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Abstract

The stylized facts relevant to the analysis of economic growth traditionally

focus on the supply-side of the economy. Little reference is made to mass

consumption which has however accompanied both industrial revolutions,

and which today is a key feature of economic development in large emerg-

ing countries. This paper provides an endogenous growth model where

supply (structural change) and demand (middle class consumption) inter-

act to bring out a multi-industry flying-wild-geese development pattern

where each industry may learn from its own experience and/or from oth-

ers. An industry learning curve is assumed to evolve over time with cumu-

lative industry output which in turn depends on the income distribution.

To that end, we relax the assumption of homothetic preferences that neu-

tralizes demand in the long-run. We discuss the implications of income

distribution on an industry learning curve in a set up where a society of

mass consumption may arise as a consequence of horizontal demand com-

plementarities and technological spillovers across industries. Eventually,

the survival function of the income distribution determines each industry

learning curve. Only a non-degenerate, i.e. neither perfectly equal nor

completely unequal, distribution of income will yield long-run growth.

There is an inverted-U relationship between inequality and growth. The

rate of growth ultimately depending on the size of the middle class which

creates the conditions for both mass consumption, scale economies and

learning by doing as sources of sustained growth.
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1 Introduction

On the one hand, the emergence of a middle class has characterized the industrial
revolutions experienced by the Western economies during the Eighteenth and
Nineteenth centuries. On the other hand, the beginning of the twenty-first
century marks the end of two centuries of hegemony of these Western economies.
A decentering of the world has already started from West to East that disrupts
the economic world balances. "The current economic takeoffs in China and India
began with about 1 billion people in each country and doubled output per capita
in less than 20 years - an economic force affecting a much larger population
than the Industrial revolution did... Increasingly, the most important engine of
growth for countries of the South is their domestic market. The middle class is
growing in size and median income. By 2025, annual consumption in emerging
markets is estimated to rise to $30 trillion. By then, the South will account
for three-fifths of the 1 billion households earning more than $20000 a year."
(Human Development Report 2013). Nowadays, it is common in the press as
well as in policy circles to wonder about the situation of the middle class and its
role to play in the economic development. However, the concept of middle class
has not received yet the attention it deserves in our thinking about economic
growth.

Why? Because the study of economic growth traditionally comes in a long-
run perspective. Thus the supply side has been given the priority over the
demand side, and, to put it mildly, demand has so far been considered as unim-
portant for economic growth. In their presentation of the "new Kaldor facts",
Jones and Romer (2010) emphasize the role of ideas rather than objects as well
as the importance of institutions and human capital. However, what about mass
consumption? The supply-side view is not designed to highlight the mechanisms
induced by mass consumerism on economic growth. Hence, this issue is nearly
absent from both neoclassical and new (endogenous) theories of growth1 .

A proposed runway to investigate such interactions is to relax the traditional
assumption of homothetic preferences which neutralizes demand on long-run
growth; that is, to take into account the impact of household income on the
composition of his consumption basket, and consequently, the role of the size
of the market on those industries in which an economy will tend to special-
ize. This orientation builds on the work of Kevin Murphy, Andrei Shleifer and
Robert Vishny (1989a, henceforth MSV, and 1989b) who have formalized works
on demand linkages of early development economists such as Paul Rosenstein-
Rodan (1943), Albert Hirschman (1958) whose theories stress scale economies
and complementarities as deep causes of economic growth2 , and Walt Rostow

1 In his introduction of the Handbook of Economic Growth (2005), Robert Solow regrets the
lack of interest of the profession for interactions between supply and demand in the medium
run.

2As argued by Paul Krugman in his Ohlin lectures on the fall and rise of development
economics “[. . . ] The reason that the development theory that emerged in the 1940s. . . failed
to ‘make it’ into mainstream economics was the inability of their creators to express their
ideas in a way suitable for the modeling techniques available at that time. . . " Paul Krugman
1995, p.6, in Development, geography, and economic theory.
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(1960) for whom a society of mass consumption must be the final stage of eco-
nomic development of a nation.

It was not until recently that models of growth have relaxed the assumption
of homothetic preferences in models of economic growth and structural change.
The adoption of a hierarchic structure of preferences where poor consumers
devote most of their expenditures toward low income elasticity goods and its
impact on economic growth is examined, for instance, in Zweimüller (2000) and
Foellmi and Zweimüller (2006 and 2008). We follow in their footsteps. Our setup
allows for hierarchies of needs in consumption and economic growth is an endoge-
nous outcome of the economic system. It differs from them though in two ways.
First, technical progress is not driven by innovations. There is no R&D sector
as in Romer (1990) that generates blue prints for new inputs (’new methods
to satisfy wants’ in Zweimüller 2000) as a result of voluntary profit-motivated
innovations. Instead, technical progress is a by-product of the economic activity
where learning at the industry level is the source of productivity gains. (See,
for example, Dutton and Thomas 1984, Bahk and Gort 1993, and Thompson
2001 who provide evidence for a significant impact of learning by doing on pro-
ductivity.) More specifically, learning is assumed to be bounded at the industry
level and to take place only in those industries where demand is high enough so
that a firm becomes able to take advantage of internal economies of scale, i.e. to
lower unit costs of production, thanks to mass consumption3 . Thus how much
an industry can gain in terms of cost reduction is due to increased knowledge
resulting from cumulative output which is driven by the size of the market that
in turn depends on the income distribution. Secondly, our modelling involves
no saving/investment. Therefore, we refer here to an experience curve brought
about by labor learning which is closely intertwined with scale economies in
that scale, i.e. the market size, also contributes to learning. It thus differs from
the concept of learning-by-doing hypothesized by Arrow (1962) who considers
cumulative investment as an alternative to cumulative output and, therefore,
from Paul Romer’s seminal paper (1986) which pioneered endogeneous growth
theory.

The present paper builds on the static framework of MSV. Of the background
literature, Matsuyama (2002) is the paper most closely related to ours. First, we
follow MSV static setup by introducing pecuniary externalities working via the
buying power of a middle class to eventually determine the extent of horizontal
complementarity across all industries of the economy. The kind of externalities
at work can be described using Matsuyama’s words (1995, 703):

“... Suppose the [middle class] increases its demand for monopolis-
tically competitive goods... Because prices exceed marginal costs,
such a shift in demand would increase the level of monopoly profits

3 It should be noted that the classic case study chosen by Thompson (2001), relies on an
extremely well-documented program, namely the Liberty shipbuilding program of World War
II, which has been characterized by a dramatic and sudden output expansion particularly
because of growth of primary demand. Without such a strong expansion of demand, this
now-famous case study may not have become such an interesting natural experiment in terms
of measuring the contribution of learning to increases in labor productivity.
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in the economy and thus national income. This increased income
would generate additional demand for monopolistically competitive
goods, which further raises profits and income and so on...”

