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Abstract

We study capital markets subject to moral hazard when investors cannot prevent side trading,

thereby facing an externality if firms raise funds from multiple sources. We analyze whether

investors’ ability to design financial covenants that may include exclusivity clauses mitigates

this externality. Following covenant violations, investors can accelerate the repayment of their

loan, adjust its size, or increase interest rates. Enlarging contracting opportunities generates

a severe market failure: with covenants, equilibria are indeterminate and Pareto ranked. We

show that an investors-financed subsidy scheme to entrepreneurs alleviates the incentive to

overborrow and sustains the competitive allocation as the unique equilibrium one.
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1 Introduction

When they provide capital to firms, investors do not always control all the financial transactions

firms enter into. To the extent that outside financing affects firms’ behavior and their ability to

meet contractual obligations, the possibility of side trading creates an externality for investors: if

an entrepreneur borrows from multiple sources, she may have less incentives to improve financial

performance, which in turn affects each lender’s profit. Whether this externality can be internalized

by letting agents design appropriate financial contracts is a central question for the regulation of

modern capital markets. Yet, it remains largely unanswered. As a matter of fact, the financial

literature has either evaded the issue by postulating that agents enforce exclusive relationships from

the outset, or magnified the problem by considering an extreme form of nonexclusivity whereby

few, if any, contractual instruments can limit side trading. Capital markets probably fall between

these two extremes. On the one hand, no legal system imposes that entrepreneurs must raise funds

from a single investor. On the other hand, financial transactions are seldom secret and investors can

use the available information to design financial covenants in an attempt to curb firms’ financing

policy.

This paper combines these two elements to study the functioning of capital markets subject

to moral hazard. Our fundamental insight is that competition over sophisticated contracts, that

potentially include exclusivity clauses, leads to a severe market failure. The result challenges

the conventional view that a system of contracts fully contingent on additional financing is able

to enforce exclusive trading and foster market efficiency. As a consequence, to circumvent the

externality induced by side trading, a mere increase in the transparency of trades may be more of

a problem than a solution. Financial regulation should explicitly take into account the investors’

strategic use of information.

Investors’ contract design under the threat of competition is a relevant issue in corporate fi-

nance. In practice, firms can enter into multiple financial relationships and investors extensively

use financial covenants in their contracts to define thresholds of financial ratios that firms must

comply with.1 Since violating such covenants triggers penalties, this is a way for investors to con-

1Rauh and Sufi (2010) document that most large rated firms simultaneously use different types and sources of
corporate debt. According to Roberts and Sufi (2009), almost 97% of credit agreements contain financial covenants,
90% of which limit implicitly or explicitly firms’ ability to raise additional debt (see also Demiroglu and James (2010)).
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trol firms’ financing policy. Intuitively, the ability to design covenants should enhance competition

by limiting firms’ opportunity to raise additional funds, thereby eliminating the source of the exter-

nality. In a strategic context, however, covenants can act as a barrier to entry to protect incumbents’

rents against the threat of new offers.2

These effects are analyzed in the following model. A representative entrepreneur seeks funds

to invest in a project subject to moral hazard: she has to forgo a private benefit and exert effort to

increase the project’s profitability. A finite number of investors compete by simultaneously offering

menus of financial contracts. If the entrepreneur’s aggregate investment is observable, contracts

can include financial covenants. The entrepreneur selects one contract in each menu, possibly

raising funds from several investors, and chooses an effort level. If, in a given state of nature,

the sum of payments promised to investors exceeds the firm’s cash flow, then, given her limited

liability, the entrepreneur strategically defaults.3 All the cash flow is then seized by investors, but

the entrepreneur’s private benefit is inalienable.

Our benchmark is a fully nonexclusive setting: investors cannot write financial covenants, i.e.

they are restricted to trade bilateral contracts with the entrepreneur. In this context, we provide a

complete characterization of equilibrium allocations. Despite the fact that investors earn a positive

profit at equilibrium, all aggregate allocations are constrained efficient. The result is robust, in the

sense that it is established by allowing investors to post arbitrary menus of contracts.

We next introduce financial covenants. Covenants prescribe punishments to the entrepreneur

when she departs from a target financing policy. To the extent that the latter is determined by

the entire profile of investors’ offers, this introduces a degree of "contractibility of contracts" and

allows us to explore the investors’ ability to write exclusive contracts in a strategic setting. In

our analysis, the set of punishments available to investors depends on when the information on

outside financing is obtained, and it is sufficiently large to include the penalties commonly observed

following a covenant violation: acceleration of the loan repayment, adjustment of the initial loan

size, or raise in the interest rate.

We first consider that investors only observe the firm’s financing policy after the project is un-

2The possibility that exclusive contracts play an anticompetitive role has been suggested by Aghion and Bolton
(1987) in a monopolistic setting with no side trading externality.

3Default is denoted strategic because it is determined by the contracts chosen by the entrepreneur.
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dertaken. Covenants then allow them to modify interest rates according to the entrepreneur’s level

of outside debt. The entrepreneur’s limited liability sets an upper bound on the monetary penalties

that any investor can impose when she trades with others. As a consequence, financial covenants

do not have the power to simply forbid multiple financial relationships. They do however introduce

new strategic interactions compared to the benchmark case of fully unobservable side trades. Each

deviating investor can exploit the protection of covenants to serve the market alone by punishing,

up to the realized cash flows, the entrepreneur’s attempt to raise funds from multiple financiers. At

the same time, any incumbent investor can write covenants to prevent his competitors from pro-

viding additional investment and complementing existing offers. We show that the combination

of these two effects leads to an indeterminacy: a large number of Pareto ranked allocations are

sustained at equilibrium.

We next modify the information structure and allow investors to observe outside financing

before production takes place. This enlarges de facto the class of available financial covenants: in-

vestors can adjust their contractual terms according to the entrepreneur’s intended financial policy.

In particular, they can include loan acceleration clauses if they observe excessive debt issuance,

or propose additional financing if they observe insufficient borrowing. This second feature can be

interpreted as a contingent line of credit. It turns out that the strategic provision of lines of credit

discourages more competitive offers backed by a loan acceleration clause. This reinforces the idea

that enlarging investors’ contractual opportunities does not enhance competition. Overall, the same

indeterminacy result holds.

On the normative side, indeterminacy of market equilibria provides a natural setting to study

how a proper design of the market fosters investors’ incentives to supply capital. We construct a

system of subsidies from investors to the entrepreneur, that grants her a transfer if her investment is

too low. This system enables one investor to exploit gains from trade with a more competitive offer

by alleviating the entrepreneur’s resulting incentive to default. Investors do not choose the size of

the subsidies but have the option to finance them or not. The decision results from comparing

the cost of the subsidy for each investor and his gain from avoiding default when the transfer

is provided to the entrepreneur. We show that a subsidy scheme can be designed so that all gains

from trade are exploited, and only the competitive allocation is sustained at equilibrium. This result

provides a possible foundation for regulatory schemes that make banks or financial intermediaries
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financially liable whenever their strategic interactions exacerbate the risk of default. Examples

of related market institutions include the guarantee funds of central clearinghouses in derivative

markets or the recent Single Resolution Fund (SRF) of the European banking union.

Relationship to the literature

Our paper is linked to the general issue of side trading in financial markets,4 and more directly

speaks to the literature on nonexclusive competition that endogenizes side trading opportunities as

part of the strategies of competing investors. Bizer and DeMarzo (1992) and Kahn and Mookher-

jee (1998) are the first to establish that nonexclusivity creates an externality in financial markets

subject to moral hazard. Parlour and Rajan (2001) and Bisin and Guaitoli (2004) explicitly con-

sider strategic competition among lenders. They show that, compared to a hypothetical exclusive

competition benchmark, nonexclusivity typically reduces trades and generates an extra profit for

investors.5 In these models, financial contracts are bilateral in essence: no supplier can condition

his offers on the customer’s entire profile of trades. Bilateral contracting does not fit well with the

practice of modern capital markets in which investors set punishments based on entrepreneurs’ fi-

nancial policies. We therefore study financial relationships when investors write general contracts

that may include exclusive clauses. We show that the use of such contracts generates a severe

market failure. Multiple Pareto ranked allocations are sustained at equilibrium.

Equilibrium indeterminacy is a major result of the competing mechanism literature in which

principals compete through mechanisms in face of several privately informed agents. Yamashita

(2010), Peters and Troncoso-Valverde (2013), Peters (2015), and Han (2014) provide different

versions of a Folk Theorem: if no restriction is put on the set of available mechanisms, then a

very large number of allocations can be supported at equilibrium. These results crucially hinge

on having multiple agents. A contribution of our analysis is hence to present a standard economic

setting in which indeterminacy arises with a single agent thanks to the strategic role of covenants.6

Strategic default is also modeled as the entrepreneur’s ability to divert cash instead of repaying

4See for instance Allen and Gale (2004) or Farhi et al. (2009).
5A form of market breakdown also arises in adverse selection settings, where nonexclusivity often leads to Akerlof

(1970)-like results (Attar et al. (2011) and Attar et al. (2014)).
6Similar insights arise in the game-theoretic analysis of Szentes (2015) who characterizes equilibria of games in

which several principals can write potentially sophisticated contractible contracts.
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investors in multiple lending relationships: Bolton and Scharfstein (1996) offer the view that hav-

ing multiple lenders weakens the incentive to default by affecting ex post renegotiation between

parties. Bolton and Jeanne (2009) apply this analysis to sovereign lending, showing that govern-

ments prefer to issue different types of debt. In these models, the incentive to default arises from

the impossibility to write contracts contingent on cash flows. In contrast, we allow for contingent

contracts, and we emphasize that the possibility to have multiple financiers is at the origin of the

entrepreneur’s willingness to default.7

The paper is also linked to the literature on covenants in financial contracts. The conven-

tional approach is to study how covenants can mitigate agency conflicts between shareholders and

debtholders (Smith and Warner (1979), Myers (1977)). Much attention has been devoted to ex-

plain how covenants affect renegotiation between parties (Gorton and Kahn (2000), Gârleanu and

Zwiebel (2009)). We take a different view and investigate how the design of covenants affects

competition between debtholders.

Several regulatory mechanisms have been suggested to mitigate the damaging implications of

side trading. Some rely on enhancing the observability of trades. Acharya and Bisin (2014) con-

struct a centralized clearing mechanism that sustains efficiency of market equilibria. Bennardo et

al. (2015) study the role of credit bureaus in a fully nonexclusive setting and show that information

sharing systems decrease investors’ rents, although they can worsen credit rationing. Both mech-

anisms fail to take into account the strategic design of contracts by individual investors. We show

that this possibility creates barriers to entry that resist regulations enhancing the observability of

trades. In our analysis, financial covenants are responsible for market inefficiencies whenever in-

vestors can observe outside debt. Others point out the role of repayment rules in case of default.

In particular, Bisin and Rampini (2006) put forward the idea that the institution of bankruptcy can

improve on nonexclusive contractual relationships but is not a perfect substitute for exclusivity.

In our setting, market failures arise even if a bankruptcy procedure imposes repayment priority

or captures part of the entrepreneur’s private benefit. In both cases, the threat of overborrowing

is sufficiently strong to impede perfect competition. A third class of mechanisms involves trans-

fers to distressed agents in order to affect their willingness to trade. Tirole (2012) and Philippon

and Skreta (2012) stress the fact that a regulator can repurchase assets, reducing adverse selection

7We argue in Section 4 that our results extend to the case in which the entrepreneur can also divert funds.
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and restoring agents’ participation on the private market. Our subsidy scheme exhibits a similar

feature in a moral hazard setting. From the viewpoint of an investor, providing a subsidy modi-

fies the entrepreneur’s incentive to default which in turn affects the investor’s willingness to pay

for it. An important difference with Tirole (2012) and Philippon and Skreta (2012) is that in our

case the subsidy is entirely financed by the lending sector without resorting to an external costly

source of funds. We therefore provide a rationale for the private regulation of counterparty risk

through a collective transfer system, in the spirit of the guarantor function performed by central

clearinghouses.

The remainder of the paper is organized as follows. The model is exposed in Section 2. The

benchmark case in which investors offer bilateral contracts is analyzed in Section 3, while Section

4 studies the impact of covenants on equilibrium outcomes. Section 5 is devoted to market de-

sign. Proofs are provided either in the Appendix or in the additional Appendix A. The additional

Appendices B, C and D provide robustness results.

2 The model

We build on the standard capital market model of Holmstrom and Tirole (1997, 1998).

Agents, technology and preferences. We consider a production economy populated by a single

representative entrepreneur and a finite number N of investors. At date 0, the entrepreneur owns

a variable size project that generates at date 1 a random output over two verifiable states: an

investment of I ≥ 0 yields a cash flow GI with G > 0 if the project succeeds, and a cash flow of

0 if it fails. The probability distribution over states depends on an unobservable effort e = {L,H}

chosen by the entrepreneur. Let (πe, 1− πe) be the distribution induced by effort e, where πe is the

probability of success. Denote e = H the high level of effort, and assume that πH > πL. If the

entrepreneur selects e = L, she receives a private benefit B ≥ 0 per unit invested in the project.

As in Holmstrom and Tirole (1997, 1998), the investment project has a positive net present value

if and only if the entrepreneur selects e = H , that is:

πHG > 1 > πLG+B. (1)
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The entrepreneur is risk-neutral and protected by limited liability. She has a verifiable endowment

of A > 0 and can raise additional funds by trading financial contracts issued by competing in-

vestors. If she raises I units of funds, invests her endowment A, pays back R in case of success,

and 0 in case of failure, her net payoff is πH
(
G(I + A) − R

)
− A if she chooses e = H , and

πL
(
G(I + A) − R

)
+ B(I + A) − A if she chooses e = L. The expected profit of investor i

when he lends Ii to the entrepreneur and obtains Ri in case of success and 0 in case of failure, is

πeRi − Ii for a given effort e ∈ {L,H}.

Contracts, default, and equilibrium. Investors compete by offering arbitrary menus of finan-

cial contracts to the entrepreneur.8 The entrepreneur can simultaneously trade with any subset

of investors, optimally choosing the aggregate investment and the corresponding repayment by

combining available contracts. The nature of a financial contract depends on the variables that

we assume to be observable. In most of our analysis, a contract is an individual investment and

a function that associates a repayment to each amount of aggregate outside financing. Given the

entrepreneur’s limited liability, the repayment is always set equal to zero if the project fails. More

formally, a contract proposed by investor i is an array Ci = (Ii, Ri(.)), where Ii is the investment

he supplies, and Ri(.) : R+ → R is the function specifying the repayment he requires when the

project succeeds, for each I . In Section 4.2, we allow investors to also observe the aggregate fi-

nancing raised by the entrepreneur before production takes place and to modify their initial offer

(Ii, Ri(.)) accordingly. The following timing of events describes our competition game:

1. Each investor i offers a menuMi, that is a set of contracts which includes the null one (0, 0).9

2. Given these offers, the entrepreneur chooses one contract in each menu and an effort level.

3. The uncertainty is realized and payments are made.

Being protected by limited liability, the entrepreneur can trade contracts which involve con-

flicting prescriptions. In these situations, the outside financing I =
∑
i

Ii is such that the aggregate

contractual repayment R =
∑
i

Ri(I) > G(I + A), and we say that strategic default takes place.

8Investors can therefore include contracts that are not traded at equilibrium. Menus are sufficiently general to
reproduce any bilateral communication between investors and the entrepreneur (Martimort and Stole (2002), Peters
(2001)).

9This is done to incorporate agents’ participation decisions in a simple way.
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The entrepreneur’s payoff can hence be written as

U(I, R, e) =

 πH
(
G(I + A)−R

)+ − A if e = H

πL
(
G(I + A)−R

)+
+B(I + A)− A if e = L,

(2)

and her reservation utility is U(0) ≡ (πHG− 1)A, which is strictly positive given (1).

Under strategic default, the entrepreneur chooses e = L to obtain her private benefit. Investors

cannot be repaid according to contractual terms, and a pro rata rule applies: each investor receives

a share of the cash flow proportional to his investment.10 The expected profit of investor i is

Vi(Ii, Ri(I), I, R, e) = πe
[
G
(
I + A

)Ii
I
1{R>G(I+A)} +Ri(I)1{R≤G(I+A)}

]
− Ii. (3)

A pure strategy for the entrepreneur is a mapping that associates to each profile of investors’

menus
(
M1,M2, ...,MN

)
a vector of contracts

(
C1, C2, ..., CN

)
and an effort choice e ∈ {L,H}.

A pure strategy for investor i is a menu Mi.11 Throughout the paper, we restrict attention to pure

strategy subgame perfect equilibria. Observe that the entrepreneur necessarily selects e = H at

equilibrium: given (1), investors’ aggregate profit is negative if e = L, which implies that at least

one active investor would strictly prefer not to participate.

