�MIN �̂ �̂� �MIN
�̂��MIN

�MIN
ln p(Y j�̂;M) Bayes Factor vs M1

DSGE-VAR(1) 0.07 0.08 0.01 0.14 -649.42 exp[15.08]

DSGE-VAR(2) 0.08 0.18 0.10 1.25 -643.10 exp[8.76]

DSGE-VAR(3) 0.10 0.25 0.15 1.5 -637.47 exp[3.13]

DSGE-VAR(4) (M1) 0.12 0.25 0.13 1.08 -634.34 1

�MIN �̂ �̂� �MIN
�̂��MIN

�MIN
ln p(Y j�̂;M) Bayes Factor vs M2

DSGE-FAVAR(1) 0.08 0.08 0 0 -649.61 exp[15.42]

DSGE-FAVAR(2) 0.10 0.15 0.05 0.5 -642.84 exp[8.65]

DSGE-FAVAR(3) 0.12 0.25 0.13 1.08 -637.41 exp[3.22]

DSGE-FAVAR(4) (M2) 0.15 0.30 0.15 1 -634.19 1

According to Table 3, the di¤erence b�� �MIN is the greatest in the case of a DSGE-VAR(3), and hence

its corresponding ratio
b���MIN

�MIN
is the greatest too. Looking at the log of the marginal data densities, we

notice that the DSGE-VAR(4) model has the minimum value and the Bayes factor evidences how it is not

possible to improve the benchmark model (the DSGE-VAR(4)).

The same analysis is repeated for the DSGE-FAVAR with lags from 1 to 4. The DSGE-FAVAR(4) exhibits

the greatest di¤erence (0.15), but the ratio
b���MIN

�MIN
is greater in the case of the DSGE-FAVAR(3). Looking

at the log of the marginal data densities, we notice that the DSGE-FAVAR(4) has the minimum value as

shown by the DSGE-VAR(4) 12 . The minimum lambda is used to compute a well-de�ned marginal data

density (�MIN = 0:12 for the DSGE-VAR(4) and �MIN = 0:15 for the DSGE-FAVAR(4)). Hence, the MDD

analysis helps the econometrician to select the lag order in hybrid models.

Table 4 shows how the DSGE-FAVAR(4) has the minimum log of the marginal data density. The Bayes

factor suggests that the benchmark model found in the data (VAR(4)), according AIC and BIC, is not the

best possible representation to estimate the DSGE model. The two hybrid models, the DSGE-VAR and,

especially, the DSGE-FAVAR, give better performances in terms of log marginal data density. The BVAR

performs better than the benchmark model, when we include more than one lag. The same result is provided

by the FAVAR.

12The DSGE-FAVAR nests the DSGE, VAR and FAVAR models, so using the same Matlab codes we calculated the log
marginal data density for each model, changing the settings opportunely.
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Table 4: Log of the Marginal Data Density and Bayes Factor for the sample 1960Q4-2010Q4

lnp(Y jM) Bayes Factor vs M3

DSGE -658.92 exp[9.45]

DSGE-VAR(4) -634.34 exp[-15.13]

DSGE-FAVAR(4) -634.19 exp[-15.28]

BVAR(1) -654.37 exp[4.9]

BVAR(2) -643.72 exp[-5.75]

BVAR(3) -638.85 exp[-10.62]

BVAR(4) -642.70 exp[-6.77]

VAR(1) -649.84 exp[0.37]

VAR(2) -648.62 exp[-0.85]

VAR(3) -647.61 exp[-1.86]

VAR(4) (M3) -649.47 1

FAVAR(1) -649.61 exp[0.14]

FAVAR(2) -644.97 exp[-4.5]

FAVAR(3) -642.32 exp[-7.15]

FAVAR(4) -639.84 exp[-9.63]

5 Concluding Remarks

Several papers discuss the forecasting accuracy of the hybrid models. In this paper, we illustrate main hybrid

models implemented in the recent macroeconometric literature. Two hierarchical hybrid models, the DSGE-

VAR and the DSGE-FAVAR, are compared to a classical VAR, a Bayesian VAR, and a Factor Augmented

VAR. We compare the DSGE-based models considering the Marginal Data Density (MDD). The MDD helps

to select the lag order, and hence the best hybrid model to estimate a simple DSGE model.
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Appendix : The data used to extract factors13