Secondly, this kind of argument which captures how one thing leads to an-
other is central to Matsuyama (2002) who shows what characteristics of the
distribution of income can lead to the emergence of an economy of mass con-
sumption. This economic development requires gains in productivity through
learning which, by lowering prices, gives access to a consumption basket consist-
ing of different goods depending on the household income, and not necessarily
to the consumption of a greater quantity of the same goods. With hierarchical
preferences which rank goods in order of priority, a greater variety of goods be-
comes available to households, and the income effect of lower prices leads new
industries to develop.

On the one hand, results obtained by Thornton and Thompson (2001) in
Wartime shipbuilding show that learning spillovers are a significant potential
source of productivity growth. On the other hand, recent empirical evidence by
Wolff (2011) suggests a strengthening of technological spillover effects in the US
economy over the period 1958-2007. One characteristic of our model is that, sim-
ilarly to Stokey (1988) and Lucas (1993) among others, there are technological
spillovers across sectors that are ruled out in Matsuyama (2002). Our develop-
ment process follows however a pattern fairly similar to Matsuyama (2002) of
a flying-wild-geese where the increasing returns technology is implemented in
industries one after the other. The flying geese model of economic development
was first coined by Kaname Akamatsu in the 1930s, and gained popularity in
the 1960s. It was initially based on Japan’s experience in the development of
its woolen industry which has then be applied to the sequential appearance and
development of industries leading to the interindustry aspect of the flying geese
model with demand linkages and complementarities of different products being
the driving forces of economic development4 .

Thus we assume that learning is bounded at the industry level but suppose
there are learning spillovers. It is appropriate to put our model in correspon-
dence with the bounded learning model by Alwyn Young (1991), where all goods
are not produced on a given date because they would be too expensive to pro-
duce. As long as knowledge accumulates in the different industries, the increase
of knowledge reduces the labour unit cost of all goods including those goods
whose cost was previously prohibitive. There comes a time when these goods
can be produced at reasonable cost. In our model, all goods may be available as
soon as there exists a consumer for it. It is only in those sectors where demand
is strong enough to cover the fixed costs involved in the implementation of the
increasing returns technology that the learning takes place. Therefore, it is a
consequence of the substantial economic activity caused by mass consumption

4Combining the interindustry flying geese patterns of industrialization in economically
interdependent countries results in the international aspect, that is to say the catching up of
developing countries with the West (Schröppel and Mariko 2002). Still, note that there is no
international linkage in the present model which remains a closed-economy growth model.
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in these industries. The implementation of increasing returns technologies that
are substituted for constant returns technologies is used here as a metaphor
for structural change. The Indian pharmaceutical industry, in particular in the
field of generic drugs, or its telecommunications industry provide examples of
the importance of the size of the internal market in the area of apprenticeship in
emerging markets, which is itself a source of increased knowledge-based produc-
tivity. However, do more equal distributions generate more demand throughout
the economy, which in turn, leads to learning across a wider range of industries,
i.e. higher productivity, and in fine faster growth? We show in this paper why
this may not be necessarily true.

The paper is organized as follows. In Section 2, we present our model.
Section 3 discusses our set up of knowledge productivity growth. Section 4
characterizes the relationships between mass consumption, experience curves at
the industry level, learning spillovers, and the steady-state aggregate rate of
growth. The last section is devoted to analyzing the conditions with regard to
technological progress, which underlie sustainable economic development when
mass consumption and not population growth harms the environment.

2 The model

2.1 Households’ non-homothetic preferences, wealth, and

budget constraint

Our framework assumes that all households have the same preferences. The
preference side is modeled via a utility function which is defined over a contin-
uum of indivisible goods q ∈ (0,∞) such that, at each date t,

Vt =

∫ ∞

0

1

q
xqtdq, (1)

where xqt as an indicator function which takes in values of either one or zero
according to:

xqt =

{
1 if the agent consumes q

0 otherwise
.

Thus a household’s utility increases with the range of goods (0, q) it consumes
and not with the consumption of a single good q. Consumption is hierarchically
structured; that is, needs are ordered so that the proportion of income that
households spend on lower-indexed goods or, equivalently, on goods with lower
income elasticities of demand, decreases with a household’s income. Different
goods have different priorities in consumption and richer households can con-
sume more than the bundle of goods available to poorer households (Bertola,
Foellmi, and Zweimüller 2006, Chapter 12).

Human capital is the only input, and the economy is endowed with an
amount hL, where L is the entire population and h is the average level of
human capital in the economy, that we normalize to one. Moreover, hγ denotes
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a household’s human capital endowment which is assumed to be constant over
time. It is given by

hγ = γhL = γL,

where γ is the share of human capital of a type-γ household, and γ ≤ γ < ∞.
The total stock of human capital in the economy is distributed according to the
cumulative distribution function G (γ) which is assumed to be exogenous and
constant over time. Therefore, each household is identified by its type γ. At
each date t, the labor income of a type-γ household is given by:

wthγ = wtγL,

where wt is the wage per unit of human capital.
The nominal income of a type-γ household is defined as

Y γt = γ(wtL+Πt),

where Πt is the aggregate amount of profits realized by all firms from all indus-
tries q in the economy. Profits are redistributed to households up to their type
γ.

Define (0, qγt ) as the set of goods purchased by a type-γ household. The
budget constraint which describes the consumption options available to this
household with income Y γt can be written as:

∫ qγt

0

pqtx
q
tdq = γ(wtL+Πt). (2)

2.2 Factor supply, technology, market structure, and the

equilibrium price

In this section, we adopt the now standard production technologies and market
structure proposed by Murphy, Shleifer, and Vishny (1989b) in their formal-
ization of the big push as well as in their aforementioned more closely related
paper to ours. We assume that each good q can be produced with two pro-
duction functions. The former exhibits constant returns to scale (CRS). One
unit of good q requires α/At units of human capital, with α > 1 and At is
knowledge-based productivity at time t. The alternative production technology
exhibits increasing returns to scale (IRS). Formally, 1/At units of human capital
are required to produce one unit of good q. Nevertheless, in order to produce
at such a marginal cost, a firm must also be able to cover a fixed cost equal to
F/At units of human capital.