Feasible and second-best allocations. We denote H = {(I, R) ∈ R2
+ : U(I, R,H) ≥

U(I, R, L)} the set of (I, R) pairs inducing e = H as an optimal choice, and L = {(I, R) ∈ R2
+ :

U(I, R,H) ≤ U(I, R, L)} those inducing e = L. For a given profile of menus, the entrepreneur’s

choices determine agents’ final allocations, that is, investments and actual repayments. If there is

no strategic default, investors are repaid according to contractual terms, in which case we refer to

(I, R) as an aggregate allocation.

We say that an allocation {(I1, R1(I)), ..., (IN , RN(I)), (I, R)} is feasible if (I, R) ∈ H, and

if it guarantees to any agent at least his reservation utility. The corresponding set F of aggregate

10We discuss in the additional Appendix C the case in which one investor can issue a senior claim.
11We make no specific assumption on the menus available to investors. We only require that they are compact sets so

that the entrepreneur’s choice problem of maximizing (2) over contracts and effort admits a solution for every profile(
M1,M2, ...,MN

)
. A direct way to ensure this is to assume for instance that each Ii belongs to a closed interval and

each Ri(.) is a bounded function.
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Rc
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H

L

R = G(I + A)

Ψ
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1

πHG

G− B

∆π

Figure 1: Set F of aggregate feasible allocations.

feasible allocations is depicted by the grey area in Figure 1. All such (I, R) allocations lie to the

right of the indifference curve relative to the entrepreneur’s reservation utility U(0), and to the

left of the line (O,Cc), which represents the aggregate zero profit condition for investors when

e = H . Condition (1) ensures that F is non-empty: when e = H , the entrepreneur’s marginal

rate of substitution G is greater than the investors’ one
1

πH
. Last, to ensure that e = H is optimal

for the entrepreneur, any aggregate feasible allocation must lie below the line that corresponds to

U(I, R,H) = U(I, R, L), which has a slope G− B

∆π
. In line with Holmstrom and Tirole (1998),

we also assume that

G− B

∆π
<

1

πH
, (4)

where ∆π = πH − πL, which ensures that F is closed. The frontier Ψ ≡ {(I, R) ∈ F :

U(I, R,H) = U(I, R, L)} in Figure 1 represents the set of second-best aggregate allocations:

a social planner who cannot control the entrepreneur’s effort but who can control final trades finds

optimal to select an aggregate allocation on Ψ. Indeed, (1) and (4) guarantee that starting from

any (I, R) ∈ Ψ, it is not possible to simultaneously increase the entrepreneur’s payoff and the

profit of all investors. Conversely, and using the same inequalities, one gets that for any allocation
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{(I1, R1(I)), ..., (IN , RN(I)), (I, R)} such that (I, R) /∈ Ψ, there is another feasible allocation

which Pareto-dominates it. Two relevant second-best aggregate allocations are Cc = (Ic, Rc),

which maximizes the entrepreneur’s payoff, and Cm = (Im, Rm), which maximizes the investors’

joint profit.

3 Market equilibria with bilateral contracts

We first assume that investors post menus of contracts contingent on the success or failure state,

but not on outside financing or on the final cash flow. This setting constitutes our benchmark

and corresponds to the standard representation of nonexclusive competition under moral hazard.

The credit card industry, in which credit card issuers cannot observe their customers’ portfolio of

credit cards, or the pure OTC markets, in which assets are traded outside of organized exchanges,

are good examples of this environment. A contract is then a pair (Ii, Ri) ∈ R2
+, where Ii is an

investment level, and Ri is the repayment required by investor i in the success state.

3.1 Equilibrium analysis

We derive below necessary conditions for an aggregate allocation (I∗, R∗) ∈ F to be supported at

equilibrium.

For a given profile of menus (M1,M2, ...,MN), the entrepreneur determines her credit demand

(I, R) by optimally combining investors’ offers. Since for each e ∈ {H,L}, her preferences are

linear in I and R, the corresponding choice problem is simple. As an illustration, suppose that

Mi = {(Ii, Ri); (0, 0)}, with Ii > 0. If strategic default does not take place, the entrepreneur is

willing to trade (Ii, Ri) if its price
Ri

Ii
is smaller than her corresponding marginal rate of substitu-

tion, irrespective of the other offered menus.12 If the entrepreneur chooses to default, she selects

the highest investment contract in each menu in order to maximize her private benefit.

The analysis of investors’ behavior is more involved. A crucial feature of nonexclusive com-

petition is that every investor may gain by offering contracts that the entrepreneur accepts in com-

bination with other offers. This makes the set of unilateral deviations very large compared to the

12This idea is formalized in Lemma 2 in the Appendix, which is key to the proof of our results.
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case in which exclusive relationships are assumed, and potentially difficult to characterize. Since

there are gains from trade when the entrepreneur chooses e = H , there is always room for devi-

ations that increase aggregate investment provided that they do not trigger e = L. The following

proposition builds on this intuition and provides a central result of this section.

Proposition 1 If (I∗, R∗) is an equilibrium aggregate allocation, then

U(I∗, R∗, H) = max(
(Ii,Ri)∈Mi

)
i=1,...,N

U(I, R, L). (5)

Since the right-hand side of (5) cannot be greater than the equilibrium payoff U(I∗, R∗, H),

Proposition 1 is straightforward if (I∗, R∗) ∈ Ψ. If (I∗, R∗) 6∈ Ψ, the intuition for the proposition

can easily be understood in a free entry equilibrium.13 Suppose that an entrant deviates by offering,

together with the null contract (0, 0), the additional contract
(
x, (

1

πH
+ ε)x

)
, of price

1

πH
+ ε, with

x and ε strictly positive. Choose ε small enough to guarantee that the price of this contract is

strictly less than the entrepreneur’s marginal rate of substitution G when e = H . Clearly, she picks

this contract at the deviation stage. For (I∗, R∗) to be supported at equilibrium, this choice must

induce e = L. Given that both x and ε can be arbitrarily small, investors’ equilibrium menus must

be such that (5) holds. In this nonexclusive context, (5) can be interpreted as an aggregate incentive

compatibility constraint. The allocations satisfying (5) are such that the threat of overborrowing

prevents any investor from profitably complementing existing offers. The welfare implications of

aggregate incentive compatibility are derived in the next corollary.

Corollary 1 If (I∗, R∗) is an equilibrium aggregate allocation, then (I∗, R∗) ∈ Ψ, i.e. equilibrium

allocations are second-best efficient.

Corollary 1 exploits a direct implication of Proposition 1: each contract traded at equilibrium,

combined with her preferred options in all other menus, must yield the entrepreneur the same

payoff whether she selects e = H or e = L. If this individual incentive compatibility condition

is violated, a single investor can straightforwardly deviate, even if his rivals post arbitrary menus.

The proof of Corollary 1 shows that individual incentive contraints are not compatible with the

aggregate condition (5) if (I∗, R∗) does not belong to the frontier Ψ.
13The proof of Proposition 1 is established for any fixed number of investors.
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Therefore, with bilateral contracts, investors successfully exploit the opportunity to comple-

ment their rivals’ offers, exhausting thereby all gains from trade. This efficiency result sheds light

on the welfare properties of nonexclusive markets under moral hazard. Indeed, while Kahn and

Mookherjee (1998) and Bisin and Guaitoli (2004) obtain similar findings,14 they only provide par-

tial characterizations of market equilibria. In contrast, our result is robust in that it does not rely

on exogenous restrictions on investors’ menus or on the structure of equilibrium strategies.

3.2 Equilibrium aggregate allocations

We now provide a full characterization of equilibrium aggregate allocations in terms of the private

benefit B. To this end, we say that moral hazard is mild if B ≤ πHG − 1, and that it is strong

if B > πHG − 1. If moral hazard is mild, the entrepreneur’s marginal private benefit is lower

than the marginal return of the project with e = H . The severity of moral hazard affects the set of

profitable deviations and the resulting equilibrium outcomes, as formally stated below.

Proposition 2 The following holds:

1. If B ≤ πHG− 1, any aggregate allocation (I∗, R∗) ∈ Ψ can be supported at equilibrium.

2. If B > πHG− 1, (Im, Rm) is the unique equilibrium aggregate allocation.

Irrespective of the severity of moral hazard, there is always an equilibrium in which investors

earn a monopolistic profit. Suppose that one investor, say investor 1, offers M1 = {Cm =

(Im, Rm), (0, 0)}, and all other investors i 6= 1 propose Mi = {(0, 0)}. The proof of Proposi-

tion 2 shows that no investor can profitably deviate by inducing the entrepreneur to select e = H .

This is illustrated in Figure 2. Consider any investor i 6= 1: a deviation C ′i = (I ′i, R
′
i) is profitable

only if
R′i
I ′i

>
1

πH
. However, following any such deviation, it is optimal for the entrepreneur to

trade C ′i together with Cm and to select e = L, achieving U(C ′i +Cm, L) > U(C ′i, H). Therefore,

the opportunity to trade the monopolistic allocation together with a deviating contract makes the

low effort’s threat fully credible.
14Specifically, Proposition 5 in Kahn and Mookherjee (1998) and Proposition 4 in Bisin and Guaitoli (2004) provide

the following constrained efficiency result: even when equilibria fail to be second-best efficient, they are typically
efficient from the viewpoint of a planner who cannot control final trades (third-best efficiency). In our setting, all
equilibrium aggregate allocations belong to the second-best frontier Ψ, which therefore coincides with the third-best
one.
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Figure 2: The monopolistic allocation equilibrium.

Proposition 2 also states that, if moral hazard is strong, the monopolistic allocation is the only

one supported at equilibrium. The result is established by contradiction. Consider any aggregate

allocation on the frontier Ψ, and any investor who provides funding at equilibrium. Linearity of

the entrepreneur’s preferences guarantees that this investor is indispensable. This implies that if

he deviates by offering a higher-price, smaller-investment contract, the entrepreneur’s payoff is

reduced (irrespective of her effort choice). When B is high, her private benefit sharply decreases

and she chooses e = H which makes the deviation profitable. Monopoly then arises as the only

equilibrium allocation.

When B is small, and moral hazard is mild, any aggregate allocation on Ψ can be sustained at

equilibrium. The reason is that the above deviations induce e = L as the private benefit decreases

less than the entrepreneur’s payoff under e = H . In this case, only one investor is active and there

is at least another investor offering a positive investment contract. This contract is latent : despite

not being traded it needs to be issued for the equilibrium to exist. The latent contract serves the role

of a threat, that is, it ensures that the entrepreneur selects e = L following any investor’s deviation.

Our benchmark incorporates the main insights of the literature on nonexclusive competition
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under moral hazard. As in the credit economy of Parlour and Rajan (2001), monopoly is sustained

at equilibrium. As in the insurance settings of Kahn and Mookherjee (1998), Bisin and Guaitoli

(2004) or Attar and Chassagnon (2009), latent contracts are used to sustain credit rationing and

positive profit at equilibrium.15 At the same time, we contribute to this literature by providing a

complete equilibrium characterization and a full strategic analysis of a financial market in which

no information is available on aggregate trades.16

4 Market equilibria with covenants

Corporate financing relationships are not well-described by bilateral contracts. Most financial

contracts include covenants aimed at monitoring firms’ financial decisions by specifying target

debt ratios. In case of violations, creditors can accelerate the payment of their outstanding debt.

Empirical evidence suggests that they can also increase interest rates or reduce future lending.17

Building on these insights, we allow financial contracts to be contingent on outside financing.

To provide a thorough analysis of the strategic role of financial covenants, we distinguish two infor-

mational structures. First, we assume that outside financing is observed only after production takes

place. This enables investors to require higher interest rates when undesired levels of debt are ob-

served. We next allow investors to also observe the funds raised before they are invested. Investors

can exploit this information to accelerate the repayment of their loan, or to modify their initial

investment. We therefore consider the most favorable setting to enforce exclusive contracting: in-

vestors observe aggregate trades, and can use a very large set of punishments to deter departures

from their desired financing policy.

15A traditional criticism of latent contracts is that, to be attractive for the entrepreneur, they might be issued at a
loss-making price for investors. In our context, credit rationing and positive profits are either supported by such latent
contracts, or by the active Cm contract which is sufficient to sustain the monopolistic allocation equilibrium.

16Parlour and Rajan (2001) and Kahn and Mookherjee (1998) restrict investors to post single offers, while Bisin
and Guaitoli (2004) also consider piecewise linear menus. Allowing investors to compete over arbitrary menus may
sustain additional equilibria, as it is the case in the complete information setting of Martimort and Stole (2003) or in
the adverse selection one of Attar et al. (2011).

17Roberts and Sufi (2009) report that when creditors respond to covenant violations, they increase interest rates
on their loans in about half of the cases and that covenant violators exhibit a decline in their net debt issuing activ-
ity. Relatedly, Chava and Roberts (2008) find that covenant violations induce a 13% to 20% decline in the level of
investment.
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4.1 Covenant violation after investment

We explore here the situation in which outside funding is only observed ex post. Enlarging in-

vestors’ contracting opportunities to include such debt-based covenants introduces new strategic

interactions. On the one hand, they have access to an additional class of deviations. Any investor

can set punishments to circumvent the entrepreneur’s threat to overborrow. In particular, they can

stipulate a raise in interest rates to eliminate the entrepreneur’s rent when she chooses e = L and

repays all investors. To illustrate this procompetitive effect, consider the monopolistic equilibrium

arising with bilateral contracts. With covenants, the simple offer (Im, Rm) is not robust to entry.

Any inactive investor can undercut it by proposing a small investment at a unit price slightly above
1

πH
, writing covenants that trigger default if additional funding is raised. By construction, the

entrepreneur is better off trading this deviating contract and choosing e = H , which makes the

deviation profitable.

On the other hand, any investor can use covenants to prevent his competitors from proposing

contracts to be traded in addition to his own. Under bilateral contracting, such deviations are key to

establish Corollary 1 and to show that all gains from trade are exploited at equilibrium. Covenants

could then undermine the constrained efficiency result. To isolate this latter anticompetitive effect,

we first present a stripped-down version of our model in which πL = 0, that is, strategic default

always occurs when e = L is chosen. This case corresponds to the standard framework of Parlour

and Rajan (2001) which is extended to allow investors to use covenants contingent on outside

financing.

Proposition 3 If πL = 0, any aggregate allocation (I∗, R∗) ∈ F such that I∗ ≥ Im is sustained

at equilibrium.

Proposition 3 states that the use of covenants leads to an indeterminacy of equilibrium alloca-

tions. To provide an intuition for this result it is useful to describe equilibrium strategies. Every

investor proposes the same menu, which includes two non degenerate contracts on top of the null

one. The entrepreneur chooses the same contract in each menu, i.e. every investor is active. Equi-

librium contracts incorporate the following financial covenants. If the entrepreneur raises a large

amount of debt from other investors, covenants impose large penalties which can be interpreted as

an increase in interest rate. Given these covenants, the entrepreneur strategically defaults whenever
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an investor tries to gain by complementing existing offers. Symmetrically, if the entrepreneur does

not raise enough debt, covenants specify a reduction in the interest rate. This lower interest rate

is designed to guarantee that no investor is indispensable at equilibrium. This in turn blocks any

deviation of an investor who wishes to increase the price of his loan.

Equilibrium menus also include an additional high price, large investment contract. Although

investors anticipate that it will not be traded at equilibrium, this second contract is used as a threat

against the deviations of any investor trying to expand his market share. The contract is therefore

strategically issued by active investors to protect their rents and to induce collusive outcomes at

equilibrium.18

To clarify how inefficient allocations can be sustained at equilibrium, consider any (I∗, R∗) 6∈

Ψ. In contrast with bilateral contracts, the covenants issued by his competitors prevent a deviating

investor from gaining by complementing existing offers. He must therefore endeavor to replace

some (or all) of his competitors’ offers. Such deviations entail proposing a substantial amount

of investment. Since moral hazard is strong when πL = 0,19 the entrepreneur’s private benefit

from investing this amount together with the large loans issued by the others is greater than the

payoff of trading with the deviator, provided that I∗ ≥ Im. This shows that any (I∗, R∗) such

that I∗ ≥ Im is supported at equilibrium: equilibrium allocations are therefore Pareto-ranked.

Although all investors are active at equilibrium and each of them typically earns a strictly positive

profit, the corresponding outcome is entry-proof: given equilibrium covenants, no potential entrant

can do better than offering the null contract.20

If πL > 0, a deviating investor can fully exploit the procompetitive power of covenants to

undercut competing offers. The following proposition shows that indeterminacy and inefficiency

of equilibrium allocations still arise for any value of πL.

