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Abstract

Most theoretical work on how to calculate the marginal deadweight loss has

been done for linear taxes and for variations in linear budget constraints. This is

quite surprising since most income tax systems are nonlinear, generating nonlin-

ear budget constraints. Instead of developing the proper procedure to calculate the

marginal deadweight loss for variations in nonlinear income taxes a common proce-

dure has been to linearize the nonlinear budget constraint and apply methods that

are correct for variations in a linear income tax. Such a procedure leads to incorrect

results. The main purpose of this paper is to show how to correctly calculate the

marginal deadweight loss when the income tax is nonlinear. A second purpose is to

evaluate the bias in results that obtains when a linearization procedure is used. We

perform calculations for the US tax system in 1979, 1994 and 2006. We find that the

linearization procedure significantly overestimates the marginal deadweight loss and

underestimates the marginal tax revenue. The magnitude of the errors has decreased

over the last three decades, reflecting the reduction in the curvature of the US tax

schedule.
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I. Introduction

The study of the deadweight loss of taxation has a long tradition in economics going

back as far as Dupuit (1844). Modern type of empirical work on the deadweight loss of

taxation is heavily influenced by the important work of Harberger in the fifties and sixties

(see for example Harberger (1962, 1964)). A second generation of empirical work was

inspired by Feldstein (1995, 1999). Feldstein argued that previous studies had neglected

many important margins that are distorted by taxes. By estimating how total taxable

income reacts to changes in the marginal tax, one would be able to capture distortions

of all relevant margins. Feldstein’s own estimates indicated large welfare losses whereas

many later studies arrived at estimates of the welfare loss that were larger than those

obtained in pre-Feldstein studies, but considerably lower than the estimates obtained by

Feldstein. An important ingredient in modern studies of the deadweight loss of taxes is

the estimation of a (Hicksian) taxable income supply function (Gruber and Saez, 2002;

Kopczuk, 2005; Saez, 2010; Saez, Slemrod, and Giertz, 2009). These taxable income

functions show how taxable income varies as the slope of a linear budget constraint of

individuals is changed at the margin.

Most theoretical work on how to calculate the marginal deadweight loss has been

done for linear taxes and hence for variations in linear budget constraints. This is quite

surprising because most income tax systems are nonlinear, generating nonlinear budget

constraints. Instead of developing the proper procedure to calculate the marginal dead-

weight loss for variations in nonlinear income taxes, one has linearized the nonlinear

budget constraint and applied the procedure that is correct for variations in a linear

income tax. Empirical works usually linearize budget constraints and proceed as if the

budget constraints were linear. As we will show, this leads to incorrect results. The main

purpose of our article is to show how to correctly calculate the marginal deadweight loss

when the income tax is nonlinear. A second purpose is to evaluate the bias in results that

obtains when the budget constraint is linearized and the linearized budget constraint is

used to calculate the marginal deadweight loss. For tax systems where the marginal in-

come tax increases with the taxable income, this linearization procedure may often lead

to an overestimate of the marginal deadweight loss.

Actual tax systems are usually piecewise linear and, in the end, we describe how to

calculate the marginal deadweight loss for such tax systems. However, in order to get

simple and clean results, we start our analysis by considering smooth budget constraints.

It should be noted that the average, or aggregate, behavior for a population does not

depend on whether the tax system and budget constraints are kinked or smooth. It is
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the general shape of the tax system and budget constraints that determine the average

behavior. To further simplify the analysis, we consider tax systems that generate convex

budget sets. However, in our numerical computations, we fully account for nonconvexi-

ties. Historically, much focus has been on how the income tax distorts labor supply. Since

the more recent literature has the focus on taxable income, we state our results in terms

of this concept. Of course, it is easy to modify our results to some other application.

When doing our theoretical analysis, as well as numerical calculations, we will do this

for a change in the tax schedule such that individuals’ budget constraints rotate down-

wards and such that the marginal tax rate increases with the same number of percentage

points at all income levels. This is the kind of experiment considered by Feldstein is his

seminal (1999) article. Such a change can, for example, be interpreted as an increase in

the payroll tax. Our analysis and numerical calculations are done for the marginal dead-

weight loss, the marginal tax revenue and the marginal deadweight loss per marginal

tax dollar. If the tax system is such that the marginal tax increases with income, the

linearization procedure overestimates the change in marginal deadweight loss and under-

estimates the change in tax revenue. When the overestimated marginal deadweight loss

is divided by the underestimated marginal tax revenue to get the marginal deadweight

loss per dollar, the two mistakes are magnified so that the bias in marginal deadweight

loss per dollar in some cases becomes very large.