On the one hand, each good q may be produced by a competitive fringe
of firms with the CRS technology. Then, the free-entry equilibrium number of
firms satisfies the zero-profit condition, and the equilibrium price is equal to the
average cost; that is,

pqt = pt = αwt/At. (3)

On the other hand, we show that if the distribution function G(γ) is smooth
enough which rules out perfect equality, there is a unique Nash equilibrium for a
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monopoly implementing the IRS technology, which consists in setting the price
at the same level of the competitive fringe (see Appendix 1).

2.3 Market demand and the static output multiplier

Whenever the demand is high enough to cover the fixed cost, a good q will be
produced by a monopolist which will implement the IRS technology. Note that
if L > F/(α − 1), a good q is produced using the IRS technology if and only
if the demand for this good at time t, denoted Xq

t , is such that the following
minimum efficient scale is satisfied:

(α− 1)wt
At

Xq
t −

Fwt
At

≥ 0⇔ Xq
t ≥

F

α− 1
. (4)

At each time t, there is a marginal good q∗t such that the break-even condition
Xq∗t = F/(α−1) holds true. Within our dynamic model, such an infant industry
can be said to have attained the take-off stage (see below). Note that Xq∗t

is exogenous and constant over time. Then, industries which produce goods
q ≤ q∗t , respectively q > q∗t , use the IRS, respectively the CRS, production
technology. Following MSV, we define γ∗t as the share of income held by this
marginal household whose purchasing power allows it to exactly purchase the
range of goods (0, q∗t ), where

q∗t =
wtγ∗t (L+Πt/wt)

pt
=
At
α
γ∗t

(
L+

Πt
wt

)
, and

wt
pt
=
At
α
. (5)

We also define the upper class to be the set of households of type greater
than γ∗t . There is an amount N∗

t of such households, where

N∗
t = (1−G(γ∗t ))L. (6)

Their purchasing power allows them to buy goods produced with the IRS
technology as well as goods with higher income elasticity of demand which are
produced using the CRS technology. We therefore have the following break-even
condition which is time-independent. We thus get rid of the t notation in both
variables N∗ and γ∗.

Xq∗t = N∗ = (1−G(γ∗))L =
F

α− 1
. (7)

New models of economic growth along the lines of Romer (1990) emphasize
the increase in available varieties of goods as a metaphor of economic growth.
Overall, what matters in the new theories of growth is the nature of imperfect
competition. Monopolistic competition with its zero-profit condition in equilib-
rium prevails extensively in new growth theories. Into our model, the variable of
interest is not the number of varieties produced in equilibrium, but the number
of goods produced with the IRS technology and, as a result, the equilibrium
profits generated by industries which are able to implement the IRS technology
allowing firms to achieve internal to the firm economies of scale.
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Aggregate profits in the economy are the sum of profits realized by those
industries which produce goods q in the range (0, q∗t ):

Πt = pt

∫ q∗t

0

Xq
t dq −

∫ q∗t

0

wt
At
(Xq

t − F )dq

= (α− 1)
wt
At

∫ q∗t

0

Xq
t dq −

wt
At

∫ q∗t

0

Fdq,

where the demand for each good qt at time t is given by

Xq
t = (1−G(γqt ))L, (8)

and where γqt = ptqt/(wtL+Πt) is the share of income of the poorest house-
hold whose purchasing power is high enough to exactly purchase (0, qt).

Now combining the above profit expression with (5) and (6) yields

Πt
pt

=
At
αwt

(
(α− 1)

wt
At

∫ q∗t

0

Xqtdq −
wt
At

∫ q∗t

0

Fdq

)

=
α− 1

α

∫ q∗t

0

Xqtdq −
1

α

∫ q∗t

0

Fdq

=
α− 1

α

(wtL+Πt)

pt
T , (9)

where T = L
∫ γ∗
γ

γdG(γ) is defined as the share of income held by those

households of type smaller than γ∗ whose income is entirely devoted to purchase
goods of mass consumption, i.e. in the range (0, q∗t ). From this definition, we
deduce:

Πt
pt
=
α− 1

α

1

(1− α−1
α T )

wtL

pt
,

where the multiplier is defined by

M = 1/(1−
α− 1

α
T ),

which is independent of time.
The average real income per capita (yt) of the economy is therefore propor-

tional to the multiplier and the knowledge-based productivity at time t. It takes
the form

yt =
Yt
ptL

=
wtL+Πt

ptL
=

1

1− α−1
α T

At
α
. (10)

The higher T , the higher is yt. In the next section, we specify the rate of
growth of At so that we become able to study the implications of inequality for
growth and patterns of industrialization.
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2.4 Experience at the industry level and cumulative out-

put

It is assumed that learning occurs only in those industries which produce goods
that are generated from the IRS technology. At each date t, such learning
leads to an accumulation of experience at the industry level denoted by Eqt to
be discussed below. We also assume that this accumulated experience diffuses
instantaneously to all other firms, i.e. there are intersectoral spillovers. Accord-
ingly, the level of knowledge-based productivity in the economy At is the same
in all industries and is equal to the sum of experiences gathered over time by
all industries producing goods q and having implemented the IRS technology.
Thus learning acts as a productivity-enhancing factor in the above production
functions and firms gain from the effects of experience via lower costs. More
specifically, the accumulated stock of knowledge at time t is defined by:

At =

∫ q∗t

0

Eqt dq. (11)

We follow the literature on learning to describe progress at the industry
level. Experience increases with cumulative production levels5 . We adopt the
following functional form for the experience accumulated in industry q over a
time interval (t∗q , t) (see Thompson 2010):

Eqt =

ε+ λẼ

∫ t

t∗q

Xq
vdv

1 + λ

∫ t

t∗q

Xq
vdv

, (12)

where λ > 0 describes the learning rate, t∗q denotes the date at which the IRS
technology has been adopted for the first time by the industry which produces
good q, and Xq

v is the level of output produced in this industry at time v. First,

note that

∫ t

t∗q

Xq
vdv = 0 implies Eqt = ε. Secondly, Eqt is monotonically increasing

and concave with an asymptote6 , i.e. when

∫ t

t∗q

Xq
vdv →∞, which is equal to Ẽ.

5Note that in our theoretical framework, experience gained prior to some time t may
equivalently be expressed in terms of cumulative units of human capital.

6Let us denote

∫ t

t∗q

Xq
vdv by χqt , it is easily checked that

∂Eqt
∂χqt

> 0 and
∂2Eqt

∂
(
χqt
)
2
< 0.