Proposition 4 There exists a thresholdN and a sequence of payoffs (UN)N>N withUN < U(Ic, Rc, H)

18The entrepreneur is indifferent between trading equilibrium contracts and defaulting on these large investment
contracts. In the latter case, investors lose money in the aggregate, which leads to question their rationality to post
such contracts in the first place. The fact that all investors are active and make a positive profit at equilibrium ensures
that issuing them can be optimal against the entrepreneur’s trembling behaviors.

19If πL = 0, then, given (4), we get B > πHG− 1.
20Our equilibria can therefore exhibit an arbitrary number of inactive investors: the proof of Proposition 3 suggests

that equilibrium allocations may alternatively be supported with two active investors who equally share the market and
N − 2 inactive ones who only offer the null contract (0, 0).
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such that any aggregate allocation (I∗, R∗) ∈ F satisfying

U(I∗, R∗, H) ≥ UN (6)

is sustained at equilibrium. When B > πHG− 1, limN→∞ UN = U(0).

From (6), the set of equilibrium allocations is non-empty whenever N > N . These alloca-

tions are characterized in terms of a threshold payoff UN , which role can be understood as follows.

For each N > N , any inefficient equilibrium is in principle vulnerable to the undercutting of an

investor who offers a contract including covenants designed to enforce exclusivity. When moral

hazard is strong, as suggested in the discussion of Proposition 3, these offers are more likely to

induce default as the amount of funds offered by the deviator gets larger, and can easily be cir-

cumvented. When moral hazard is mild, the opposite holds and deviations that entail a sufficiently

large investment can in principle induce e = H . The threshold UN is constructed to limit the

maximal amount of funds that a deviator can propose to exploit this opportunity, thereby deterring

such deviations.

A striking result of Proposition 4 is that, when moral hazard is strong, UN tends to U(0) as N

goes to infinity, that is, the entrepreneur can achieve any payoff above U(0). This stands in sharp

contrast with standard insights that oligopolistic rents are dissipated in the limit. The reason is that

when N is large, each investor’s contract has a negligible impact on the entrepreneur’s threat of

default. In this case, the threat of default is sufficient to prevent even those deviations that provide

a payoff to the entrepreneur slightly above U(0). We then get a Folk Theorem-like result: every

feasible allocation can be sustained at equilibrium. Therefore in the limit the level of B determines

the set of equilibrium aggregate allocations, as in the bilateral contracting setting of Section 3.

In contrast with that of Proposition 3, the proof of Proposition 4 relies on asymmetric equilib-

rium strategies. A subset of investors are active and equally share the market by offering contracts

with covenants similar to those exhibited in the case πL = 0. The remaining investors post latent

contracts in order to render the threat of default effective even when moral hazard is mild.21 The

investment available in each latent contract is decreasing with the total number of investors. As
21Observe that, since Proposition 4 also holds for πL = 0, Propositions 3 and 4 together imply that some aggregate

allocations can be sustained with different equilibrium strategies. Therefore indeterminacy also prevails regarding
investors’ equilibrium menus.
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N goes to infinity, the investment included in each latent contract tends to zero, and no investor is

indispensable to provide the threat of default. The aggregate available funds can then be seen as a

barrier to entry and the equilibrium interpreted as entry-proof.

The minimal number of investors N is finite, but it can in principle be large. We provide

however in the additional Appendix B an alternative profile of investors’ strategies guaranteeing

that indeterminacy arises with N = 2 for the general case πL ≥ 0 if the project’s profitability is

sufficiently high.

4.2 Covenant violation before investment

So far, our modeling only allows covenants to specify contractual penalties that can be enforced af-

ter investment is undertaken. In practice, covenant violations also entitle investors to accelerate the

repayment of their loan or to renegotiate credit facilities. We extend below our setting to introduce

the possibility for investors to observe all funds raised by the entrepreneur before investment takes

place. Investors can then demand the early repayment of all or part of their loan or alternatively

provide additional liquidity. We interpret these features as loan acceleration clauses and contingent

lines of credit, respectively.

To fix ideas, suppose that before investment takes place, any investor i can observe the aggre-

gate initial financing, denoted I0, raised by the entrepreneur. He can therefore commit to modify

his initial arrangement according to I0. In particular, he can withdraw any fraction of his initial

offer in order to protect himself against the threat of overborrowing.22 This could in principle

foster competition. We show below that these procompetitive effects of loan acceleration clauses

are undermined by the simultaneous issuance of lines of credit. As a consequence, equilibrium

allocations remain indeterminate.

More formally, define a contract for investor i as
(
Ii, Ri(.), I

+
i (.), R+

i (.)
)

with Ii ≥ 0, I+
i (I0) ≥

−Ii and Ri(.) and R+
i (.) functions of the aggregate initial debt I0 and of the final outside financing

I . In this setting, a loan acceleration clause following an undesired level of debt I0 is written:

I+
i (I0) = −Ii and R+

i (I0, I) = −Ri(I0, I) ∀I. Similarly, a line of credit can be written: I+
i (I0) >

0, and R+
i (I0, I) = pI+

i (I0), with I+
i (I0) being the credit limit available at a unit price p. The

22This is indeed the most common rationale for the use of loan acceleration clauses in debt contracts.
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following proposition summarizes our results.

Proposition 5 Propositions 3 and 4 extend to the case in which investors can write covenants

contingent on the initial debt I0.

When the initial debt is observable, an investor can try to enforce exclusivity by asking to

be reimbursed if he observes additional debt issuance. Such a deviation is however blocked by

investors’ ability to offer lines of credit contingent on the initial debt. At equilibrium, investors do

not need to ask for an acceleration of their loan, and the entrepreneur does not draw on any line of

credit. Yet the presence of this additional source of liquidity undermines the threat of asking for

an early loan repayment. In general terms, Proposition 5 shows that the joint issuance of ex post

and ex ante debt-based covenants constitutes a barrier against any attempt of investors to enter the

market using sophisticated contracts.23

It is interesting to discuss to what extent these financial covenants are consistent with some

empirical observations on firms’ credit relationships. To start with, the equilibrium strategies of

Proposition 5 are such that investors do not ask for any acceleration of their loans. They do however

specify changes in interest rates following the violation of financial covenants resulting from firms’

multiple borrowing. This is in line with the observation that creditors do not ask for the early

repayment of their loan following a covenant violation but rather use this right to modify other

features of the firm’s financial policy, like the interest rate (Roberts and Sufi (2009)).

Next, at equilibrium, lines of credit are issued, and are not drawn upon, unless the borrower

modifies her investment policy. At the same time, investment is typically inefficiently low, and

firms are credit-rationed. Relatedly, Sufi (2009) points out that lines of credit are not fully com-

mitted and that their access is contingent on firms’ financial performance. This illustrates the idea

that lines of credit are not a perfect substitute for liquidity, and are strategically offered by banks,

as also emphasized by Acharya et al. (2014).

23The distinction between raised and invested funds creates a possibility for the entrepreneur to divert funds, which
can constitute an additional source of moral hazard. To illustrate its impact, suppose that the entrepreneur can divert
a fraction γ ∈ (0, 1) of the investment I + A. The relevant incentive constraint is then πH

(
G(I + A) − R

)
≥

πL
(
G(1 − γ)(I + A) − R

)
+
(
γ + B

)
(I + A), since diverting is optimal when e = L, but not when e = H . The

constraint is binding whenever R =
(
G− B + γ(1− πLG)

∆π

)
(I +A). If γ is not too large, conditions (1) and (4) are

satisfied, and the possibility of fund diversion is hence equivalent to an increase in B, which reinforces our results.
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More fundamentally, in our analysis, the strategic role of covenants is incorporated in investors’

out-of-equilibrium offers. The entire equilibrium capital supply therefore matters to determine

firms’ investment policy. The recent paper of Degryse et al. (2015) is the first to investigate the

effect of multiple lending on the supply of credit of a given bank. Their main result is that the

bank’s willingness to lend decreases when its customers contract loans with other lenders, unless

the bank loan is fully secured. Our work, which explicitly derives investors’ equilibrium best

responses, provides further insights. Both the willingness to lend and the contracts issued by a

bank depend on those covenants included in its competitors’ loans, which should therefore be

taken into account to identify banks’ credit supply. When competitors do not use covenants, a

bank can issue covenants that reduce the threat of dilution, leaving its capital supply unaffected.

Facing such covenants, a bank might be unable to secure its loan, which induces a reduction in

investment.

5 Market design under the threat of default

The protection offered by covenants turns out to be a double-edged sword. It encourages investors

to offer more competitive contracts, but it also prevents entry of potential competitors. The latter

effect dominates and a large number of low investment, inefficient allocations are sustained at

equilibrium. On the normative side, this calls for a proper design of the market architecture.

At the root of market inefficiency is the investors’ individual inability to prevent overborrowing

and strategic default. It is therefore natural to ask whether this threat can be mitigated by appro-

priately designed bankruptcy rules. We show however in the additional Appendices C and D that

our results survive the introduction of standard procedures. Precisely, Proposition C.1 analyzes

the case in which one investor has repayment priority over the others, and Proposition D.1 that in

which part of the entrepreneur’s private benefit is seized under bankruptcy. In both cases, a large

number of inefficient allocations are sustained at equilibrium.

We therefore consider an alternative way to circumvent overborrowing based on a market

mechanism in which investors can contribute to the provision of a subsidy to the entrepreneur.

This mechanism induces the entrepreneur not to default and sustains the competitive allocation as

the unique equilibrium one. We introduce in the next subsection a subsidy mechanism and discuss
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its empirical relevance in Subsection 5.2.

5.1 The subsidy game

Consider a subsidy scheme, conceived, say, by a market designer, such that for every observed

outside financing I , investor i is asked to pay a transfer Ti(I), with Ti(0) = 0. After the cash

flow realization, the entrepreneur receives a (possibly null) subsidy equal to the sum of investors’

transfers. This mechanism induces the following game:

1. Given (T1(.), T2(.), ..., TN(.)), each investor i offers a menu Mi of contracts that can include

any class of financial covenants.24

2. After observing all offers, each investor decides whether to pay his transfer or not.

3. The entrepreneur chooses a contract in each menu and makes her effort choice.

4. The uncertainty is realized, and payoffs are distributed according to financial contracts and

to the subsidy scheme.

We focus on the case πL = 0 which exacerbates the anticompetitive effect of covenants, and we

consider pure strategy subgame perfect symmetric equilibria. The following proposition highlights

the role of the subsidy in disciplining investors and resolving indeterminacy.

Proposition 6 If πL = 0, there is a profile of transfers (T1(.), T2(.), ..., TN(.)) such that (Ic, Rc) is

the unique aggregate allocation supported in a symmetric equilibrium of the subsidy game.

The intuition for Proposition 6 is the following. Suppose that an allocation different from

the competitive one is supported at equilibrium. In the absence of a subsidy scheme, we know

from the previous section that the entrepreneur’s threat to default hinders deviations by an investor

who tries to exploit gains from trade. We show that there exist individual transfers that guarantee

a profitable deviation for a well-chosen investor. The design of the subsidy scheme involves the

following trade-off. On the one hand, the subsidy provided to the entrepreneur has to be sufficiently

large to alleviate the threat of default and induce e = H at the deviation stage. On the other

24That is, the analysis applies to both the informational structures of Subsections 4.1 and 4.2.
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hand, investors must be willing to pay their individual transfers. To ensure their participation,

the mechanism is such that the entrepreneur’s subsidy, that is, the sum of individual transfers, is

strictly positive only if all investors accept to pay. This implies that the entrepreneur defaults in

the absence of the subsidy. Also, given that investors observe all offers when deciding whether

to pay or not, they can anticipate the entrepreneur’s behavior. Each investor prefers to contribute

whenever the cost to induce e = H is smaller than his loss following default. We construct

a subsidy scheme satisfying both requirements. Given this mechanism, no aggregate allocation

different from (Ic, Rc) can be supported in a symmetric equilibrium. The corresponding transfers

are simple: investors’ payments are linear and increasing in the entrepreneur’s investment unless

I = Ic, in which case they are null.25 This leaves (Ic, Rc) as the unique equilibrium aggregate

allocation.

To implement the above mechanism, the market designer only needs to observe investors’ par-

ticipation decisions on top of the realized investment I . The subsidy scheme therefore relies on

similar instruments compared to those available to investors.26 Also, in contrast with standard tax-

ation schemes, the mechanism cannot exclude non-participating agents from entering the market:

it relies on a voluntary contribution of investors. The question therefore arises of whether the same

subsidy scheme can be otherwise enforced by competing investors who individually design their

transfer schedules. Intuition suggests that this is not the case. Allowing investor i to pay a transfer

according to I is equivalent to letting him free to set a possibly negative repayment Ri(.). Since

we already allow repayments to take negative values in the general model of Section 2, the equi-

librium characterization of Proposition 3 would not be affected. We therefore stress the need for a

centralized entity with the power to commit to collect and redistribute resources according to the

volume of trades.
25To ensure equilibrium uniqueness in the investors’ participation subgame, we design transfers to guarantee that

participating is a dominant strategy. Precisely, each contributor is granted a reward if he participates and at least one
of the others does not.

26Indeed, financial covenants contingent on realized investment allow de facto to control the entrepreneur’s partici-
pation decision with every investor.
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5.2 Guarantee funds as subsidy mechanisms

The history of financial regulation offers many examples of privately financed mechanisms that

perform functions similar to those of our subsidy scheme. In modern futures markets, central

clearinghouses set up and manage guarantee funds to provide insurance against counterparty de-

fault (Kroszner (1999)).27 Credit markets also offer different types of rescue mechanisms sup-

ported by banks. During the Comptoir d’Escompte crisis in 1889 in Paris, the Banque de France

granted a loan to the insolvent Comptoir d’Escompte, asking other banks to provide a guarantee

to absorb losses on this loan (Hautcoeur et al. (2014)). A similar role was performed by the New

York Clearing House Association (NYCHA) before the creation of the Federal Reserve System in

1913. During a crisis, the NYCHA could allow its members to issue loan certificates, the payment

of which was guaranteed by the clearinghouse itself, that is, by the whole banking industry (Gor-

ton (1985)). More recently, the emerging European banking union has decided the creation of a

Single Resolution Fund that will be financed by European banks and that will help to restructure

distressed banks.28 Our analysis offers a rationale for market-based regulatory schemes that make

banks or financial intermediaries liable for the negative externalities stemming from their strategic

interactions. In the subsidy game, the threat to provide a subsidy has a disciplining effect on credit

markets, enhancing competition and decreasing rents. While it is hard to assess to what extent

actual guarantee mechanisms cope with counterparty externalities, some authors argue that they

do have a disciplinary role. In his analysis of the 1987 financial markets crash, Bernanke (1990)

points at the effectiveness of the clearinghouse institution as an insurance company. Riva and

White (2011) find evidence that during the nineteenth century, the number of brokers’ defaults at

the Paris Bourse decreases as the size of the guarantee fund relative to the volume of transactions

increases. Whether these insurance systems also affect the volume of trades and the size of the

market remains an open question.

Our mechanism shares important features with the above institutions. In particular, the subsidy

27OTC derivative markets can also organize some form of mutualization of losses across traders upon default of one
party. For instance, the stock brokers on the forward market at the Paris Bourse in the nineteenth century organized a
Common Fund to rescue defaulting brokers (Riva and White (2011)).

28Vice-President Michel Barnier, responsible for Internal Market and Services recently said: "To respond to the
financial crisis, we have worked hard to improve the financial system so that banks pay for themselves if they have
problems, and not the taxpayers. The detailed rules on resolution funds financed by the banking sector, adopted today,
are an important step to making that a reality." European Commission Press Release, October 21, 2014.
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scheme we suggest does not have the power to shut markets down: investors can refuse to subscribe

to the system of transfers, and still offer financial contracts. Relatedly, the European banking

union lets non-Euro-area banks free to participate to the Single Resolution Mechanism. Also, the

financial contributions of banks increase in the volume of the available investment. In practice,

the guarantee funds of clearinghouses are financed by members’ contributions that depend on the

volume of trades they generate, and therefore on their risk exposure.29 An important difference

with actual mechanisms is that our subsidy scheme does not involve a direct transfer from some

banks to others. It is therefore immune from the criticism that such bailouts create moral hazard

and induce the insured agents (banks or traders) to take excessive risk. Indeed, subsidizing the

entrepreneur when she invests too little does not provide incentives for banks to lend excessively.