Table A1

Date Long Description Tcode SlowCode
PAYEMS Total Nonfarm Payrolls: All Employees 5 1
DSPIC96 Real Disposable Personal Income 5 1
NAPM ISM Manufacturing: PMI Composite Index 1 1
UNRATE Civilian Unemployment Rate 1 1
INDPRO Industrial Production Index (Index 2007=100) 5 1
PCEPI Personal Consumption Expenditures: Chaintype Price Index (Index 2005=100) 5 1
PPIACO Producer Price Index: All Commodities (Index 1982=100) 5 1
FEDFUNDS Effective Federal Funds Rate 1 0
IPDCONGD Industrial Production: Durable Consumer Goods (Index 2007=100) 5 1
IPBUSEQ Industrial Production: Business Equipment (Index 2007=100) 5 1
IPMAT Industrial Production: Materials (Index 2007=100) 5 1
IPCONGD Industrial Production: Consumer Goods (Index 2007=100) 5 1
IPNCONGD Industrial Production: Nondurable Consumer Goods (Index 2007=100) 5 1
IPFINAL Industrial Production: Final Products (Market Group) (Index 2007=100) 5 1
UNEMPLOY Unemployed 5 1
EMRATIO Civilian EmploymentPopulation Ratio (%) 1 1
CE16OV Civilian Employment 5 1
CLF16OV Civilian Labor Force 5 1
CIVPART Civilian Participation Rate (%) 1 1
UEMP27OV Civilians Unemployed for 27 Weeks and Over 5 1
UEMPLT5 Civilians Unemployed  Less Than 5 Weeks 5 1
UEMP15OV Civilians Unemployed  15 Weeks & Over 5 1
UEMP15T26 Civilians Unemployed for 1526 Weeks 5 1
UEMP5TO14 Civilians Unemployed for 514 Weeks 5 1
MANEMP Employees on Nonfarm Payrolls: Manufacturing 5 1
USPRIV All Employees: Total Private Industries 5 1
USCONS All Employees: Construction 5 1
USFIRE All Employees: Financial Activities 5 1
USTRADE All Employees: Retail Trade 5 1
DMANEMP All Employees: Durable Goods Manufacturing 5 1
USGOOD All Employees: GoodsProducing Industries 5 1
USEHS All Employees: Education & Health Services 5 1
USLAH All Employees: Leisure & Hospitality 5 1
SRVPRD All Employees: ServiceProviding Industries 5 1
USINFO All Employees: Information Services 5 1
USPBS All Employees: Professional & Business Services 5 1
USTPU All Employees: Trade, Transportation & Utilities 5 1
NDMANEMP All Employees: Nondurable Goods Manufacturing 5 1
USMINE All Employees: Natural Resources & Mining 5 1
USWTRADE All Employees: Wholesale Trade 5 1
USSERV All Employees: Other Services 5 1
AHEMAN Average Hourly Earnings: Manufacturing 5 1
AHECONS Average Hourly Earnings: Construction (NSA) 5 1
PPIIDC Producer Price Index: Industrial Commodities (NSA) 5 1

13The source of the data is the Federal Reserve Economic Data - Federal Reserve Bank of Saint Louis
(http://research.stlouisfed.org/fred2/). In order to construct the FAVAR we extract factors from a balanced panel of 109
monthly and quarterly macroeconomic and �nancial time series, following the dataset built by Stock and Watson (2002). The
dataset involves several measures of industrial production, interest rates, various price indices, employment and other important
macroeconomic and also �nancial variables. In the following Table, the �rst column has the series number, the second the series
acronym, the third the series description, the fourth the transformation codes and the �fth column denotes a slow-moving
variable with 1 and a fast-moving one with 0. The transformed series are tested using the Box-Jenkins procedure and the
Dickey-Fuller test. Following Bernanke et al. (2005), the transformation codes are as follows: 1 - no transformation; 2 - �rst
di¤erence; 4 - logarithm; 5 - �rst di¤erence of logarithm; 6 - second di¤erence; 7 - second di¤erence of logarithm.
We describe data used to extract factors in the format adopted by Stock and Watson (2002): series number, long description,

short description, transformation code and slow code (The transformation codes are: 1 - no transformation; 2 - �rst di¤erence;
3 - second di¤erence; 4 - logarithm; 5 - �rst di¤erence of logarithm and 6 - second di¤erence of logarithm) (The slow codes are:
0 - fast and 1 - slow). The source of the data is the Federal Reserve Economic Data - Federal Reserve Bank of Saint Louis
(http://research.stlouisfed.org/fred2/).
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Table A1 (continued)