Using l’Hôpital’s rule, we have:

lim
χ
q
t→∞

Eqt = lim
χ
q
t→∞

∂(ε+ λẼχqt )/∂χ
q
t

∂(1 + λχqt )/∂χ
q
t

= Ẽ.
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Hence, learning in every industry is bounded, the upper bound being defined by
Ẽ which is assumed to be exogenous and constant both across industries and
over time. However, recall that it is not bounded at the aggregate level as the
learning which occurs in one industry spills over across industries.

First, let us assume ε = 0, i.e. no learning occurred before a good q has
been produced with the IRS technology. The experience curve at the industry
level is described by7 :

Eqt =

λẼ

∫ t

t∗q

Xq
vdv

1 + λ

∫ t

t∗q

Xq
vdv

⇒
Ėqt
Eqt

=
Xq
t(

1 + λ

∫ t

t∗q

Xq
vdv

)∫ t

t∗q

Xq
vdv

.

Secondly, and for ease of use, we adopt a linear approximation to (12) near∫ t

t∗q

Xq
vdv = 0

8 . More specifically, we define the experience accumulated in indus-

try q at time t based on the cumulative level of production since it has adopted
the IRS technology. This yields

Eqt =





λẼ

∫ t

t∗q

Xq
vdv if

∫ t

t∗q

Xq
vdv < 1/λ

Ẽ otherwise

. (13)

At each time t, among those industries which use the IRS technology, we
can distinguish between two groups of industries. The former group includes
those industries where learning is exhausted and has reached the upper bound,

7We have:

.

E
q

t =

λẼXq
t (1 + λ

∫ t

t∗q

Xq
vdv)− λX

q
t (λẼ

∫ t

t∗q

Xq
vdv)

(1 + λ

∫ t

t∗q

Xq
vdv)2

=
λẼXq

t

(1 + λ

∫ t

t∗q

Xq
vdv)2

8Let us rewrite (12) as a function of χqt and assume ε = 0, such that

Eqt =
λẼχqt
1 + λχqt

and
∂Eqt
∂χqt

=
λẼ

1 + λχqt
.

Hence, the linear approximation to Eqt near χqt = χ
q
t is given by

Eqt ≃
λẼχqt
1 + λχqt

+
λẼ

1 + λχqt
(χqt − χ

q
t ).

Thus, for χqt = 0, we have

Eqt ≃ λẼχ
q
t ,

whereas if χqt →∞ we obtain

Eqt ≃ Ẽ.
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whereas, in the latter group, we find these industries where the accumulated
experience has not reached yet the upper bound. This group of industries lies
within the range (q̃t, q

∗
t ), where q̃t is defined by

Eq̃t = Ẽ ⇔

∫ t

t∗
q̃

X q̃
vdv = 1/λ, (14)

and where t − t∗q̃ denotes the time elapsed since good q̃t has been first pro-

duced using the IRS technology. In words, as soon as

∫ t

t∗q

Xq
vdv ≥ 1/λ, learning

in industry q has reached the upper bound Ẽ.
In addition to q∗t , there exists another marginal industry q̃t which is defined

as the most recent industry at time t where learning has declined to zero. Solving
(14) yields a solution for q̃t. Similarly to the type-γ∗ household, there is therefore
another key marginal household of type γ̃t, with γ ≤ γ̃t ≤ γ∗, whose purchasing
power allows him to buy exactly the range of goods (0, q̃t). If households of
type γ∗ and above constitute the upper income class, mass consumers may now
be divided into a low income class which includes households of type between
γ and γ̃t, and a middle income class where we find households of type ranking
from γ̃t to γ

∗.

3 Knowledge-based productivity growth

Knowledge-based productivity At is a function of the experience accumulated
by all industries in which learning occurs and already took place at time t. We
thus rewrite (11) as

At =

∫ q∗t

0

Eqt dq = Ẽq̃t +

∫ q∗t

q̃t

Eqt dq.

Changes in At are the result of the experience accumulated in the economy
at time t; that is,

Ȧt = Ẽ
.

q̃t +

∫ q∗t

q̃tt

Ėqt dq +E
q∗t
t q̇∗ −Eq̃tt

.

q̃t

=

∫ q∗t

q̃t

Ėqt dq = λẼ

∫ q∗t

q̃t

Xq
t dq,

with

Ėqt =

{
λẼXq

t if Eqt < Ẽ and q̃t < q ≤ q∗t
0 otherwise

⇔

Ėqt
Eqt

=





Xq
t /

∫ t

t∗q

Xq
vdv if Eqt < Ẽ and q̃t < q ≤ q∗t

0 otherwise

.
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The accumulated experience is a by-product of the economic activity in those
industries where there is mass consumption. Given that Xq

t = (1 − G(γqt ))L,
the evolution of demand addressed to industry q is at the origin of its learning
curve which explicitly depends on the survival function of the distribution of
income. This yields the following productivity rate of growth that arises from
economywide learning by doing:

gt =
Ȧt
At
= λẼ

∫ q∗t

q̃t

Xq
t

At
dq = λẼ

∫ q∗t

q̃t

(1−G(γqt ))L

At
dq. (15)

At each time t, the rate of growth of knowledge-based productivity equals
the amount of human capital (excluding the fixed costs) required to produce
the quantity Xq

t in industries using the IRS technology and for which learning
takes place. Thus unit cost reductions due to increased knowledge result from
increased cumulative output brought about by both learning and economies of
scale.

Whereas q∗t evolves with time, recall that γ∗ is constant over time and equal
to q∗t /ytL (see (2) and (10)). We use the change of variables γ = qγt /ytL to
rewrite (15):

gt = λẼ
ytL

At

∫ γ∗

γ̃t

(1−G(γ))Ldγ. (16)

An integration by parts shows that:

∫ γ∗

γ̃

(1−G(γ))Ldγ =

(
γ(1−G(γ))|γ

∗

γ̃t
+

∫ γ∗

γ̃t

γg(γ)dγ

)
L

= γ∗(1−G(γ∗))L− γ̃(1−G(γ̃t))L+ T − T̃t,

where T̃t =

∫ γ̃t

γ

γg(γ)Ldγ.