6 Conclusion

This paper shows that investors’ competition over financial contracts incorporating exclusivity

clauses does not necessarily lead to efficient outcomes in the presence of side trading. That is,

letting investors free to design financial covenants may exacerbate the negative effects of the coun-

terparty externalities. Our results suggest new ways to empirically identify investors’ behaviors

and the associated market outcomes. In particular, to measure the impact of side trading exter-

nalities in capital markets, one should look into the entire profile of investors’ offers. Observing

financial contracts that, although not traded, discourage the entry of rivals, along with covenants

contingent on outside financing would provide (indirect) evidence of such externalities.

On the theoretical side, our analysis calls for further research in two directions. The first one

relates to the degree of observability of outside financing. We focus on the two extreme cases of

either fully unobservable or fully observable outside debt. However, it might be easier for investors

to observe cash flows rather than total debt. For instance, some liabilities may be hidden in off-

balance sheet items. This raises the question of whether cash flow-based covenants introduce new

strategic effects. Intuitively, it could be difficult for an investor to detect multiple trades if the

29These are recurrent features in the history of common funds: at the Paris Bourse in the nineteenth century, most
of the Common Fund’s revenue came from a stamp tax on the paper used by brokers for their operations (White
(2007)). In the US, the Board of Trade Clearing Corporation created in 1925 built its reserve fund from the clearing
fees charged to its members (Kroszner (1999)).
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observed cash flow only provides an imperfect signal of outside debt, which might undermine the

anticompetitive role of covenants.30 More generally, since accounting principles determine the

informativeness of financial variables, this analysis could provide novel insights on the economic

implications of accounting standards.

The other interesting extension would be to explicitly consider repeated lending relationships

in the presence of strategic default. In such contexts, covenants can threaten to reduce borrowers’

future financing capacity. Reinforcing this coercitive role over a long horizon could thereby en-

hance their procompetitive effect. At the same time, the opportunities to side-trade extend to future

periods, which could generate a novel source of market failure. Exploring this tradeoff is relevant

to our understanding of the relationship between debt constraints and the performance of dynamic

economies.

30This effect cannot be captured in our model, in which both variables are informationally equivalent.
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Appendix

We first state Lemma 1 which is used in most of our proofs.

Lemma 1 The following holds:

1. Let (M1,M2, ...,MN) be a profile of arbitrary menus. Any entrepreneur’s best response

leading to strategic default induces a strictly negative profit to each investor i = 1, 2, ..., N .

2. Let (M1,M2, ...,MN) be a profile of menus of bilateral contracts. Any entrepreneur’s best

response leading to e = L induces a strictly negative profit to each investor i = 1, 2, ..., N .

PROOF

1. Suppose that (M1,M2, ...,MN) is a profile of arbitrary menus, and let (Ii, Ri(.)) be the

contract chosen by the entrepreneur inMi in a given best response. If the entrepreneur strategically

defaults, the profit to investor i is Vi = πLG(
∑
i

Ii + A)
Ii∑
i

Ii
− Ii = Ii

(
πLG − 1 +

πLGA∑
i

Ii

)
. It is

immediate to check that Vi has the same sign as V =
∑
i

Vi = I
(
πLG− 1

)
+ πLGA. Observe also

that since the entrepreneur finds optimal to strategically default, then B(I + A) ≥ πHGA > A,

otherwise she would have not invested. We therefore have: V < I
(
πLG − 1

)
+ πLGA + B(I +

A)− A = (B + πLG− 1)(I + A) < 0. It follows that Vi < 0 for each i = 1, 2, ..., N .

2. Suppose next that (M1,M2, ...,MN) are menus of bilateral contracts. Let (Ii, Ri)i=1,2,...,N be

the array of entrepreneur’s optimal choices in each menu Mi in a given best response. By assump-

tion, (I, R) =
(∑
i

Ii,
∑
i

Ri

)
∈ L, which implies that U(I, R, L) ≥ U(I − Ii, R − Ri, L) for each

i = 1, 2, ..., N . To complete the proof, consider the case in which the entrepreneur’s best response

entails no strategic default. In this case, the former inequality is equivalent to
Ri

Ii
≤ B

πL
+G. The

profit to each investor i = 1, 2, ..., N is Vi = πLRi−Ii ≤ Ii(πL(
B

πL
+G)−1) = Ii(πLG+B−1) <

0, where the last inequality follows from Ii ≥ 0, and from (1). �

The following lemma characterizes the entrepreneur’s optimal choices in the bilateral contract-

ing setting of Section 3.

Lemma 2 Consider the bilateral contracting game of Section 3 and assume that the entrepreneur

chooses e = H . Then, for each given menu Mi one has:
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1. If choosing (0, 0) in Mi is optimal for the entrepreneur, then each (Ii, Ri) ∈ Mi\(0, 0) is

such that pi ≥ G.

2. If each (Ii, Ri) ∈ Mi\(0, 0) is such that pi > G, then (0, 0) is the unique optimal choice in

Mi for the entrepreneur.

PROOF: Consider a given menu Mi, and let pi =
Ri

Ii
be the price of every contract (Ii, Ri) ∈

Mi\(0, 0). The entrepreneur’s marginal rate of substitution is equal to G when e = H .

1. Assume that (0, 0) is an entrepreneur’s optimal choice inMi . If there is a contract (Ii, Ri) ∈

Mi such that pi =
Ri

Ii
< G, then

U(
∑
j 6=i

Ij + Ii,
∑
j 6=i

Rj +Ri, H) = πH
(
G(
∑
j 6=i

Ij + Ii + A)− (
∑
j 6=i

Rj +Ri)
)+ − A

= U
(∑
j 6=i

Ij,
∑
j 6=i

Rj, H
)

+ πH(GIi −Ri) > U
(∑
j 6=i

Ij,
∑
j 6=i

Rj, H
)
,

for each (
∑
j 6=i
Ij,
∑
j 6=i
Rj). This contradicts the assumption that (0, 0) is optimal in Mi.

2. Assume that each contract in Mi\(0, 0) is such that pi > G, and let (Ii, Ri) 6= (0, 0) be an

optimal choice in Mi. Then

U(
∑
j 6=i

Ij + Ii,
∑
j 6=i

Rj +Ri, H) = πH
(
G(
∑
j 6=i

Ij + Ii + A)− (
∑
j 6=i

Rj +Ri)
)+ − A

= U
(∑
j 6=i

Ij,
∑
j 6=i

Rj, H
)

+ πH(GIi −Ri) < U
(∑
j 6=i

Ij,
∑
j 6=i

Rj, H
)
,

for each (
∑
j 6=i
Ij,
∑
j 6=i
Rj). This contradicts the assumption that (Ii, Ri) is optimal in Mi. �

PROOF OF PROPOSITION 1 : We introduce the indirect utility functions

Ū−i(Ii, Ri, e) ≡ max

{
U
(
Ii +

∑
j 6=i

Ij, Ri +
∑
j 6=i

Rj, e
)

: (Ij, Rj) ∈Mj for all j 6= i

}
,

for i = 1, 2, ..., N . For a fixed profile of menus (M1,M2, ...,MN) and for a given effort e, the

function Ū−i(Ii, Ri, e) denotes the maximum payoff of the entrepreneur when she trades (Ii, Ri)

with investor i and optimally chooses one contract in each of the menus offered by his rivals. Thus,
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if (I∗, R∗) is an equilibrium allocation, we haveU(I∗, R∗, H) = Ū−i(I
∗
i , R

∗
i , H) for i = 1, 2, ..., N .

Observe that each Ū−i function is continuous in (Ii, Ri) by Berge’s maximum theorem.

We now develop the proof, letting (M∗
1 ,M

∗
2 , ...,M

∗
N) be the equilibrium menus. If (I∗, R∗) ∈

Ψ, Proposition 1 is straightforward. Consider the case (I∗, R∗) 6∈ Ψ. If (I∗, R∗) 6= (0, 0) there

exists at least one investor i such that the entrepreneur chooses a contract (I∗i , R
∗
i ) 6= (0, 0) in

M∗
i . It follows from Lemma 2 that

R∗i
I∗i
≤ G. Assume by contradiction that U(I∗, R∗, H) >

max
((Ii,Ri)∈Mi)i=1,...,N

U(I, R, L). Then, since max
((Ii,Ri)∈Mi)i=1,...,N

U(I, R, L) ≥ Ū−i(I
∗
i , R

∗
i , L), we get

U(I∗, R∗, H) = Ū−i(I
∗
i , R

∗
i , H) > Ū−i(I

∗
i , R

∗
i , L). (7)

Suppose now that investor i deviates to the menu M ε
i = {(0, 0), (I∗i + ε, R∗i +

ε

πH
+ ε2)} with

ε > 0. Observe that
R∗i +

ε

πH
+ ε2

I∗i + ε
< max

{R∗i
I∗i
,

ε

πH
+ ε2

ε

}
≤ G for ε small. It follows from

Lemma 2 that the entrepreneur chooses (I∗i +ε, R∗i +
ε

πH
+ε2) in M ε

i . Moreover, given (7) and the

continuity of Ū−i, we have Ū−i(I∗i + ε, R∗i +
ε

πH
+ ε2, H) > Ū−i(I

∗
i + ε, R∗i +

ε

πH
+ ε2, L) which

guarantees that the entrepreneur chooses e = H at the deviation stage. Since πH(R∗i +
ε

πH
+ ε2)−

I∗i − ε > πHR
∗
i − I∗i the deviation is profitable, which contradicts the assumption that (I∗, R∗) is

an equilibrium aggregate allocation. If (I∗, R∗) = (0, 0), the same reasoning applies: letting any

investor i deviate to M ε
i = {(0, 0), (ε,

ε

πH
+ ε2)}, it is immediate to check that e = H is chosen

and that the deviation is profitable. In particular, the proof establishes the stronger result

∀i = 1, 2, . . . , N : Ū−i(I
∗
i , R

∗
i , H) = Ū−i(I

∗
i , R

∗
i , L) = max

((Ii,Ri)∈Mi)i=1,...,N

U(I, R, L). (8)

�

PROOF OF COROLLARY 1: Consider the equilibrium menus (M∗
1 ,M

∗
2 , ...,M

∗
N). Let zji ∈ M∗

j

be an optimal choice in M∗
j , given that the entrepreneur has chosen (I∗i , R

∗
i ) in M∗

i , and selects

e = L. In particular, we denote zii = (I∗i , R
∗
i ), and we let Zi =

∑
j

zji ∈ L be the corresponding

aggregate allocation. Consider now the vector dji =
(
zji − (I∗j , R

∗
j )
)
≡ (αji, βji). Given the

definition of Zi, we have Zi = (I∗, R∗) +
∑
j

dji. The system of equations in (8) can hence be

rewritten as
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∀i = 1, 2, . . . , N : U(I∗, R∗, H) = U(Zi, L) = U
(
(I∗, R∗) +

∑
j

dji, L
)
. (9)

Suppose, by contradiction, that (I∗, R∗) 6∈ Ψ. Then, for (9) to be satisfied, it should be that∑
j

dji ∈ R2
++ for each i. Take any (i, j) ∈ {1, 2, .., N}2. See that each allocation Zj + dji =

Zj + (zji − (I∗j , R
∗
j )) is available: the entrepreneur can achieve it by trading zij in each menu M∗

i ,

with i 6= j, and zji instead of (I∗j , R
∗
j ) in M∗

j . In a similar way, each allocation Zi − dji can be

achieved by letting the entrepreneur trade the same contracts needed to obtain Zi, but choosing

(I∗j , R
∗
j ) instead of zji in M∗

j . Condition (9) therefore implies that

∀(i, j) ∈ {1, 2, .., N}2 : U(Zj + dji, L) ≤ U(Zj, L), (10)

∀(i, j) ∈ {1, 2, .., N}2 : U(Zi − dji, L) ≤ U(Zi, L). (11)

We now show that, given (10) and (11), each dji vector is such that

∀(i, j) ∈ {1, 2, .., N}2 : βji ≥ (G+
B

πL
)αji. (12)

To establish the result, it is useful to denote D = {(I, R) ∈ R2
+ : R > G(I + A)}. Consider

any (i, j) pair. Suppose first that αji > 0. In this case, (10) implies that Zj 6∈ D and that βji ≥

(G+
B

πL
)αji, otherwise the payoff associated to Zj + dji would be greater than that corresponding

to Zj , and Zj would fail to be optimal. Suppose next that αji < 0. The same reasoning (starting

by considering Zj − dji) guarantees that (11) implies that Zi 6∈ D and that βji ≥ (G +
B

πL
)αji.

Suppose finally that αji = 0. Then, by definition, zji = (I∗j , R
∗
j + βji) ∈ M∗

j . Since (I∗j , R
∗
j ) is

optimal in M∗
j , (10) implies that βji ≥ 0 at equilibrium. This in turn establishes (12).

Taking the sum of all the inequalities (12), we get
∑
j

βji ≥ (G+
B

πL
)
∑
j

αji. That is, the vector
∑
j

dji

has a slope greater than or equal to G +
B

πL
. It hence follows from (9) that if (I∗, R∗) 6∈ Ψ, then

for each i ∈ {1, 2, ..., N}, Zi ∈ D. Take now any i. Since
∑
j

dji ∈ R2
++ whenever (I∗, R∗) 6∈ Ψ,

there exists an associated j such that αji > 0. Condition (10) then implies that Zj /∈ D, which

contradicts the assumption that for each i ∈ {1, 2, ..., N} Zi ∈ D, and completes the proof. �

PROOF OF PROPOSITION 2:
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Mild moral hazard : B ≤ πHG − 1. We show that any aggregate allocation (I∗, R∗) ∈ Ψ

is supported at equilibrium by the following strategies. Investor 1 offers M∗
1 = {(I∗, R∗), (0, 0)},

investor 2 offers M∗
2 = {(Ī , R̄), (0, 0)}. The investment level Ī =

πL
∆π

(I∗ + A) is such that

U(I∗, R∗, H) = U(I∗, R∗, L) = B(I∗ + Ī + A)− A, (13)

and R̄ = G(I∗ + Ī + A). Each other investor i = 3, 4, ..., N offers M∗
i = {(0, 0)}.

Investing only Ī is not an optimal choice for the entrepreneur. This is because, given (1), we

have
R̄

Ī
= G+

G∆π

πL
> G+

B

πL
implying that, unless she defaults, the entrepreneur gets a payoff

smaller than the reservation one. Observe also that, given R̄, if I∗ + Ī is invested the entrepreneur

defaults and gets a payoff B(I∗ + Ī + A)− A. From (13), choosing (I∗, R∗) in M∗
1 , (0, 0) in M∗

2

and selecting e = H is an optimal choice for the entrepreneur. We now prove that no investor has

a unilateral profitable deviation.

Deviations of investor 1. Without loss of generality, any deviation by investor 1 can be repre-

sented by a menuM ′
1 = {(I ′1, R′1), (0, 0)}. Given Lemma 1, any profitable deviation should induce

the entrepreneur to choose e = H . In this case, the deviation is profitable only if

πHR
′
1 − I ′1 > πHR

∗ − I∗. (14)

Since (I∗, R∗) ∈ Ψ, (4) implies that (14) is satisfied only if I ′1 < I∗ and R′1 < R∗. We therefore

write (I ′1, R
′
1) = (I∗ − ε, R∗ − ηε), with η ∈ (G − B

∆π
,

1

πH
) and ε ∈ (0,

GI∗ −R∗

G− η
). The lower

bound on η ensures that, if she only trades the deviating contract, the entrepreneur selects e = H ,

while the upper bound ensures that (14) is satisfied. The upper bound on ε ensures that, if she only

trades the deviating contract, the entrepreneur’s payoff is above her reservation one. It follows

from Lemma 2 that when she chooses e = H , the entrepreneur selects (I ′1, R
′
1) in M ′

1, and (0, 0)

in M∗
2 , since

R̄

Ī
> G. Given η and ε, choosing only (I ′1, R

′
1) optimally induces e = H . Once

again, when choosing e = L, she prefers not to invest rather than investing only Ī . She therefore

strategically defaults, since πL
(
G(I ′ + Ī +A)− (R′ + R̄)

)
< 0. Comparing her respective payoff

under e = H and e = L, one gets

πH(G(I∗ − ε+ A)− (R∗ − η ε)) = B(I∗ + Ī + A)− πH(G− η)ε < B(I∗ − ε+ Ī + A),

where the last inequality obtains since the assumption of mild moral hazard together with η <
1

πH
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and ε > 0 imply that B ≤ πH(G− 1/πH) < πH(G− η). Thus, the entrepreneur finds optimal to

default, contradicting the assumption that e = H is an optimal choice.

Deviations of investor 2. Let M ′
2 = {(I ′2, R′2), (0, 0)} be a deviating menu of investor 2. Once

again, we restrict attention to deviations inducing the entrepreneur to choose e = H . In that case,

it follows from Lemma 2 that for (I ′2, R
′
2) to be traded by the entrepreneur, we must have

R′2
I ′2
≤ G.