PPIFGS Producer Price Index: Finished Goods (Index 1982=100) 5 1
PPICPE Producer Price Index: Finished Goods: Capital Equipment (Index 1982=100) 5 1
PPICRM Producer Price Index: Crude Materials for Further Processing (Index 1982=100) 5 1
PPIITM Producer Price Index: Intermediate Materials: Supplies & Components (Index 1982=100) 5 1
PPIENG Producer Price Index: Fuels & Related Products & Power (Index 1982=100) 5 1
PPIFCG Producer Price Index: Finished Consumer Goods (Index 1982=100) 5 1
PFCGEF Producer Price Index: Finished Consumer Goods Excluding Foods (Index 1982=100) 5 1
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items (Index 1982=100) 5 1
CPIAUCNS Consumer Price Index for All Urban Consumers: All Items (Index 198284=100) 5 1
CPILFESL Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (Index 198284=100) 5 1
CPILFENS Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (NSA Index 1982=100) 5 1
CPIUFDNS Consumer Price Index for All Urban Consumers: Food (NSA Index 1982=100) 5 1
CPIENGNS Consumer Price Index for All Urban Consumers: Energy (NSA Index 1982=100) 5 1
CPIENGSL Consumer Price Index for All Urban Consumers: Energy  ( Index 19821984=100) 5 1
CPILEGSL Consumer Price Index for All Urban Consumers: All Items Less Energy (Index 19821984=100) 5 1
CPIMEDSL Consumer Price Index for All Urban Consumers: Medical Care (Index 19821984=100) 5 1
PPIFCF Producer Price Index: Finished Consumer Foods (Index 1982=100) 5 1
AAA Moody's Seasoned Aaa Corporate Bond Yield 1 0
BAA Moody's Seasoned Baa Corporate Bond Yield 1 0
M2SL M2 Money Stock 6 0
M2NS M2 Money Stock (NSA) 6 0
M1NS M1 Money Stock (NSA) 6 0
M3SL M3 Money Stock (DISCONTINUED SERIES) 6 0
GS5 5Year Treasury Constant Maturity Rate 1 0
GS10 10Year Treasury Constant Maturity Rate 1 0
GS1 1Year Treasury Constant Maturity Rate 1 0
GS3 3Year Treasury Constant Maturity Rate 1 0
TB3MS 3Month Treasury Bill: Secondary Market Rate 1 0
TB6MS 6Month Treasury Bill: Secondary Market Rate 1 0
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 5 0
PERMIT New Private Housing Units Authorized by Building Permits 5 0
HOUSTMW Housing Starts in Midwest Census Region 5 0
HOUSTW Housing Starts in West Census Region 5 0
HOUSTNE Housing Starts in Northeast Census Region 5 0
HOUSTS Housing Starts in South Census Region 5 0
PERMITS New Private Housing Units Authorized by Building Permits  South 5 0
PERMITMW New Private Housing Units Authorized by Building Permits  Midwest 5 0
PERMITW New Private Housing Units Authorized by Building Permits  West 5 0
PERMITNE New Private Housing Units Authorized by Building Permits  Northeast 5 0
PDI Personal Dividend Income 5 0
SPREAD1 3moFYFF 1 0
SPREAD2 6moFYFF 1 0
SPREAD3 1yrFYFF 1 0
SPREAD4 2yrFYFF 1 0
SPREAD5 3yrFYFF 1 0
SPREAD6 5yrFYFF 1 0
SPREAD7 7yrFYFF 1 0
SPREAD8 10yrFYFF 1 0
PCECC96 Real Personal Consumption Expenditures (Billions of Chained 2005 Dollars) 5 1
UNLPNBS Nonfarm Business Sector: Unit Nonlabor Payments (Index 2005=100) 5 1
IPDNBS Nonfarm Business Sector: Implicit Price Deflator (Index 2005=100) 5 1
OUTNFB Nonfarm Business Sector: Output (Index 2005=100) 5 1
HOANBS Nonfarm Business Sector: Hours of All Persons (Index 2005=100) 5 1
COMPNFB Nonfarm Business Sector: Compensation Per Hour (Index 2005=100) 5 1
ULCNFB Nonfarm Business Sector: Unit Labor Cost (Index 2005=100) 5 1
COMPRNFB Nonfarm Business Sector: Real Compensation Per Hour (Index 2005=100) 5 1
OPHNFB Nonfarm Business Sector: Output Per Hour of All Persons (Index 2005=100) 5 1
OPHPBS Business Sector: Output Per Hour of All Persons (Index 2005=100) 5 1
ULCBS Business Sector: Unit Labor Cost (Index 2005=100) 5 1
RCPHBS Business Sector: Real Compensation Per Hour (Index 2005=100) 5 1
HCOMPBS Business Sector: Compensation Per Hour (Index 2005=100) 5 1
OUTBS Business Sector: Output (Ineex 2005=100) 5 1
HOABS Business Sector: Hours of All Persons (Index 2005=100) 5 1
IPDBS Business Sector: Implicit Price Deflator (Index 2005=100) 5 1
CP Corporate Profits After Tax 5 0
SP500 S&P 500 Index 5 0
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