The growth rate of At thus becomes:

gt = λẼL
M

α

[
γ∗N∗ + T −

(
γ̃tÑt + T̃t

)]
, (17)

where M/α = yt/At. Note that Ñt cannot exceed L which would imply

T̃t < 0. Therefore, there is a maximum for gt which is equal to:

gmax = λẼL
M

α

[
γ∗N∗ + T − γL

]
. (18)

Similarly to the static model of MSV without learning, γ∗N∗ + T is the
proportion of total income being spent in those industries having implemented
the IRS technology. This income share is time-independent. The rate of growth
at time t, therefore, depends positively on both the output multiplier and the
proportion of income which is spent in industries where learning is not yet ex-
hausted. Put differently, (17) provides us with a relationship between growth
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γ/y tL

γ = q t
γ/y tL

γ∗γ tγ

Figure 1: Implications of bounded learning and inequality for growth and structural

change.

and mass consumption, where growth depends on the share of aggregate real in-
come held by those households of type between γ̃t and γ

∗. Figure 1 summarizes
where expenditures of various consumers go and also depicts those industries
where learning takes place. Indeed, as alluded earlier, we have γ = qγt /ytL.

4 Mass consumption and sustained growth in

the long run

4.1 The steady-state rate of growth

In the long run, as long as there is positive growth, an industry q goes through
several stages. It begins with producing the good q with the CRS technology.
At this stage, q can be considered as a luxury good and does not represent
an essential need to consumers. It is produced for specific consumers, namely
the highest income consumers N∗. Then, it goes through that stage where it
becomes at some point in time the marginal industry q∗t , i.e. the highest indexed

industry at time t using the IRS technology. It produces q in an amount Xq∗

t

From then on, it starts to learn and to accumulate experience. Its apprenticeship
will continue until exhaustion. That is, until it will have reached the upper
bound Ẽ. At the time t, when the industry just exhausted all its potential

13



for learning, it becomes the marginal industry q̃t whose good is purchased in
quantity X q̃

t = (1−G(γ̃t))L. What time does it take for an industry to reach
the upper bound? The analysis below can be seen as a survival analysis where
we are interested in the length of time before the upper bound Ẽ is reached by
an industry once it has implemented the IRS technology.

The experience accumulated by one industry depends on its market size and
growth rates over times prior to that time when it reaches Ẽ. Recall from (13)
that for all q ∈ (q̃t, q

∗
t ), the experience accumulated at time t by the industry

indexed by q is described by using the survival function 1−G(γqt ):

Eqt

Ẽ
= λ

∫ t

t∗q

Xq
vdv = λ

∫ t

t∗q

(1−G(γqv))Ldv.

We are thus interested in the learning duration, i.e. the length of the time
period in-between t∗q and t, where t must be such that

Eq̃t

Ẽ
= 1⇔

∫ t

t∗
q̃

X q̃
vdv =

∫ t

t∗
q̃

(1−G(γq̃v))Ldv =
1

λ
. (19)

The demand in industry q at time t, with q̃t ≤ q ≤ q∗t , depends on the law of
motion of demand addressed to the industry q over the time interval (t∗q , t). Let
us rewrite the demand for that good at time t as a function of the average rate
of growth between t∗q and t of demand growth rates at each time v (Ẋq

v/X
q
v ),

where t∗q ≤ v ≤ t:
Xq
t = Xq

t∗q
exp(gqt∗q ,t(t− t∗q)),

where Xq
t∗q
= N∗ and gqt∗q ,t = (t − t∗q)

−1

∫ t

t∗q

(Ẋq
v/X

q
v)dv. Using the definition

of Xq
v = 1−G(γqv) and the change of variables γqv = q/yvL, the rate of growth

of demand for a good q > q
v
is given by9 :

Ẋq
v

Xq
v
= γqv

g(γqv)

1−G(γqv)

.
yv
yv
, (20)

9Let us us start with:

Ẋq
v =

∂(1−G(γq̃v))L

∂v
= −g(γ q̃v)Lγ̇

q̃
v,

where γqv = q/ytL implies γ̇qv = −(q/y
2
vL)ẏv . We get

Ẋq
v = g(γ

q̃
v)

(
q

(yv)

ẏv

yv

)

⇒ Ẋq
t = g(γ

q̃
v)γ

q
vL
ẏv

yv
, with γqv = q/ytL.

This yields:

Ẋq
t

Xq
v

= γqv
g(γq̃v)

1−G(γqv)

ẏv

yv
.

14



where Xq
v = (1−G(γqv))L and g(γqv)/(1−G(γqv)) also known as the hazard

rate is the number of households of type γqv relative to the number of households
whose income is greater than γqv. In other words, if yt increases by 1%, the
demand for good q increases by γqv times the hazard rate. The income elasticity
of aggregate demand for a good q is either zero for industries indexed by q ≤
q
v
or equal to γqvg(γ

q
v)/ (1−G(γqv)) for all q > q

v
. We face here a technical

difficulty, the income elasticity of demand for a good q > q
v
evolves over time

and depends on G(γqv).
At this stage, we choose to specify the distribution of income G(γ) and adopt

the Pareto distribution which exhibits useful properties as a functional form for
income distribution. We specify G(γ) = 1− (γ/γ)β with β > 1, the shape para-
meter, and γ ≥ γ > 0, the scale parameter. The larger the value of parameter β,
the more equal the distribution of income. Put differently, dispersion increases
monotically as β decreases. Note that β = γqvg(γ

q
v)/ (1−G(γqv)), this implies:

Ẋq
v

Xq
v
= β

.
yv
yv
,

which thus becomes constant across all industries q > q
v
10 , and the income

elasticity of demand addressed to each industry q ∈ (q
v
, q∗v) is equal to the

Pareto shape parameter.
In the steady state equilibrium, we normally have

g =
Ȧt
At
=
ẏt
yt
=
q̇∗t
q∗t
= constant,

and, therefore, the differential equation (20) verifies in the Pareto case and
in the steady state:

Xq
t = N∗ exp(βg(t− t∗q))

⇒ X q̃
t = Ñt = N∗ exp(βg(t− t∗q̃)). (21)

As long as the income elasticity of demand for a good q > q
t
is constant

both over the time interval (t∗q̃ , t) and across industries, we are able to use (21)
in (19) to get:

∫ t

t∗q̃

X q̃
vdv = N∗

∫ t

t∗q̃

exp(βg(v − t∗q̃))dv

= λN∗ 1

βg
exp(gβ(v − t∗q))

∣∣∣∣
t

t∗q

= N∗ 1

βg
(exp(βg(t− t∗q̃)− 1) =

1

λ
. (22)

10Another interesting property of the Pareto distribution in our framework is that:

β − 1

β
=
γ∗N∗

1− T
⇒ β =

1− T

1− (γ∗N∗ + T )
,

where γ∗N∗/(1−T ) is the share of income spent by the upper class in goods produced with
the IRS technology relative to their income share in the economy.