Since (I∗, R∗) ∈ F , we also have
R∗

I∗
≤ G. It follows that

U(I∗ + I ′2, R
∗ +R′2, H) ≥ max{U(I ′2, R

′
2, H), U(I∗, R∗, H)}.

For (I ′2, R
′
2) to be a profitable deviation, it must be

R′2
I ′2

>
1

πH
. It then follows from (4) that

R′2
I ′2

> G − B

∆π
and U(I∗ + I ′2, R

∗ + R′2, L) > U(I∗ + I ′2, R
∗ + R′2, H). This implies that the

entrepreneur chooses e = L following the deviation to M ′
2, which constitutes a contradiction. The

same reasoning yields that none of the inactive investors i = 3, ..., N has a unilateral deviation.

Strong moral hazard: B > πHG − 1. First, we show that no aggregate allocation different

from (Im, Rm) can be supported at equilibrium. Suppose that (I∗, R∗) ∈ Ψ \ {(Im, Rm)} is an

aggregate equilibrium allocation. There must hence be at least one traded contract, say (I∗i , R
∗
i ),

of price pi < G. We then show that investor i can profitably deviate to M ′
i = {(0, 0), (I∗i − ε, R∗i −

ηε)}, with η ∈ (G − B

∆π
,

1

πH
) and ε small enough. If the entrepreneur selects e = H , then, by

Lemma 1, the contract (I∗i −ε, R∗i −ηε) is chosen in the deviating menu. In that case, the deviation

is profitable by construction. The maximum payoff available at the deviation stage when e = H is

selected is
Ū−i(I

∗
i − ε, R∗i − ηε,H) = ε πH(η −G) + Ū−i(I

∗
i , R

∗
i , H),

and the maximum payoff available at the deviation stage if e = L is chosen is

Ū−i(I
∗
i − ε, R∗i − ηε, L) =

 ε πL(η −G)−Bε+ Ū−i(I
∗
i , R

∗
i , L) if no default,

−Bε+ Ū−i(I
∗
i , R

∗
i , L) if default.

In case of no default, following (8), we have that Ū−i(I∗i − ε, R∗i − ηε,H) > Ū−i(I
∗
i − ε, R∗i −

ηε, L) ⇔ η − G − B

∆π
> 0, which is satisfied by definition of strong moral hazard. Similarly, in

case of default, Ū−i(I∗i − ε, R∗i −ηε,H) > Ū−i(I
∗
i − ε, R∗i −ηε, L)⇔ πH(η−G) +B > 0, which

is satisfied by construction whenever B > πHG− 1. Thus, (I∗, R∗) ∈ Ψ \ {(Im, Rm)} cannot be
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an equilibrium allocation.

Second, we show that (Im, Rm) is supported at equilibrium. Consider the following strate-

gies. Investor 1 offers M1 = {(Im, Rm), (0, 0)} and each other investor i = 2, ..., N offers

Mi = {(0, 0)}. Then, it is a best reply for the entrepreneur to select the contract (Im, Rm) in

M1 and to choose e = H . Since investor 1 earns the monopolistic profit, only deviations of the

inactive investors must be considered. The same reasoning developed for the deviations of investor

2 in the mild moral hazard case guarantees that no investor has a profitable deviation. �

PROOF OF PROPOSITION 3: Take any (I∗, R∗) ∈ F such that I∗ ≥ Im and consider the follow-

ing profile of strategies. Each investor i = 1, 2, ..., N offersM∗ = {(0, 0);
(I∗
N
,R∗(.)

)
;
( Î
N
, R̂(.)

)
},

with R∗(I) = G(I + A) for I /∈ {I∗, I
∗

N
}, and

R∗(I) =


R∗

N
if I = I∗,

R∗ − N − 1

N
GI∗ if I =

I∗

N
.

The investment level Î is such that

U(I∗, R∗, H) = B(Î + A)− A, (15)

which guarantees that Î ≥ I∗ ≥ 0,31 and R̂(I) = G(I + A) ∀I ∈ R+. It is immediate to verify

that choosing the investment
I∗

N
in each menu and selecting e = H is an optimal choice for the

entrepreneur. Observe also that the repayment R∗(
I∗

N
) guarantees that the entrepreneur achieves

her equilibrium payoff by trading with only one investor. This is turn implies that U(I∗, R∗, H) is

available to the entrepreneur if any of the investors withdraws his offer. Consider now investors’

deviations. Without loss of generality, any unilateral deviation can be represented by a menu

M ′ = {
(I∗
N

+ I ′,
R∗

N
+ R′(.)

)
, (0, 0)} with I ′ ∈

[
−I
∗

N
, Ic − I∗

N

]
. Since πL = 0, it follows from

Lemma 1 that any profitable deviation necessarily induces e = H . We then have that

R′(I) >
1

πH
I ′, (16)

with I being the aggregate investment traded at the deviation stage. If, following the deviation, the

31As U(I∗, R∗, H) ≥ B(I∗ +A)−A.
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entrepreneur chooses e = L, then, as πL = 0, and given (15), she gets

Usd = U(I∗, R∗, H) +B
(
I ′ +

I∗

N
− Î

N

)
.

Consider the entrepreneur’s payoff when she chooses e = H . Assume first that several contracts

are traded at the deviation stage. Given equilibrium covenants, e = H is an optimal choice only

if the corresponding investment is I = I∗. The deviating contract should hence be such that

I ′ = k
I∗

N
, with k ∈ {1, ..., N − 2} and N − k − 1 being the number of non deviating lenders who

actively trade at the deviation stage.32 The corresponding entrepreneur’s payoff is

πH
(
G(I∗ + A)− N − k

N
R∗ −R′(I∗)

)+ − A < U(I∗, R∗, H) +
k

N
(πHR

∗ − I∗),

where the inequality follows from (16). Observe that, since πHR∗ − I∗ = (πHG − 1)I∗ −

(U(I∗, R∗, H) − U(0)), the entrepreneur strategically defaults if
k

N

(
U(I∗, R∗, H) − U(0)

)
+

B

N
(I∗ − Î) ≥ k

N
(πHG− 1−B)I∗ or, equivalently, if

U(I∗, R∗, H)− U(0)− B

k
(Î − I∗) ≥ (πHG− 1−B)I∗, (17)

which right-hand side is negative because I∗ ≥ 0, and B > πHG− 1.33 Since, for any (I∗, R∗) ∈

F , the left-hand side of (17) is increasing in k, and the right-hand side is decreasing in I∗, a

sufficient condition for the inequality to hold for all (k, I∗) is that it is satisfied for k = 1 when the

right-hand side equal to zero. That is, we have to check that

U(I∗, R∗, H)− U(0)−B(Î − I∗) ≥ 0, (18)

which, given (15), is equivalent to B(I∗ + A)− A ≥ U(0)⇔ I∗ ≥ Im since πL = 0.

Suppose now that the entrepreneur only trades with the deviating investor, that is I =
I∗

N
+ I ′.

In this case, choosing e = H yields the payoff

πH
(
G(
I∗

N
+ I ′+A)− R∗

N
−R′(I

∗

N
+ I ′)

)+−A <
U(0)(N − 1) + U(I∗, R∗, H)

N
+ (πHG− 1)I ′.

Since the entrepreneur’s equilibrium utility remains available at the deviation stage, the right-hand

32Observe that one cannot have N − 1 non deviating lenders who actively trade. In that case, I ′ is equal to zero and

the deviating lender who offers
I∗

N
cannot increase his profit since U(I∗, R∗, H) is available to the entrepreneur at the

deviation stage.
33The last inequality follows from (4) when πL = 0.
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side of the last inequality must a fortiori be strictly greater than U(I∗, R∗, H), which implies that

I ′ > 0. The entrepreneur therefore finds optimal to strategically default if

N − 1

N

(
U(I∗, R∗, H)− U(0)

)
− B

N
(Î − I∗) ≥ (πHG− 1−B)I ′. (19)

Since N ≥ 2, and because πHG− 1−B < 0 when πL = 0, any (I∗, R∗) which satisfies (18) also

satisfies (19). This implies that each (I∗, R∗) ∈ F such that I∗ ≥ Im is supported at equilibrium. �

PROOF OF PROPOSITIONS 4 and 5: See additional Appendix A.

PROOF OF PROPOSITION 6: We design the schedules T1(.), ..., Tk(.), ..., TN(.), which identify

the transfers to be paid by investors if the project succeeds contingent on the array of investors’

participation decisions. Fix an arbitrary k ∈ {1, . . . , N}. For each investor i 6= k, we let

Ti(I) =


1

πH

1− δ
N

I if I ∈ [0, Ic),

0 if I ≥ Ic,
(20)

with δ ∈ (0, 1−B), if all investors agree to participate. In addition, we let

Ti(I) =

 −ν if I ∈ [0, Ic),

0 if I ≥ Ic,
(21)

for some ν > 0, if investor i agrees to participate and at least one of the others does not. In this

case, investor i receives a positive reward. Finally, Ti(I) = 0 for all I ≥ 0 if investor i does not

participate. Consider then investor k. We have Tk(I) = 0 ∀I ≥ 0 if all remaining N − 1 investors

pay for the transfer, and Tk(I) = Kν ∀I ≥ 0 if only K of them decide to do so. In this last case,

investor k effectively rewards his competitors, which guarantees feasibility of the mechanism. The

subsidy to the entrepreneur is therefore

T (I) =


1

πH

N − 1

N
(1− δ)I if all investors participate,

0 if at least one investor does not participate.
(22)

The proof is by contradiction. Consider any equilibrium allocation (I∗, R∗) 6= (Ic, Rc) supported

by investors’ menus M∗
1 = ... = M∗

N . In a symmetric equilibrium, (I∗i , R
∗
i ) = (

I∗

N
,
R∗

N
) for

each i and each investor earns the same profit. Thus, given that the transfer schedules are not
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symmetric, no transfer is provided at equilibrium and we have U(I∗, R∗, H) ≥ B(Î + A) − A,

with Î =
∑
i

Îi, and Îi =
Î

N
being the highest investment level in M∗

i . We show that, given the

schedules (T1(.), T2(.), ..., TN(.)), investor k has a profitable deviation. Suppose that he deviates

to the menu M ′
k = ((0, 0), (I ′k + ε, R′k(.))) with I ′k = I∗ − N − 1

N

πHR
∗ − I∗

πHG− 1
and ε > 0. The

function R′k(.) is such that

R′k(I) =


R∗

N
+

1

πH

(
I ′k −

I∗

N
+ ε
)

+ ε2 if I = I
′

k + ε,

G(I + A) if I 6= I
′

k + ε.

For ε = 0, the pair (I ′k + ε, R′k(I
′
k + ε)) is such that U(I ′k, R

′
k(I
′
k), H) = U(I∗, R∗, H) and

πHR
′
k(I
′
k) − I ′k = πH

R∗

N
− I∗

N
. That is, (I ′k + ε, R′k(I

′
k + ε)) lies at the intersection of the en-

trepreneur’s equilibrium indifference curve with the investor k’s equilibrium isoprofit line. In

addition, since (I∗, R∗) 6= (Ic, Rc), (I ′k + ε, R′k(I
′
k + ε)) ∈ int(F) for ε small enough. The devi-

ation is designed to induce the entrepreneur to trade (I ′k + ε, R′k(I
′
k + ε)) and to choose e = H .

It is immediate to see that, given M ′
k, if the entrepreneur chooses e = H , she can get a payoff

above the equilibrium one by choosing (I ′k + ε, R′k(I
′
k + ε)). In this case, however, given R′k(.),

she finds optimal to trade with investor k alone. It follows that, as long as ε > 0, M ′
k is a profitable

deviation for investor k whenever e = H is chosen. We now show that if investors agree to finance

the subsidy to the entrepreneur, she strictly prefers to choose e = H following this deviation. This

is indeed the case if

U(I∗, R∗, H) + (πHG− 1− ε)ε+
N − 1

N
(1− δ)(I ′k + ε) > B(Î + A)− A+B

(
I ′k + ε− Î

N

)
,

where the left-hand side is equal to U(I ′k + ε, R′k(I
′
k + ε), H). Choose ε small enough to ensure

(πHG− 1− ε) > 0; since
I ′k
N
≤ I∗

N
≤ Î

N
, a sufficient condition to verify the above inequality is

U(I∗, R∗, H)− (B(Î + A)− A) +
N − 1

N
(1− δ)I ′k > B

N − 1

N
I ′k,

which is satisfied because U(I∗, R∗, H) ≥ B(Î + A)− A, and δ < 1−B.

Consider then the investors’ participation subgame. Given (20) and (21), it is a dominant

strategy for each nondeviating investor i 6= k to pay for the transfer. In particular, paying is an

optimal choice when investor i anticipates that all other investors pay if
1− δ
N

(I ′k + ε) <
Î

N
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which, given that Î > 0, δ < 1, and I ′k ≤ I∗ ≤ Î , is satisfied for ε sufficiently small. It follows that

providing the subsidy to the entrepreneur is the unique equilibrium outcome of the continuation

game. This in turn guarantees that M ′
k induces the entrepreneur to choose e = H , and constitutes

a profitable deviation for investor k.

To complete the proof, see that given the schedules (T1(.), T2(.), ..., TN(.)), there exists a profile

of symmetric menus (M∗
1 , ...,M

∗
N) which supports (Ic, Rc) as an equilibrium allocation. This

follows straightforwardly from the fact that T (I) = 0 for I ≥ Ic and that (Ic, Rc) can be supported

at equilibrium with the symmetric strategies exhibited in Proposition 3.

The proof extends to the case in which investors can write covenants contingent on the initial

debt I0 (see additional Appendix A). �
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FOR ONLINE PUBLICATION

ADDITIONAL APPENDIX A

PROOF OF PROPOSITION 4: Define

γ ≡ max
{ G

B(G− B

∆π
)
,

G

(πHG− 1)(G− B

∆π
)
,

(
πHG−B

B

)2
1

πH(G− B

∆π
)

}
> 0,

and

UN = UB +
2γ√
N − 1

(U(Ic, Rc, H)− UB) with UB = max{U(0), U(Ic, Rc, H)−BIc}.

Let us consider a number of investors N satisfying N > N = (2γ + 1)2. Observe that UN <

U(Ic, Rc, H) for any N > N . Note also that, when B > πHG − 1, we have UB = U(0) so that

lim
N−→∞

UN = U(0) as stated in Proposition 4.

We exhibit a profile of investors’ strategies that supports any allocation (I∗, R∗) satisfying (6) at

equilibrium. Each investor i = {1, 2, ..., K}, with K ≡ b
√
Nc, offers M∗

i = {(0, 0);
(I∗
K
,R∗i (.)

)
},

with R∗i (I) = G(I + A) for I /∈ {I∗, I
∗

K
}, and

R∗i (I
∗) =

R∗

K
,

R∗i (
I∗

K
) = (R∗ − K − 1

K
GI∗).

Each investor j = {K + 1, ..., N} offers M∗
j = {(0, 0);

( Ī

N −K
, R̄j(.)

)
} with R̄j(I) = G(I +

A) ∀I ∈ R+. The investment level Ī is such that

U(I∗, R∗, H) = B(I∗ + Ī + A)− A. (A.1)

Choosing
I∗

K
in each menu and selecting e = H is an optimal choice for the entrepreneur. Observe

also that the repayment R∗i (
I∗

K
) guarantees that U(I∗, R∗, H) is available to the entrepreneur if any

of the investors withdraws his offer.

Now consider the investors’ deviations. We first remark that every profitable deviation must

induce the entrepreneur to choose e = H . Given Lemma 1, a single investor may achieve a positive

profit by inducing e = L only if the entrepreneur trades several contracts out of equilibrium and

does not default. Given the equilibrium covenants, this is possible only if she takes up an aggregate

loan of I∗ and chooses e = L, which yields the entrepreneur a payoff smaller than the available

equilibrium one, and cannot be an optimal choice.
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We next show that there are not unilaterally profitable deviations for investors, which sustains

the allocation (I∗, R∗) at equilibrium. In particular, a deviation of investor i ∈ {1, · · · , K} can be

characterized, without loss of generality, by the menu M ′
i = {

(I∗
K

+ I ′i,
R∗

K
+R′i(.)

)
, (0, 0)}, with

I ′i ∈
[
−I
∗

K
, Ic − I∗

K

]
. Similarly, a deviation of any investor j ∈ {K + 1, · · · , N} can be charac-

terized by the menu M ′
j = {

( Ī

N −K
+ I ′j, R

′
j(.)
)
, (0, 0)}, with I ′j ∈

[
− Ī

N −K
, Ic − Ī

N −K

]
.

Observe that for any such deviation to be profitable when the entrepreneur chooses the aggregate

investment I and the effort e = H , one needs that

R′i(I) >
1

πH
I ′i, R′j(I) >

1

πH

(
I ′j +

Ī

N −K

)
, (A.2)

for i ∈ {1, · · · , K}, j ∈ {K + 1, · · · , N}. If, following any such deviation, the entrepreneur

defaults, her payoff is
Usd = U(I∗, R∗, H) +BI ′h,

with h = i, j. We now evaluate the entrepreneur’s payoff when e = H is chosen.

First, consider a deviation of an active investor i. If the entrepreneur only trades with investor

i at the deviation stage, her payoff is

πH
(
G(
I∗

K
+I ′i+A)−R

∗

K
−R′i(I ′i+

I∗

K
)
)+−A <

K − 1

K
U(0)+

U(I∗, R∗, H)

K
+I ′i(πHG−1), (A.3)

where the inequality follows from (A.2). Since the equilibrium utility is available at the deviation

stage, the right-hand side of (A.3) must be strictly larger than U(I∗, R∗, H), which implies that

I ′i > 0. Thus, if Usd is greater than the right-hand side of (A.3), the entrepreneur finds it optimal to

strategically default. This is the case whenever

K − 1

K

(
U(I∗, R∗, H)− U(0)

)
≥ (πHG− 1−B)I ′i. (A.4)

We show that each (I∗, R∗) ∈ F satisfying (6) also satisfies (A.4). We consider two cases:

1. If B > πHG − 1, then since the right-hand side of (A.4) is negative for each I ′i > 0, (A.4) is

satisfied by any (I∗, R∗) ∈ F .

2. If B ≤ πHG− 1, a sufficient condition for (A.4) to hold is

U(I∗, R∗, H)− UB ≥
1

K − 1
(UB − U(0)), (A.5)

in which I ′i is replaced by Ic in (A.4). Note that, as K − 1 ≥
√
N − 1, we have that

2√
N − 1

≥
1

K − 1
. Moreover, as

42



γ ≥ G

B(G− B

∆π
)
>
πHG

B
>
πHG− 1−B

B
=

UB − U(0)

U(Ic, Rc, H)− UB
,

condition (6) implies (A.5) thus the result.

If several contracts are traded at the deviation stage, then, given the equilibrium covenants,

e = H is an optimal choice only if the aggregate investment is I∗. In this case, we necessarily have

I ′i = k
I∗

K
, with k ∈ {1, ..., K − 2}. The entrepreneur’s payoff when e = H is chosen is then

πH
(
G(I∗+A)− [K − (k + 1)] + 1

K
R∗−R′i(I∗)

)
−A < U(I∗, R∗, H) +

k

K
(πHR

∗− I∗), (A.6)

where the inequality follows from (A.2). The entrepreneur strategically defaults if Usd is greater

than the value in the right-hand side of (A.6) which, since πHR∗−I∗ = (πHG−1)I∗−(U(I∗, R∗, H)−
U(0)), yields

k

K

(
U(I∗, R∗, H)− U(0)

)
≥ k

K
(πHG− 1−B)I∗. (A.7)

Since each (I∗, R∗) ∈ F satisfying (6) is such that U(I∗, R∗, H) ≥ UB, any of these allocations

also satisfies (A.7).

Suppose now that an inactive investor j deviates. If the entrepreneur only trades with investor

j at the deviation stage, given (A.2), her payoff when e = H is chosen is bounded above by

U(0) + (πHG−1)
( Ī

N −K
+ I ′j

)
. The entrepreneur finds therefore optimal to strategically default

if

U(I∗, R∗, H)− U(0) ≥ I ′j(πHG− 1−B) +
Ī

N −K
(πHG− 1). (A.8)

From (A.1), we get

BĪ ≤ (πHG− 1−B)I∗ + U(0) + (1−B)A. (A.9)

Given (A.9), a sufficient condition for (A.8) is then

U(I∗, R∗, H)− U(0) ≥(πHG− 1−B)I ′j

+
1

N −K
πHG− 1

B

(
U(0) + (1−B)A+ (πHG− 1−B)I∗

)
.

(A.10)

We show that each (I∗, R∗) ∈ F satisfying (6) also satisfies (A.10). We consider two cases:

1. If B > πHG−1, we remark that the inequality U(I∗, R∗, H)−U(0) ≥ (− Ī

N −K
)(πHG−1−
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B) +
Ī

N −K
(πHG− 1) = B

Ī

N −K
is weaker than (A.8). Indeed, we obtain the right-hand side

by replacing in (A.8) I ′j by its lower bound − Ī

N −K
. Given (A.9), and since πHG− 1− B < 0,

(A.8) is a fortiori weaker than U(I∗, R∗, H) − U(0) ≥ 1

N −K
(U(0) + (1−B)A), which in

turn implies (A.10). To show that this inequality holds for each (I∗, R∗) ∈ F , observe that,

since N ≥ 3 by construction, we get
2√

N − 1
≥ 1

N −
√
N − 1

≥ 1

N −K
. In addition, using

πHG− 1 < B < 1 we have

γ ≥ G

(πHG− 1)(G− B

∆π
)
>

(πHG−B)

(
1

πH
− (G− B

∆π
)

)
(πHG− 1)(G− B

∆π
)

=
(πHG−B)A

(πHG− 1)Ic
=

U(0) + (1−B)A

U(Ic, Rc, H)− U(0)
.

Condition (6) implies then that

U(I∗, R∗, H)−U(0) ≥ 1

N −K
U(0) + (1−B)A

U(Ic, Rc, H)− U(0)
(U(Ic, Rc, H)−U(0)) =

1

N −K
(U(0)+(1−B)A),

thus the result.

2. If B ≤ πHG− 1, replacing I ′j and I∗ by Ic, a sufficient condition for (A.10) is

U(I∗, R∗, H)− U(0) ≥ (UB − U(0)) +
1

N −K
πHG− 1

B

(
UB+(1−B)A

)
.

As in the former case,
2√

N − 1
≥ 1

N −K
. Moreover,

γ ≥
(
πHG−B

B

)2
1

πH(G− B

∆π
)
≥
(
πHG− 1

B

)(
πHG−B

B

)1 +

1

πH
− (G− B

∆π
)

(G− B

∆π
)


≥
(
πHG− 1

B

)(
πHG−B − 1

B
+
πHG−B

B

A

Ic

)
≥ πHG− 1

B

(πHG− 1−B)Ic + A(πHG−B)

BIc
=
πHG− 1

B

UB + (1−B)A

U(Ic, Rc, H)− UB
. (A.11)

Then, (6) implies that

U(I∗, R∗, H)− UB ≥
1

N −K
πHG− 1

B

UB + (1−B)A

U(Ic, Rc, H)− UB
(U(Ic, Rc, H)− UB),

thus the result.

If several contracts are traded at the deviation stage, then, given the equilibrium covenants,
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e = H is an optimal choice only if the aggregate investment is I∗. In this case, we necessarily have

I ′j = k
I∗

K
− Ī

N −K
, with k ∈ {1, ..., K − 1}. The entrepreneur’s payoff when e = H is chosen is

then

πH
(
G(I∗ + A)− K − k

K
R∗ −R′j(I∗)

)
− A ≤ U(I∗, R∗, H) +

k

K
(πHR

∗ − I∗), (A.12)

where the inequality follows from (A.2). The entrepreneur finds optimal to strategically default if

Usd is greater than the value in the right-hand side of (A.12), which is the case if

B
( k
K
I∗ − Ī

N −K
)
≥ k

K
(πHR

∗ − I∗).

Using (A.9) and πHR∗ − I∗ = (πHG − 1)I∗ − (U(I∗, R∗, H) − U(0)), a sufficient condition for

(A.12) is

k

K

(
(1+B−πHG)I∗+U(I∗, R∗, H)−U(0)

)
≥ 1

N −K
((πHG− 1−B)I∗ + U(0) + (1−B)A) .

(A.13)

The left-hand side of (A.13) is increasing in k. This is straightforward ifB > πHG−1. In the case

B ≤ πHG− 1, the result follows from U(I∗, R∗, H)− U(0) ≥ UB − U(0) = (πHG− 1− B)Ic

and (Ic − I∗) ≥ 0. It is hence enough to verify (A.13) for k = 1, that is,

U(I∗, R∗, H)− U(0) ≥ K

N −K
(U(0)+(1−B)A) +

N

N −K
(πHG− 1−B)I∗. (A.14)

We show that each (I∗, R∗) ∈ F satisfying (6) also satisfies (A.14). We consider two cases:

1. If B > πHG− 1, we show that U(I∗, R∗, H)− U(0) ≥ K

N −K
(U(0) + A), which is stronger

than (A.14), is satisfied. Note that (
√
N − 1)2 ≥ 0, or equivalently, 2N − 2

√
N ≥ N − 1. This

implies that
2√

N − 1
≥
√
N + 1

N −
√
N
≥ K

N −K
. In addition,

γ ≥ G

(πHG− 1)(G− B

∆π
)

=
πHG

πHG− 1

1/πH

G− B

∆π

≥ πHG

πHG− 1

A

Ic
=

U(0) + A

U(Ic, Rc, H)− U(0)
.

To conclude, observe that (6) implies

U(I∗, R∗, H)− U(0) ≥ K

N −K
U(0) + A

U(Ic, Rc, H)− U(0)
(U(Ic, Rc, H)− U(0)).

2. If B ≤ πHG− 1, we remark that
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K

N −K
(U(0)+(1−B)A) +N(πHG− 1−B)I∗

≤ K

N −K
(U(0) + (1−B)A) +N(UB − U(0)) = UB − U(0) +

K

N −K
(UB + (1−B)A) .

We show that U(I∗, R∗, H)− UB ≥
K

N −K
(UB + (1−B)A), which is stronger than (A.14). As

in the former case, we have
2√

N − 1
≥ K

N −K
. Then, using (A.11), condition (6) implies that

U(I∗, R∗, H)−UB ≥
K

N −K
UB + (1−B)A

U(Ic, Rc, H)− UB
(U(Ic, Rc, H)−UB) =

K

N −K
(UB+(1−B)A).

Thus, any allocation (I∗, R∗) ∈ F satisfying (6) also satisfies (A.4), (A.7), (A.10), and (A.14). This

proves that any such allocation is supported at equilibrium by the investors’ strategies M∗
1 , ...,M

∗
N .

�

PROOF OF PROPOSITION 5: We extend the results of Proposition 3 and Proposition 4 to the case

in which covenants can be contingent on the initial debt I0. Assume πL = 0, take any (I∗, R∗) ∈ F
such that I∗ ≥ Im and consider the following profile of strategies. Each investor i = 1, 2, ..., N

offers the same menu M∗ = {(0, 0, 0, 0),
(I∗
N
,R∗(.), I+(.), R+(.)

)
,
(
0, 0, Î+(.), R̂+(.)

)
}. We shall

refer to (0, 0, 0, 0) as the null contract, to (
I∗

N
,R∗(.), I+(.), R+(.)) as the equilibrium contract, and

to (0, 0, Î+(.), R̂+(.)) as the latent contract. In each equilibrium contract, R∗(.) is such that

R∗(I0, I
F (I0)) =


R∗ − N − 1

N
GI∗ if I0 = IF (I0) =

I∗

N
,

R∗

N
otherwise,

where IF (I0) is the amount ultimately invested for a given initial I0. The additional offer (I+(.), R+(.))

is such that

I+(I0) =

 0 if I0 = k
I∗

N
, for k = 1, 2, ..., N,

ICL otherwise,
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R+(I0, I
F (I0)) =


0 if I0 = IF (I0) = I∗, or I0 = IF (I0) =

I∗

N
,

G(IF (I0) + A) if I0 = I∗, IF (I0) 6= I∗, or I0 =
I∗

N
, IF (I0) 6= I∗

N
,

p∗ICL otherwise,

with p∗ =
R∗

I∗
. The investment ICL is the additional credit line which any investor stands ready to

provide against any competitors’ threat of asking for an accelerated repayment. It is such that

U(
I∗

N
+ ICL, p∗(

I∗

N
+ ICL), L) = U(Ic, Rc, H).

In each latent contract, the additional offer (Î+(.), R̂+(.)) is such that

Î+(I0) =


Î

N
if I0 = 0,

1

N − 1
(Î − I∗

N
) if I0 =

I∗

N
,

0 otherwise,

and R̂+(I0, I
F (I0)) = G(IF (I0) + A) for all I0 and IF (I0). As in the proof of Proposition 3, the

investment Î is characterized by U(I∗, R∗, H) = B(Î + A)− A.
Given these offers, the entrepreneur cannot obtain a payoff higher than U(I∗, R∗, H). At equi-

librium, she achieves U(I∗, R∗, H) by trading the same equilibrium contract with each of the

investors, receiving thereby no additional funds at the second stage, and selecting e = H . As in

the proof of Proposition 3, none of the investors is indispensable to provide the equilibrium payoff:

the entrepreneur can get U(I∗, R∗, H) by trading the equilibrium contract with only one investor.34

Consider then investors’ deviations. Without loss of generality, any unilateral deviation can

be represented by a menu M ′ = {(0, 0, 0, 0),
(
I ′, R′(.), I ′+(.), R′+(.)

)
}. By Lemma 1, and given

that πL = 0, each profitable deviation must induce the entrepreneur to choose e = H . Hence, it

must be that I ′ ∈ {0, I
∗

N
} in any profitable deviation. Indeed, if I ′ 6∈ {0, I

∗

N
}, the entrepreneur

can combine the deviating contract with (at least) one equilibrium contract, and obtain the line of

credit (ICL, p∗ICL). This guarantees her (at least) the payoff U(
I∗

N
+ ICL, p∗(

I∗

N
+ ICL), L) =

U(Ic, Rc, H). The entrepreneur’s strategy can therefore be constructed so that she strategically

defaults when trading I ′ with the deviating investor. In addition, if the entrepreneur chooses e = H ,

then the aggregate initial financing induced by the deviation to M ′ must be I0 ∈ {0,
I∗

N
, I∗}.

34Alternatively, she can also get U(I∗, R∗, H) by trading all latent contracts and defaulting.
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Indeed, the repayment R+(.) is such that, if she trades any equilibrium contract together with the

deviating one, the entrepreneur strategically defaults unless her initial outside financing is
I∗

N
or

I∗.35

Assuming that e = H is chosen, we distinguish two cases, depending on whether the borrower

trades at least one of the equilibrium contracts, or she only trades with the deviating investor. In

the first case, given R+(.), it must be that I0 = IF (I0) ≤ I∗ and I ′+(I0) = I+(I0) = 0, otherwise

she would default. It follows that, since I ′ ∈ {0, I
∗

N
}, we must have I ′ =

I∗

N
for the deviation to

be profitable. Thus, the corresponding entrepreneur’s payoff is

πH(G(
I∗

N
+ k

I∗

N
+ A)−R′(I0, I

F (I0))−R′+(I0, I
F (I0))− kR

∗

N
)− A

< πHG(I∗ + A)− I ′ + I∗

N
− πHR∗ − A = U(I∗, R∗, H) + (

I∗

N
− I ′),

(A.15)

where k ∈ {1, ..., N − 1} is any number of equilibrium contracts optimally traded by the en-

trepreneur when e = H . The latter inequality obtains since πH
(
R′(I0, I

F ) + R′+(I0, I
F )
)
− I ′ >

(πH
R∗

N
− I

∗

N
), which guarantees that the deviation is profitable, and by observing thatG

I∗

N
−R

∗

N
>

0 by construction. Thus, (A.15) implies that, following the deviation, the payoff achieved by the

entrepreneur when choosing e = H is strictly below U(I∗, R∗, H), which contradicts the fact that

no investor is indispensable to provide the equilibrium payoff under e = H .