15



We now make use of (21) and (22) to obtain:

g =
λ

β
(Ñt −N∗). (23)

An increase in Ñt−N∗, i.e. of the number of mass consumers who purchase
goods from industries in the range (q̃t, q

∗
t ) is associated, ceteris paribus, with an

increase in the steady-state rate of growth. Now, using (β−1)/β = γ∗N∗/(1−T )
in (17)11 and the solution for g obtained in (23), we get in the Pareto case the
following system12 :

{
g = β−1λẼL(M/α)(T − T̃ )

g = β−1λ(Ñ −N∗)
. (24)

Given (10), the ratio of these two equations gives:

1

Ẽ
=

T − T̃

Ñ/L−N∗/L

M

α
⇔ At = Ẽ

T − T̃

Ñ −N∗
ytL. (25)

In Figure 2, we depict one possible solution of (24). The right quadrant
of Figure 2 is a graphical representation of the cumulative income distribution
G(γ), namely the Lorenz curve, where the 45◦ line represents perfect equality.
It shows for the bottom x% of households, what percentage y% of the total
income they have. It thus describes the level of inequality in the economy. On
the x-axis, one finds the cumulative share of households from lowest to highest
incomes and the cumulative share of aggregate income is plotted on the y-axis.
We then use (25) to find both T̃ and Ñ . Recall that Ñ −N∗ represent the size
of the middle class whose demand is responsible for the experience accumulated
in the sectors (q̃t, q∗t ), and thereby growth in equilibrium. The left quadrant is
the depiction of the first equation of (24) where the long-run rate of growth is
an increasing function of both the multiplier M and the income share held by
households whose type lies in the range (γ̃, γ∗), i.e. T − T̃ .

Permanent changes in the level of inequality (β) may be represented by shifts
of the Lorenz curve which will have effects on the steady state rate of growth.
Consider the following example: two economies, one with perfect equality, i.e.
β → ∞, and the other characterized with complete inequality, i.e. β → 1. In

11Consider (17) and use (β − 1)/β = γ∗N∗/(1− T ), we get

gt = λẼL
M

α

[
β − 1

β
(1− T ) + T −

(
β − 1

β

(
1− T̃

)
+ T̃t

)]

gt = λẼL
M

α

[(
1−

β − 1

β

)
T −

(
1−

β − 1

β

)
T̃t

]

gt = λẼL
M

α

[
1

β
T −

1

β
T̃t

]
.

12As g is constant in the steady state, it is also true for Ñ and T̃ . Henceforth, we express
all relations without an indication of time.
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Figure 2: Inequality and the rate of growth in the steady state. Left quadrant;

The rate of growth in the steady-state as provided in the first equation in system

(24). Right quadrant: Lorenz curve for a Pareto distribution with a particular shape

parameter β.
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these two extreme cases, the Lorenz curves follow the 45◦-line, respectively, the
x-axis in the interval (0, 1) and then the y-axis in 1. In the perfect equality

case, note that γ̃ = γ∗ which implies T̃ = T (or, equivalently, Ñ = N∗). Hence,
the long run growth rate equals zero. The absence of a middle class implies
that there is no industry in which learning takes place in the steady state.
Thus, there is no productivity gains in the long run. Put differently, there is no
transition for any industry from the CRS to the IRS technology which is the only
technology where learning occurs. In the case of complete inequality, the lack of
middle class obviously also leads to a zero-growth scenario in the steady state.
Eventually, the difference lies in the steady-state level of development between
the two economies. The most egalitarian economy underwent transitory growth.
The flying geese model took place only for some time. A scenario with a take-
off transition period is therefore consistent with a no sustained growth stage.
In contrast, in the unequal economy, the demand is not strong enough for the
flying geese model to take off with its own wings. In fact, it is very likely that no
growth ever occurred at all. The existence of a middle class is thus necessary to
obtain sustained growth. It is a prerequisite to a permanent structural change in
which experience is accumulated at a rate which is high enough for productivity
gains to allow new industries to adopt the IRS technology in the long run.

We now need to study conditions in terms of inequality and value of the
various parameters for which there will be positive long-run economic growth.
This is the topic of the next section.
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4.2 Learning, inequality and sustained growth in the long

run

Conditions on both the income distribution and parameters of the production
functions are crucial which will ensure that there is sustained growth in the long
run. This requires that certain conditions be met.

In the Pareto case and after some algebra13 , our variable of interest T̃ in the
steady state is given by:

T̃ =

∫ γ̃

γ

γg(γ)Ldγ = 1−

(
Ñ

L

)β−1
β

.

Let us now use the second equation in system (24) to rewrite Ñ as min(N∗+
gβ/λ,L), and substitute it into the first equation in system (24). We get:

g =
1

β



(
min(N∗ + gβ

λ , L)

L

)(β−1)/β

−

(
N∗

L

)(β−1)/β

 λẼL

1 + (α− 1)
(
N∗

L

)(β−1)/β .

(26)

⇒ ̥(g) = g.

The issue consists essentially in characterizing the conditions under which
there exists a unique fixed point g > 0 such that ̥(g) = g. Note first that
̥(0) = 0. Secondly, let us take advantage of the following changes in variables:
n∗ = N∗/L and b = (β−1)/β. (Keep in mind that with the Pareto distribution,
(β − 1)/β is equal to γ∗N∗/(1− T ); the higher the ratio, the more the society
can be regarded as egalitarian.) We thus rewrite ̥(g) as

̥ (g) = (1− b)

((
min

(
g

λ (1− b)L
+ n∗, 1

))b
− (n∗)b

)
ẼλL

1 + (α− 1)(n∗)b
,

13Note that:

T̃ =

∫ γ̃

γ

γg(γ)Ldγ, with γ =
β − 1

βL
and g(γ) = β

(
β − 1

βL

)β
γ−β−1.

This implies

T̃ =
βL

1− β

(
β − 1

βL

)β
γ1−β

∣∣∣∣∣

γ̃

γ

=
βL

β − 1

(
β − 1

βL

)β
γ1−β −

βL

β − 1

(
β − 1

βL

)β
γ̃1−β

=

(
β − 1

βLγ

)β−1
−

(
β − 1

βLγ̃

)β−1

⇒ T̃ = 1−

(
β − 1

βLγ̃

)β−1
= 1−

(
Ñ

L

)β−1
β

, with Ñ = (1−G(γ̃))L.
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where ∂̥ (g) /∂g > 0 and ∂2̥ (g) /∂g2 < 0, i.e. F (g) is strictly concave.
Hence, there exists a unique fixed point g > 0 as long as ∂̥ (g) /∂g|g=0 > 1.
Specifically, we have

∂̥ (g)

∂g
= (1− b)

b

λ (1− b)L

(
g

λ (1− b)L
+ n∗

)b−1
ẼλL

1 + (α− 1)(n∗)b
> 1.