We next consider the case in which, when choosing e = H , the entrepreneur only trades with

the deviating investor, which implies that I0 = I ′ ∈ {0, I
∗

N
}. Her corresponding payoff is

πH
(
G(I ′ + I ′+(I ′) + A)−R′(I ′, IF (I ′))−R′+(I ′, IF (I ′))

)
− A

< πH(G(I ′ + A)− R∗

N
)− A+ (πHG− 1)I ′+(I ′) + (

I∗

N
− I ′) (A.16)

< U(I∗, R∗, H) + (πHG− 1)I ′+(I ′). (A.17)

Inequality (A.16) follows from

πH(R′(I ′, IF (I ′) +R′+(I ′, IF (I ′)) > I ′ + I ′+(I ′) + (πH
R∗

N
− I∗

N
),

which guarantees that the deviation is profitable. Inequality (A.17) obtains because I ′ ≤ I∗

N
and

πHG − 1 > 0. Since U(I∗, R∗, H) is available to the entrepreneur at the deviation stage, (A.17)

implies that I ′+(I ′) > 0. We now prove that, by strategically defaulting, the entrepreneur gets

35R̂+(.) is such that trading any of the latent contracts straightforwardly leads to strategic default.
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a payoff which is above the upper bound in (A.16). Suppose that, together with the deviating

contract, she takes N − 1 latent contracts at the deviation stage. Given R̂+(.), she then finds

optimal to default. Her corresponding payoff is

Usd = B(I ′ + I ′+(I ′) + (N − 1)Ī+(I ′) + A)− A. (A.18)

If I0 = I ′ =
I∗

N
, (A.18) yieldsUsd = U(I∗, R∗, H)+BI ′+(I ′) > U(I∗, R∗, H)+(πHG−1)I ′+(I ′),

as I ′+(I ′) > 0, and B > πHG− 1 since πL = 0. If I0 = I ′ = 0, (A.16) together with the fact that

U(I∗, R∗, H) remains available at the deviation stage imply πH(G(I ′+(0)+A)−I ′+(0)−(πH
R∗

N
−

I∗

N
) > U∗(I∗, R∗, H). Since U∗(I∗, R∗, H)−U(0) = (πHG−1)I∗−(πHR

∗−I∗), we get I ′+(0) >

I∗. Thus, without loss of generality, we can write I ′+(0) =
I∗

N
+ I

′′ with I ′′
>

N − 1

N
I∗ > 0.

Then, (A.16) implies that the entrepreneur’s payoff is bounded by
U(0)(N − 1) + U(I∗, R∗, H)

N
+

(πHG− 1)I
′′ , and (A.18) can be rewritten as

Usd = B
(N − 1

N
Î +

I∗

N
+ I

′′
+ A

)
− A = U(I∗, R∗, H) +B(I

′′
+
I∗

N
− Î

N
).

As shown in the proof of Proposition 3, we have Usd ≥
U(0)(N − 1) + U(I∗, R∗, H)

N
+ (πHG−

1)I
′′ for each I ′′

> 0. This guarantees that the entrepreneur strategically defaults and reestablishes

that any aggregate allocation (I∗, R∗) ∈ F satisfying I∗ ≥ Im is sustained at equilibrium.

We now extend the result of Proposition 4. We exhibit a profile of investors’ strategies that

supports at equilibrium any allocation (I∗, R∗) satisfying (6). Each investor i = {1, 2, ..., K}, with

K ≡ b
√
Nc, offers

M∗
i = {(0, 0, 0, 0);

(I∗
K
,R∗i (.), I

+
i (.), R+

i (.)
)
,
(
0, 0, Ī+

i (.), R̄+
i (.))},

and each investor j = {K + 1, ..., N} offers

M∗
j = {(0, 0, 0, 0);

( Ī

N −K
, R̄j(.), 0, 0

)
;
(
0, 0, Ĩ+

j (.), R̃+
j (.)

)
}.

We shall refer to (0, 0, 0, 0) as the null contract, to (
I∗

K
,R∗i (.), I

+
i (.), R+

i (.)) as the equilibrium

contract, to (
Ī

N −K
, R̄j(.), 0, 0) as the type-1 latent contract, to (0, 0, Ī+

i (.), R̄+
i (.)) as the type-2

latent contract, and, to (0, 0, Ĩ+
j (.), R̃+

j (.)) as the type-3 latent contract.

In each equilibrium contract, R∗i (.) is such that
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R∗i (I0) = (R∗ − K − 1

K
GI∗) if I0 = IF (I0) =

I∗

K
,

R∗i (I0) =
R∗

K
, otherwise.

The additional offer (I+
i (.), R+

i (.)) is such that:

I+
i (I0) =

 0 if I0 = k
I∗

K
+ l

Ī

N −K
, for k = 1, 2, ..., K and l = 0, ..., N −K,

ICL otherwise,

and

R+
i (I0, I

F (I0)) =



0 if I0 = I∗, IF (I0) = I∗, or I0 =
I∗

K
, IF (I0) =

I∗

K
,

G(IF (I0) + A) if I0 = I∗, IF (I0) 6= I∗, or I0 =
I∗

K
, IF (I0) 6= I∗

K
,

or I0 = k
I∗

K
+ l

Ī

N −K
, ∀IF (I0)

for k = 1, 2, ..., K and l = 0, ..., N −K,with (k, l) /∈ {(K, 0), (1, 0)},

G(ICL + A) otherwise,

where ICL is such that B(
I∗

K
+ ICL + A)− A = U(Ic, Rc, H) and Ī is such that U(I∗, R∗, H) =

B(I∗ + Ī + A)− A. The additional offer (Ī+
i (.), R̄+

i (.)) is such that

Ī+
i (I0) =


I∗

K
if I0 = 0 or, I0 =

I∗

K
or, I0 =

Ī

N −K
,

0 otherwise,

and R̄+
i (I0, I

F (I0)) = G(IF (I0) + A) for all I0 and IF (I0).

For any j ∈ {K + 1, 2, ..., N}, the repayment R̄j(.) satisfies R̄+
j (I0, I

F (I0)) = G(IF (I0) +A)

for all I0 and IF (I0) and the offers (Ĩ+
j (.), R̃+

j (.)) are such that

Ĩ+
j (I0) =


Ī

N −K
if I0 =

I∗

K
or, I0 = 0,

0 otherwise,

and R̃+
j (I0, I

F (I0)) = G(IF (I0) + A) for all I0 and IF (I0).

Given these offers, the entrepreneur cannot obtain a payoff higher than U(I∗, R∗, H). At
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equilibrium, she achieves U(I∗, R∗, H) by trading the equilibrium contract with each lender i ∈
{1, 2, ..., K}, the null contract with each lender j ∈ {K + 1, 2, ..., N}, obtains no additional funds

in the second stage and selects e = H . As before, none of the investors is indispensable: the

entrepreneur can get U(I∗, R∗, H) by trading the equilibrium contract with only one investor.36

Consider then investors’ deviations. Without loss of generality, a deviation by any investor can

be represented by a menuM ′ = {(0, 0, 0, 0),
(
I ′, R′(.), I ′+(.), R′+(.)

)
}. Every profitable deviation

must induce the entrepreneur to choose e = H . Indeed, given Lemma 1, a single investor may

achieve a positive profit by inducing e = L only if the entrepreneur trades several contracts out

of equilibrium and does not default. Given the equilibrium contracts, this is possible only if she

takes up an aggregate initial financing I0 = I∗, invests ultimately IF (I∗) = I∗ and chooses e = L,

which yields the entrepreneur a payoff smaller than the available equilibrium one, and thus cannot

be an optimal choice.

Suppose an investor i ∈ {1, ..., K} deviates. Any profitable deviation must be such that I ′ ∈
{0, I

∗

K
}. Indeed, if I ′ 6∈ {0, I

∗

K
}, then the entrepreneur can combine the deviating contract with

(at least) one equilibrium contract, and get access to the line of credit (ICL, G(ICL + A)). which

ensures her a payoff at least equal to B(
I∗

K
+ ICL + A) − A = U(Ic, Rc, H). This shows that

in any profitable deviation the borrower defaults, which constitutes a contradiction. In addition,

at the deviation stage, the initial investment I0 belongs to the set {0, I
∗

K
, I∗}. Indeed, R+

i (.) is

such that, if she trades any equilibrium contract together with the deviating one, the entrepreneur

necessarily defaults if I0 /∈ {
I∗

K
, I∗}. Assuming that e = H is chosen, we distinguish below two

cases, depending on whether the entrepreneur trades at least one of the equilibrium contracts, or

she only trades with the deviating investor.

Consider that the entrepreneur trades equilibrium contracts at the deviation stage. GivenR+
i (.),

we have I0 = IF (I0) which implies I ′+(I0) = I+(I0) = 0, otherwise the entrepreneur would

default. It follows that, since I ′ ∈ {0, I
∗

K
}, it must be that I ′ =

I∗

K
for the deviation to be profitable.

Thus, the entrepreneur’s payoff is

πH(G(
I∗

K
+ k

I∗

K
+A)−R′(I0, I

F (I0))−R′+(I0, I
F (I0))− kR

∗

K
)−A < U(I∗, R∗, H), (A.19)

where k ∈ {1, ..., N − 1} is any number of equilibrium contracts optimally traded by the en-

trepreneur when e = H . The latter inequality obtains since πH
(
R′(I0, I

F ) +R′+(I0, I
F )
)
− I∗

K
>

36She may also get U(I∗, R∗, H) by trading the type-1 latent contract with each investor j ∈ {K + 1, 2, ..., N}.
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(πH
R∗

K
− I

∗

K
), which guarantees that the deviation is profitable, and by observing thatG

I∗

K
−R

∗

K
>

0 by construction. Thus, (A.19) implies that, following the deviation, the payoff achieved by the

entrepreneur when choosing e = H is strictly below U(I∗, R∗, H), which contradicts the fact that

no investor is indispensable to provide the equilibrium payoff under e = H .

Consider the case where the entrepreneur trades the null contract with all non deviating lenders.

This implies that I0 = I ′ ∈ {0, I
∗

K
} and her payoff is

πH
(
G(I ′ + I ′+(I ′) + A)−R′(I ′, IF (I ′))−R′+(I ′, IF (I ′))

)
− A

< πH(G(I ′ + A)− R∗

K
)− A+ (πHG− 1)I ′+(I ′) + (

I∗

K
− I ′) (A.20)

< U(I∗, R∗, H) + (πHG− 1)I ′+(I ′), (A.21)

where (A.20) obtains since

πH(R′(I ′, IF (I ′)) +R′+(I ′, IF (I ′)) > I ′ + I ′+(I ′) + (πH
R∗

K
− I∗

K
) (A.22)

for the deviation to be profitable. The second one obtains because I ′ ≤ I∗

K
and πHG−1 > 0. Since

the payoff U(I∗, R∗, H) is available to the entrepreneur at the deviation stage, (A.21) implies that

I ′+(
I∗

K
) > 0.

We prove that the upper-bound (A.20) of the entrepreneur’s payoff is less than what she gets

if she strategically defaults. Indeed, if, following the deviation, the entrepreneur strategically de-

faults, she can select the contract
(
0, 0, Ī+

i (.), R̄+
i (.)

)
in the menu of each non-deviating investor

i ∈ {1, ..., K} and the contract
(
0, 0, Ĩ+

j (.), R̃+
j (.)

)
in the menu of each lender j ∈ {K+ 1, ..., N}.

By doing that, she obtains

Usd = B
(
I ′ + I ′+(I ′) + (K − 1)Ī+

i (I ′) + (N −K)Ĩ+
j (I ′) + A)

)
− A. (A.23)

If I ′ =
I∗

K
, then Usd = U(I∗, R∗, H)+BI ′+(

I∗

K
). Thus, using (A.21), a sufficient condition for the

entrepreneur to strategically default is
K − 1

K
(U(I∗, R∗, H) − U(0)) ≥ (πHG − 1 − B)I ′+(

I∗

K
).

This corresponds to (A.4), which holds from the proof of Proposition 4. If I ′ = 0, we deduce from

(A.22) that

πH(R′(0, IF (0)) +R′+(0, IF (0))) > I ′+(0) + (πH
R∗

K
− I∗

K
), (A.24)

from which it follows that I ′+(0) > I∗. Thus, without loss of generality, we write I ′+(0) =
I∗

K
+I

′′
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with I ′′
>
K − 1

K
I∗ > 0. Then, using again (A.20) and (A.24), we get an upper bound for the

entrepreneur’s payoff:

πH
(
G(I ′+(0)+A)−R′(0, IF (0))−R′+(0, IF (0))

)
−A <

U(0)(K − 1) + U(I∗, R∗, H)

K
+(πHG−1)I

′′
.

But (A.23) becomesUsd = B
(K − 1

K
I∗+

I∗

K
+I

′′
+Ī+A

)
−A = U(I∗, R∗, H)+BI

′′
. Thus, a suffi-

cient condition for the entrepreneur to default is
K − 1

K
(U(I∗, R∗, H)−U(0)) ≥ (πHG−1−B)I

′′

with I ′′
> 0. Again, we have established this relation in the proof of Proposition 4.

Suppose an investor j ∈ {K + 1, ..., N} deviates. Any profitable deviation must be such that

I ′ ∈ {0, Ī

N −K
}. Indeed, if I ′ 6∈ {0, Ī

N −K
}, then the entrepreneur can combine equilibrium

contracts and/or latent contracts of type-1, get access to the line of credit, and earn at least the

payoff B(
I∗

K
+ ICL + A) − A = U(Ic, Rc, H). This shows that, in any profitable deviation,

the entrepreneur defaults, which constitutes a contradiction. Below, we consider the two cases

I ′ =
Ī

N −K
and I ′ = 0 and we show that in each case the entrepreneur strategically defaults

following the deviation.

First, consider the case I ′ =
Ī

N −K
. Because e = H is chosen at the deviation stage, the

entrepreneur does not trade latent contracts. Furthermore, given the additional offers (I+
i (.), R+

i (.))

she trades null contracts with each lender i ∈ {1, ..., K}. Thus, following the deviation, the

entrepreneur trades the null contract with each non-deviating investor, which implies that I0 =
Ī

N −K
. When the entrepreneur chooses e = H , her payoff is bounded above by U(0) + (πHG−

1)(
Ī

N −K
+ I+′

(
Ī

N −K
)), where I+′

(
Ī

N −K
) ≥ 0. Under default, the entrepreneur’s payoff is

bounded below by

Usd = B(
Ī

N −K
+ I+′

(
Ī

N −K
) +

N −K − 1

N −K
Ī +KĪ+

i (
Ī

N −K
)− A)− A

= U∗(I∗, R∗, H) +BI+′
(

Ī

N −K
).

Thus, a sufficient condition for the entrepreneur to default is

U∗(I∗, R∗, H)− U(0) ≥ (πHG− 1−B)I+′
(

Ī

N −K
) + (πHG− 1)

Ī

N −K
,

which corresponds to (A.8) established in the proof of Proposition 4.
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Second, consider the case I ′ = 0. Again, because e = H is chosen at the deviation stage, the

entrepreneur does not trade latent contracts together with the deviating contract. Remark that we

must have I ′+(I0) > 0 for the deviation to be profitable. Furthermore, given the additional offers

(I+
i (.), R+

i (.)), the entrepreneur raises the amount I0 =
I∗

K
, or the amount I0 = I∗.

If the entrepreneur chooses I0 =
I∗

K
together with e = H , she must trade one equilibrium

contract at the deviating stage. The inequality I ′+(
I∗

K
) > 0 implies that IF (

I∗

K
) >

I∗

K
. Thus, given

R+
i (.), the entrepreneur cannot get more than her reservation utility. Thus, when choosing e = H ,

she prefers not to trade the deviating contract.

The same logic applies if the entrepreneur chooses I0 = I∗ together with e = H . In that

case she must trade an equilibrium contract with each investor i ∈ {1, ..., K}. The inequality

I ′+(I∗) > 0 implies that IF (I∗) > I∗, and, given R+
i (.), the entrepreneur cannot get more than her

reservation utility. �

PROOF OF PROPOSITION 6 (continued): The proof extends to the case in which investors can

write covenants contingent on the initial debt I0. Take any aggregate allocation (I∗, R∗) 6= (Ic, Rc)

supported in a symmetric equilibrium. Let
(
I

N
,
R(I∗)

N
,
I+(I)

N
,
R+(I, I∗)

N

)
be the equilibrium

trades of each lender, with I + I+(I) = I∗.

Let investor k deviate to the menu M ′
k = ((0, 0, 0, 0), (

I

N
,
R(I∗)

N
, I+′

k (.) + ε, R+′

k (.))) with

ε > 0. The additional offer (I+′

k (.), R+′

k (.)) is such that

I+′

k (I0) =


I∗ − I

N
− N − 1

N

πHR
∗ − I∗

πHG− 1
if I0 =

I

N
,

0 if I0 6=
I

N
,

R+′

k (I0, I
F (I0)) =


R+(I, I∗)

N
+

1

πH
(I ′+(

I

N
)− I

N
+ ε) + ε2 if I0 =

I

N
and IF (I0) =

I

N
+ I+′

k (
I

N
) + ε,

G(IF (I0) + A) otherwise.