Evaluating ∂̥ (g) /∂g at g = 0 yields

∂̥ (g)

∂g

∣∣∣∣
g=0

= b(n∗)b−1
Ẽ

1 + (α− 1)(n∗)b
> 1⇔ Ẽb(n∗)b−1−1−(α−1)(n∗)b > 0.

(27)
Let us now use the break-even condition (7), i.e. 1/n∗ = (α − 1)L/F , and

define the function:

Ψ(b) = ln

[[
(α− 1)L

F

]b
+ α− 1

]
− ln

[
(α− 1)L

F

]
− ln b.

Put differently, the above condition (27) yields

ln Ẽ > Ψ(b) . (28)

The left side of (28) is just the learning upper bound whereas the right
side is a function depending on b = γ∗N∗/(1 − T ), i.e., the share of income
spent by the upper class in goods produced with the IRS technology relative
to their income share in the economy, the population size (L) and parameters
characterizing both CRS and IRS production technologies, α and F . Given this
last formulation, we now need to study Ψ(b) in order to identify the necessary
conditions for positive growth in the long run. To sum up, Ψ(b) is a positive,

convex function of b, tending toward −∞ as b→ 0 and toward the value lnẼ∗∗,
where Ẽ∗∗ = 1+F/L, as b→ 1 (see Figure 3 below and Appendix 2 for details).
As shown in Figure 3, we can distinguish between three scenarios. As long as
(α− 1)L/F > ln Ẽ∗∗ holds, the following three cases may arise:

Case #1:
Ẽ ≤ Ẽ∗ ⇒ g = 0, ∀ 1 < β <∞, i.e. ∀ 0 < b < 1.

Case #2:

Ẽ∗ < Ẽ ≤ Ẽ∗∗, ∃ 1 < β1 < β2 <∞, i.e. 0 < b1 < b2 < 1

such that

a) if β ≤ β1 ⇔ b ≤ b1 ⇒ g = 0;

b) if β1 < β < β2 ⇔ b1 < b < b2 ⇒ g > 0;

c) if β ≥ β2 ⇔ b ≥ b2 ⇒ g = 0.
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Case #3:

Ẽ > Ẽ∗∗, ∃ 1 < β3 <∞, i.e. 0 < b3 < 1

such that

a) if β ≤ β3 ⇔ b ≤ b3 ⇒ g = 0;

b) if β > β3 ⇔ b > b3 ⇒ g > 0.

Otherwise, if (α− 1)L/F ≤ ln Ẽ∗∗, there is no value of b and Ẽ such that
case #2 will occur and only case #1, i.e. g = 0, and case #3 may arise.
As summarized in Figure 3, in Case #1, whatever the degree of equality, the
potential for learning relatively to the size of the population (L), fixed costs
(F ), and to the marginal cost in competitive industries (α), is too weak to yield
positive growth in the long run. In Case #3 instead, as soon as inequality
is not too high, the learning potential in those industries that implement the
IRS technology is substantial enough to generate a positive steady state rate of
growth. Case #2 is more sensitive since inequality must neither be too low nor
too high so that there is sustained growth.

ln E

b

ln E
∗

ln E
∗∗

= ln1 + F/L

ln E1

lnE2

ln E3

b1 b2b3 10

Ψb

b

Learning, inequality and positive growth in the long run. (See Appendix 2 for details.)
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5 Mass consumption, output multiplier, and sus-

tainable economic development

Let us start with an analysis of Fred Pearce14 , freelance journalist in England
and entitled, "Consumption dwarfs population as main environmental threat":

"Take carbon dioxide emissions - a measure of our impact on cli-
mate, [...] Stephen Pacala, director of the Princeton Environment
Institute, calculates the the world’s richest half-billion people -that’s
about 7 percent of the global population- are responsible for 50 per-
cent of the world’s carbon dioxide emissions. Meanwhile the poorest
50 percent are responsible for 7 percent of emissions... For a wider
perspective of humanity’s effects on the planet’s life support sys-
tems, the best available measure is the "ecological footprint", which
estimates the area of land required to provide each of us with food
clothing, and other resources, as well as to soak up our pollution...
They show that sustaining the lifestyle of the average American takes
9.5 hectares, ... and the Japanese, 4.9. The world average is 2.7
hectares. China is still below that figure at 2.1, while India and
most of Africa are at or below 1.0... The carbon emissions of one
American today are equivalent to those of four Chinese, 20 Indians,
or 250 Ethiopians."

Following the example of Brock and Taylor (2010), it is assumed that the
total emission of pollutants at time t by all industries is given by:

ǫt = e(At)

∫ ∞

0

Xq
t dq = e(At)ytL,

with e(At), the emission of pollutants per unit of output, and eAt(At) < 0.
The pace of change in the stock of pollution (Pt) is described by:

Ṗt = ǫt − θPt,

and θ a parameter of regeneration of the environment which reflects a mech-
anism opposite to that of depreciation). On the one hand, as the economic
activity increases, we observe a worsening of the quality of the environment.
On the other hand, the higher the stock of knowledge, the more we are able to
save the quality of the environment per unit of goods produced.

Furthermore, we assume that P is an upper limit that pollution shall not
exceed without producing an environmental disaster that would be irreversible.
Therefore, we must have:

0 ≤ Pt ≤ P , ∀t.

In the steady state, we have:

Ṗt = 0⇒ P ∗t =
ǫt
θ

et
ẏt
yt
= −eAt(At)

At
e(At)

Ȧt
At

,

14http://e360.yale.edu/content/feature.msp?id=2140
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and (see above),

Ẏt
Yt
=
Ȧt
At
⇒ −

eAt(At)At
e(At)

= −1⇒ e(At) =
ξ

At
, avec ξ > 0.

Thus, to the question, is a sustainable environment compatible with eco-
nomic growth in a society of mass consumption? The answer is yes, but the
steady state is contingent on neutralizing the effect of the increased production
("scale effect") created by mass consumerism on the quality of the environment,
by technical progress ("technical effect ") source of more efficient and cleaner
technologies per unit of output. Improving the environment occurs here as a
by-product of technological progress.

Moreover, if we want to avoid an environmental catastrophe, the following
condition must be met:

P ∗t =
e(At)ytL

θ
=
ξ

θ

ytL

At
=
ξ

θ

M

α
L ≤ P.

In other words, pollution is a nondecreasing function of the population size
and of the multiplier. Despite the positive impact of mass consumption on
the rate of long-term growth, too many mass consumers may produce pow-
erful enough demand spillover effects so that the economy may experience an
ecological disaster while being on a balanced growth path, i.e. such that Ṗt = 0.

6 Conclusion

[To be written]
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8 Appendices

8.1 Appendix 1: Price equilibrium

Proof. On the one hand, at time t, a monopolist entering the market for a
particular good q cannot set a price higher than the competitive price without
giving way to a competitive fringe of firms. On the other hand, could he seriously
consider to increase its profits by lowering its price unilaterally below pt =
αwt/At, i.e., while all other firms keep their price unchanged? The answer is
no, as long as the marginal profit satisfies the following condition:

∂πqt
∂p̂qt

=
∂D̂q

t

∂p̂qt

(
p̂qt −

wt
At

)
+ D̂q

t > 0⇔−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
< 1, (29)
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with p̂qt ≤ pt, and where D̂q
t is the effective demand for good q produced at

p̂qt . In other words, the price elasticity of demand multiplied by the price-cost
margin should not exceed unity.

Let us define q̂ ≤ q such that

Vt =

∫ ∞

0

1

q
xqtdq, (30)

1

q

1

p̂qt
=
1

q̂

1

pt
⇒ q̂ =

p̂qt
pt
q.

Among the first category of households, customers for the variety of good q
include all those which are rich enough to buy q̂, i.e., households of type γ ≥ γq̂t ,
with

γq̂t
(
wthtLt + πt

)
=

γq̂t =
ptq̂

wthtLt + πt
=

p̂qt q

wthtLt + πt
, .

Therefore, the effective demand for good q produced at price p̂qt , is

D̂q
t = (1−Gj(γ

q̂
t ))L.

Let g(γ) be the density of type-γ households and β(γ) = g(γ)γ/(1−G(γ)).
The price elasticity of demand for good q can be written as follows

−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

=
g(γq̂t )p̂

q
t qL(

wthtLt + πt
)
(1−G(γq̂t ))L

(31)

=
γq̂tg(γ

q̂
t )

(1−G(γq̂t ))

= β(γq̂t ).

First, we can show that using (29) and (31), we have:

−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
= β

(
γq̂t

)( p̂qt −wt/At
p̂qt

)
< β

(
γq̂t

)(pt −wt/At
pqt

)
= β

(
γq̂t

)(α− 1
α

)
.

Therefore the following inequality provides a sufficient condition for ruling out
price-cutting equilibria:

β
(
γq̂t

)(α− 1
α

)
< 1⇒−

∂D̂q
t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
< 1 (32)

Indeed, as long as (29) is satisfied, when a firm with access to IRS technology
in industry q aims to cut the price below αwt/At, it is not able to expand its
customer base to such an extent as to compensate the loss in the rate of profit
per customer, thus discouraging price-cutting. In our framework, such condition
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results in (32). The income distribution should not degenerate around any type-
γ.

Let us define G(γ) to be the Pareto distribution which has the following
useful properties: (i) β (γ) = β ∀γ, and (ii) γ

−
= (β − 1) / (βL). Then, the

condition becomes

β

(
α− 1

α

)
< 1⇐⇒ β <

α

α− 1
⇐⇒

β − 1

β
<
1

α
⇐⇒ b <

1

α
. (33)

where, in the text, we have defined b = (β − 1)/β
On the other hand, when β(α− 1)/α > 1⇔ b > 1/α, the price equilibrium

is equal to

−
∂D̂q

t

∂p̂qt

p̂qt

D̂q
t

(
p̂qt −wt/At

p̂qt

)
= 1⇒ β

(
p̂qt −wt/At

p̂qt

)
= 1⇒

p̃qt =
β

β − 1
wt/At =

1

b
wt/At < pt = αwt/At.

In the case of a Pareto distribution, the Gini coefficient is equal to 1/(2β − 1).
Thus, the inequality (β − 1)/β > 1/α yields

Gini <
α− 1

α+ 1
.

Let us consider a mark-up (α−1)/α which is equal to 0.2 which means α = 1.25.
In this particular case for α, the above inequality is such that Gini < 0.11. As
soon as Gini < 0.11, the equilibrium price will differ from αwt/At being equal
to

pt =
β

β − 1

wt
At

.

Gini coefficients across countries reveal that the assumption (β− 1)/β < 1/α is
more realistic. In this article, we therefore work with this assumption and the
price in equilibrium is determined by pt = αwt/At.

8.2 Appendix 2: Existence of a unique fixed point

We provide below a study of Ψ(b) in the interval (0, 1), where

Ψ(b) = ln
[
νb + α− 1

]
− ln ν − ln b,

and ν = (α− 1)L/F .
First, note that β = 1 ≡ b = 0⇒ Ψ(0)→∞, whereas β →∞≡ b→ 1⇒

lim
b→1

Ψ(b) = ln

[
(α− 1)L

F
+ α− 1

]
− ln

(α− 1)L

F
= ln

[
1 +

F

L

]
= ln Ẽ∗∗ > 0.
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Secondly, Ψ(b) is convex:

∂Ψ(b)

∂b
=

νb ln ν

νb + α− 1
−
1

b
⇒

∂2Ψ(b)

∂b2
=

(
νb lnν

)2
+ (α− 1) νb (ln ν)2 −

(
νb ln ν

)2

(νb + α− 1)
2 +

1

b2

=
(α− 1) νb (ln ν)

2

(νb + α− 1)
2 +

1

b2
> 0.

Thirdly, Ψ(b) reaches a minimum value in b which is the solution to the
following equation:

∂Ψ(b)

∂b

∣∣∣∣
b=b

= 0⇔
bνb ln νb

νb + α− 1
= 1.

Finally, note that b may not necessarily lie in the interval (0, 1). We now
analyze the value of ∂Ψ(b) /∂b|b=b inside the unit interval. We have

∂Ψ(b)

∂b

∣∣∣∣
b→0

= α−1 ln ν − lim
b→0

1

b
→−∞ and

∂Ψ(b)

∂b

∣∣∣∣
b→1

=
ν ln ν

ν + α− 1
− 1 � 0⇔ ν ln ν − ν − (α− 1) � 0.

Replacing ν by (α−1)L/F eventually leads to the following important property
between the population size (L), and parameters characterizing both CRS and
IRS production technologies, α and F :

∂Ψ(b)

∂b

∣∣∣∣
b→1

� 0⇔ ln

(
(α− 1)L

F

)
� 1 +

F

L
⇔
(α− 1)L

F
� ln Ẽ∗∗.
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