The logic developed in the first part of the proof applies to this more general case. If ε = 0, the

pair (
I

N
+ I+′

k (
I

N
) + ε,

R(I∗)

N
+R+′

k (
I

N
,
I

N
+ I+′

k (
I

N
) + ε)) is such that

U(
I

N
+ I+′

k (
I

N
),
R(I∗)

N
+R+′

k (
I

N
,
I

N
+ I+′

k (
I

N
)), H) = U(I∗, R∗, H)
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and πHR+′

k (
I

N
,
I

N
+I+′

k (
I

N
))−I+′

k (
I

N
) = πH

1

N
R+(I, I∗)− 1

N
I+(I). Since (I∗, R∗) 6= (Ic, Rc),

(
I

N
+I+′

k (
I

N
)+ε,

R(I∗)

N
+R+′

k (
I

N
,
I

N
+I+′

k (
I

N
)+ε)) ∈ int(F) for ε small enough. The deviation

is designed to induce the entrepreneur to trade(
I

N
+I+′

k (
I

N
)+ε,

R(I∗)

N
+R+′

k (
I

N
,
I

N
+I+′

k (
I

N
)+

ε)), and to choose e = H . Given M ′
k, if the entrepreneur chooses e = H , she can get a payoff

above the equilibrium one by choosing (
I

N
+I+′

k (
I

N
)+ε,

R(I∗)

N
+R+′

k (
I

N
,
I

N
+I+′

k (
I

N
)+ε)) in the

deviating menu. In this case, however, givenR′k(.), she finds optimal to trade with investor k alone.

Thus, as long as ε > 0,M ′
k is a profitable deviation for investor k whenever e = H is chosen. When

the entrepreneur chooses e = L, the only possibility to get a payoff above the equilibrium one is to

choose I0 =
I

N
. In this case, she trades the aggregate amount

I

N
+ I+′

k (
I

N
) + ε+

N − 1

N
Î+(

I

N
),

where
1

N
Î+(

I

N
) denotes the largest additional investment offered in any equilibrium menu for

I0 =
I

N
. Given the equilibrium schedules in (22), the deviation is hence profitable if

U(I∗, R∗, H) + (πHG− 1− ε)ε+
N − 1

N
(1− δ)( I

N
+ I+′

k (
I

N
) + ε) >

B(
I

N
+ I+′

k (
I

N
) + ε+

N − 1

N
Î+(

I

N
) + A)− A. (A.25)

As in the first part of the proof, (A.25) is satisfied, since U(I∗, R∗, H) ≥ B(
I

N
+
N − 1

N
Î+(

I

N
) +

A) − A by construction, πHG − 1 − ε > 0 for ε small enough, and δ < 1 − B. The rest of the

proof is a straightforward adaptation of the reasoning developed when I is only observed ex post.

�
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FOR ONLINE PUBLICATION

ADDITIONAL APPENDIX B: Indeterminacy with N ≥ 2

Proposition B.1 Take any N ≥ 2. If πHG − 1 > 2

√
πL
πH

, there exists an investment level I < Ic

such that any aggregate allocation (I∗, R∗) ∈ F with I∗ ≥ I can be supported at equilibrium.

PROOF: Assume

πHG− 1 > 2

√
πL
πH

. (B.1)

We first establish a set of relationships that will be used throughout the proof. First, from (1) we

get

G− B

∆π
> G+

πLG− 1

∆π
=
πHG− 1

∆π
>

2

∆π

√
πL
πH

, (B.2)

where the last inequality follows from (B.1).

Second, given (B.1), (1) and (4) together imply that37

1− πH
∆π

B > 2

√
πL
πH

πL
∆π

and
πH
∆π

B > 2

√
πL
πH

.

Adding the two conditions, one gets

1 > 2

√
πLπH
∆π

⇔
√
πH
πL
−
√
πL
πH

> 2 ⇔
(√

πH
πL
− 1

)2

> 2,

which yields√
πH
πL

> 1 +
√

2,

√
πL
πH

<
√

2− 1 and πH > (3 + 2
√

2)πL. (B.3)

We now turn to the proof of Proposition B.1. It is useful to characterize equilibrium allo-

cations in terms of two parameters, which we denote ε and η. Precisely, let (ε, η) ∈ [0, ε] ×[
πH
(
G− B

∆π

)
, 1
]
, with

ε =
1

N
min

(
∆π

B
(G− 1

πH
),
πHG− 1

B
− πL
πH∆π

1

G− B
∆π

,

(
1− πL

∆π

1/πH

G− B
∆π

)
B

2B + (1− πHG)

)
.

Observe that (1) and (4) imply that ∆π
B

(G − 1
πH

) ∈ (0, 1), and, given (B.2), both the second and

third terms are strictly positive. Thus, we get 0 < Nε < 1. Consider now the aggregate allocation

(Iε, Rε
η) =

(
Ic(1− ε), 1

πH
Ic(1− ηε)

)
. It is immediate to check that, if e = H , the aggregate profit

37It is useful to rewrite (1) as πHG− 1 <
∆π

πL
(1− πH

∆π
B), and (4) as πHG− 1<

πH
∆π

B.
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πHR
ε
η − Iε is strictly decreasing in η. See also that ∀ε ∈ [0, ε], Iε > Im.38 Letting I = Iε > Im,

and considering all (ε, η) ∈ [0, ε]×
[
πH
(
G− B

∆π

)
, 1
]
, one can hence generate a closed subset of

F including all aggregate allocations (Iε, Rε
η) ∈ F such that Iε ≥ I . The subset is represented in

the dashed area in Figure 3.

I

R

O I

•Cm

•Cc

Rm

Im

Rc

Ic

H

L

Ψ

F

1

πH

G− B

∆π

Figure 3: Set of aggregate allocations (Iε, Rε
η)

Consider now any allocation (Iε, Rε
η) such that Iε ≥ I , and denote it (I∗, R∗). We show that it is

supported at equilibrium by the following strategies, which are similar to those used in the proof of

Proposition 3. Each investor i = 1, 2, ..., N offers the same menuM∗ = {(0, 0),
(I∗
N
,R∗(.)

)
,
( Î
N
, R̂(.)

)
},

with R∗(I) = G(I + A) for I /∈ {I∗, I
∗

N
}, and

R∗(I) =


R∗

N
if I = I∗,

R∗ − N − 1

N
GI∗ if I =

I∗

N
.

(B.4)

The investment level Î is such that

B(Î + A)− A = U(I∗, R∗, H) = U c − εIc(πHG− η), (B.5)

which guarantees, given that U(I∗, R∗, H) ≥ B(I∗ + A) − A whenever (I∗, R∗) ∈ F , that Î >

I∗ ≥ 0.

As in the proof of Proposition 3, one can check that choosing the investment
I∗

N
in each menu

and selecting e = H is an optimal choice for the entrepreneur. Consider now investors’ deviations.

38Indeed, Ic
(

1− ∆π

B

(
G− 1

πH

))
=

∆π

B

(
G− B

∆π

)
A = Im and ε <

∆π

B

(
G− 1

πH

)
.
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Without loss of generality, any unilateral deviation can be represented by a menu M ′ = {
(I∗
N

+

I ′,
R∗

N
+ R′(.)

)
, (0, 0)}. A profitable deviation must necessarily induces e = H ,39 and one must

have that

R′(I) >
1

πH
I ′,

with I being the aggregate investment traded at the deviation stage, and that I ′ ≤ Ic − I∗

N
. If,

following the deviation, the entrepreneur chooses e = L and strategically defaults, then, given

(B.5), she gets

Usd = U(I∗, R∗, H) +B
(
I ′ +

I∗

N
− Î

N

)
.

Assume first that the entrepreneur only trades with the deviating investor. In this case, choosing

e = H yields her the payoff

πH
(
G(
I∗

N
+ I ′+A)− R∗

N
−R′(I

∗

N
+ I ′)

)+−A <
U(0)(N − 1) + U(I∗, R∗, H)

N
+ (πHG− 1)I ′.

Since the entrepreneur’s equilibrium utility remains available at the deviation stage, the right-hand

side of the last inequality must be strictly greater than U(I∗, R∗, H), which implies that I ′ > 0.

The entrepreneur therefore finds optimal to strategically default if

N − 1

N

(
U(I∗, R∗, H)− U(0)

)
− B

N
(Î − I∗) ≥ (πHG− 1−B)I ′. (B.6)

The left-hand side being increasing with N , a sufficient condition for (B.6) obtains with N = 2.

That is, after rearranging: B(I∗ + A) − πHGA ≥ 2(πHG − 1 − B)I ′ or B(Ic + A) − πHGA ≥
BεIc+2(πHG−1−B)I ′. See that B(Ic+A)−πHGA = − πL

∆π
B(Ic+A)+(πHG−1)Ic which

leads to the condition:

πHG− 1 ≥ f(I ′, ε), (B.7)

39Indeed, given Lemma 1, a deviating investor may achieve a positive profit by inducing e = L only if the en-
trepreneur trades several contracts out of equilibrium and does not default. Given equilibrium menus, this is only
possible if the entrepreneur invests I = I∗ and selects e = L; this in turn provides her a payoff smaller than the
equilibrium one, which guarantees that this is not an optimal choice.
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with f(I ′, ε) = B

(
πL
∆π

Ic + A

Ic
+ ε

)
+ 2(πHG− 1−B)

I ′

Ic
. Given the linearity of f , we have that

f(I ′, ε) = f

(
I ′

Ic
(Ic, 0) + (1− I ′

Ic
)

(
0,

ε

1− I′

Ic

))
=
I ′

Ic
f(Ic, 0) + (1− I ′

Ic
)f

(
0,

ε

1− I′

Ic

)
.

To prove (B.7), using 0 < I ′ ≤ N−1
N
Ic < Ic, we simply need to show that

πHG− 1 ≥ f(Ic, 0), (B.8)

πHG− 1 ≥ f

(
0,

ε

1− I′

Ic

)
. (B.9)

Condition (B.8) is equivalent toB

(
2− πL

∆π

1/πH

G− B
∆π

)
≥ πHG−1, which holds sinceB

(
2− πL

∆π

1/πH

G− B
∆π

)
>

B

(
2− 1

2

√
πL
πH

)
> B(2 − 1

2
(
√

2 − 1)) >
B

1− (3− 2
√

2)
>

πH
∆π

B ≥ πHG − 1. The first in-

equality comes from (B.2), the second and the fourth from (B.3) and the last one is (4). To prove

(B.9), first remark that (B.7) holds for any couple (0, ε) with ε ≤ Nε. Indeed, by definition of ε,

we have ε ≤ πHG− 1

B
− πL

∆π

1/πH

G− B
∆π

for any ε ≤ Nε. To complete the proof of (B.9), observe

that, since I ′ ≤ N−1
N
Ic and ε ≤ ε, we have

ε

1− I′

Ic

≤ 1

N

Nε

1− I′

Ic

≤ 1

N

Nε

1− N−1
N

= Nε.

Assume next that several contracts are traded at the deviation stage. Getting back to the proof

of Proposition 3, following any unilateral deviation, the entrepreneur strategically defaults if (17)

holds. Again, the left-hand side of (17) is increasing in k. A sufficient condition for (17) is

therefore, using (B.5) and I∗ = Ic(1− ε)

BIc

(
1− πL

∆π

1/πH

G− B
∆π

)
≥ εIc(2B + 1− πHG),

which is equivalent to ε ≤ B

2B + (1− πHG)

(
1− πL

∆π

1/πH

G− B
∆π

)
. The inequality holds by defi-

nition of ε, which concludes the proof that (I∗, R∗) is supported at equilibrium. �
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FOR ONLINE PUBLICATION

ADDITIONAL APPENDIX C: Seniority under bankruptcy

Proposition C.1 For sufficiently small values of πL, if one investor is repaid first in case of default,

then every allocation characterized in Proposition 4 can be supported at equilibrium.

PROOF: Fix N such that the set of allocations satisfying (6) is non-empty. Consider any strategy

profile introduced in the proof of Proposition 4 with the equilibrium allocation (I∗, R∗) and let j

be the investor whose claim is senior in case of default. We show that if πL is sufficiently small,

this investor cannot profitably deviate inducing strategic default. Let M ′
j = {(0, 0), (I ′j, R

′
j(.))}

be a deviating menu with R′j(I) = G(I + A) ∀I the repayment that maximizes investor j’s profit

in case of default. Suppose first that j ∈ {1, · · · , K}. Given equilibrium covenants, (I ′j, R
′
j(.))

induces the entrepreneur to strategically default only if

U(I∗, R∗, H) = B(Ī + I∗ + A)− A < B(I ′j +
K − 1

K
I∗ + Ī + A)− A,

which corresponds to

I ′j >
I∗

K
. (C.1)

A sufficient condition for the deviation not to be profitable is that it yields a strictly negative profit,

that is

(πLG− 1)I ′j + πLG(Ī +
K − 1

K
I∗ + A) < 0. (C.2)

For a given N , it follows from Proposition 4 that
I∗

K
> 0 at equilibrium. See that the strict

inequalities (C.1) and (C.2) are satisfied for πL = 0. By continuity, one can then construct an

open neighborhood of π∗L = 0 such that, for each πL in this interval, any I ′j that satisfies (C.1) also

satisfies (C.2).

The same reasoning applies to the case j ∈ {K + 1, · · · , N}. �
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FOR ONLINE PUBLICATION

ADDITIONAL APPENDIX D: Reducing B under bankruptcy

We consider the following bankruptcy mechanism. Before the game is played, an authority

commits to reduce the entrepreneur’s private benefit to some B′ = λB with λ ∈ (0, 1) after

observing R > G(I + A). We then have the following proposition.

Proposition D.1 Assume πL = 0 and consider an economy with a bankruptcy mechanism of pa-

rameter λ. If

λ > max

(
πHG− 1

B
, 1− (πHG−B)

πHG− 1

B

)
, (D.1)

there exists an investment level Iλ such that any aggregate allocation (I∗, R∗) ∈ F with I ≥ Iλ

can be supported at equilibrium.

PROOF: Consider first any array of parameters (πH , πL, G,B) such that πL = 0 and (1) and

(4) are satisfied. Observe that, in this case, (4) can be written
πHG− 1

B
< 1, which implies

1 − (πHG − B)
πHG− 1

B
> 0. Construct then a modified array of parameters, by replacing B

with any B′ = λB, with λ satisfying (D.1). We refer to these parameters as the economy Eλ.

We denote Fλ its feasibility set and Imλ (Icλ) the corresponding monopoly (competitive) investment

level. Observe that since G− λB

∆π
> G− B

∆π
, we have

F ⊂ Fλ, Ic ≤ Icλ. (D.2)

We know from Proposition 3 that any aggregate allocation (I∗, R∗) ∈ F satisfying I∗ ≥ Im can

be sustained at equilibrium. This implies that any (I∗, R∗) ∈ Fλ with I∗ ≥ Imλ can be sustained at

equilibrium in Eλ with the symmetric menus Mλ = {(0, 0),
(I∗
N
,R∗(.)

)
,
( Î
N
, R̂(.)

)
}, where R∗(.)

and R̂(.) are defined as in the proof of Proposition 3, and

λB(Î + A)− A = U(I∗, R∗, H). (D.3)

Simple manipulations lead to Imλ + A =
πHG

λB
A and Ic + A =

1/πH
1

πH
− (G− B

πH
)
A. The inequal-

ity (D.1) therefore implies that

Imλ < Ic. (D.4)
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Define Iλ = Imλ until the end of the proof.

We now turn to the original economy, identified by the parameters array (πH , πL = 0, G,B)

and suppose that a bankruptcy mechanism is introduced. Consider any (I∗, R∗) ∈ F such that

I∗ ≥ Iλ. We show that the menu Mλ defined above supports (I∗, R∗) at equilibrium even in the

presence of a bankruptcy mechanism.

Observe first that when the entrepreneur chooses an investment different from I∗ or
I∗

N
at

equilibrium, covenants ensure that she strategically defaults obtaining B′(I+A).40 As in the proof

of Proposition 3, choosing
I∗

N
in each menu and selecting e = H is an optimal choice for the

entrepreneur by (D.3).41

Consider now investors’ deviations. As in the proof of Proposition 3, any unilateral devi-

ation can be represented by a menu M ′ = {
(I∗
N

+ I ′,
R∗

N
+ R′(.)

)
, (0, 0)} and must induce

the entrepreneur to choose e = H to be profitable. See that by (D.4) and (D.2), any allocation

(I∗, R∗) ∈ F with I∗ ≥ Iλ is also supported at equilibrium with the menus Mλ in the economy

Eλ. This establishes that the same allocation is supported at equilibrium in the original economy

when a bankruptcy mechanism is in place. �

40That is, she cannot select e = L without triggering the bankruptcy mechanism.
41If the entrepreneur accepts

I∗

N
in each menu and chooses e = L, we necessary have B(I∗ + A) − A ≤

U(I∗, R∗, H) since (I∗, R∗) ∈ F .
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