As will be shown below, the expression for the marginal deadweight loss when a

linearization procedure is used looks formally the same as the correct expression. The

crucial difference is that if the linearization procedure is used one misses the fact that

the change in taxable income depends on the curvature of the budget constraint. In fact,

the curvature of the budget constraint and the curvature of the indifference curve are

of equal importance for how large the change in taxable income will be. If the budget

constraint is linearized one sets the curvature to zero and overestimates the change in

taxable income.

Actual tax systems are usually piecewise linear. Unless the taxable income elasticity

is very small we would expect to see a fair amount of bunching at the kink points.

However, such bunching is usually not observed. Early studies in the nonlinear budget

set literature (e.g., Burtless and Hausman (1978), Hausman (1979), Blomquist (1983)

and Hausman (1985)) and more recently Chetty (2009) have emphasized that, due to

optimization errors, usually there will be a difference between desired taxable income

(hours of work) and realized taxable income. These optimization errors imply that even if

there would be bunching at kink points of desired taxable income, we should not expect

to see much bunching of actual taxable income.
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To evaluate how misleading results will be if one uses linearized budget constraints

to calculate the marginal deadweight loss, we perform calculations on the US tax system

for the years 1979, 1994 and 2006. The overall curvature of the tax schedule differs quite

much between these years. The bias in the linearization procedure depends both on the

general curvature of the tax system and the curvature of the indifference curves, i.e., on

the taxable income elasticity. Our calculations range from a low value of the bias in the

marginal deadweight loss per tax dollar of 4.1% for the 2006 tax system and an elasticity

of 0.2 to a bias of 132% for the 1979 tax system and an elasticity of 0.8. 1

Feldstein (1999) provides computations of the marginal deadweight loss of the US

tax system in 1994. He computes a marginal deadweight loss per tax dollar of $2.06.

Using the same set of taxes, the same year and the same elasticity of taxable income,

we are able to replicate this number closely; we obtain $2.16, when using the lineariza-

tion procedure. However, when properly taking account of the curvature of the budget

constraint, we calculate the marginal deadweight loss per tax dollar to be $1.35. That

is, the linearization procedure overestimates the marginal deadweight loss per tax dollar

by 61%.

It is simplest to illustrate the basic ideas under the assumption that the budget

constraints are smooth. In Section II, we therefore use smooth budget constraints to

introduce the main idea and show how the marginal deadweight loss should be correctly

calculated. We also give expressions for how large the bias using a linearization procedure

can be. In reality, tax systems normally create piecewise linear budget constraints. In

Section III, we show how the calculations are modified if budget constraints are piecewise

linear. In Section IV, we present calculations of the marginal deadweight loss for the US

tax system for three different years. Section V concludes.

II. Smooth Income Tax

Actual tax systems are usually piecewise linear and, in the next section, we describe how

to calculate the marginal deadweight loss for such tax systems. However, in order to get

simple and clean results, we start our analysis by considering smooth budget constraints.

One reason is that it is basically the general shape of the tax system and the budget

constraints that determine the average behavior.2

1In fact, we obtain a bias that is even more severe if the elasticity is 1.0. However, because the
linearization procedure in that case incorrectly indicates that we are on the wrong side of the Laffer
curve the percentage figure is not comparable to the other percentage figures.

2This should be qualified. A smooth tax schedule is a good approximation of a piecewise linear tax
schedule provided the distribution of the kink points is regular enough.
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A. The Tax System

A linear income tax can be varied in two ways. One can change the intercept, which leads

to a pure income effect, or change the proportional tax rate, which leads to a substitution

and an income effect. For a nonlinear income tax, there are many more possible ways to

vary the tax. Break points can be changed, the intercept can be changed and the slope

can also be changed. Moreover, the slope can be changed in different ways. We do not

cover all these different possibilities to vary a nonlinear tax. We focus on a particular

kind of change in the slope, namely a change in the slope such that the marginal tax

changes with the same number of percentage points at all income levels. The general

insight of the article that the comparative statics for the compensated taxable income

depends on the curvature of the budget constraint carries over to variations in other

tax parameters. We could write the tax system as T (A) = g (A, γ), where γ is a tax

parameter the variation of which is under scrutiny. Then, it would be the curvature of g,

∂2g/∂A2, that would matter for our results. What we do below is a special case, which

we believe makes the analysis more transparent and directly applicable.

We model the tax in the following way. Let A denote taxable income and the tax

on A be given by T (A). The results below depend on the curvature of the tax function,

∂2T (A) /∂A2. For simplicity, we show details for a specific formulation T (A) = g (A) +

tA, with g′ (A) > 0, g′′ (A) > 0 and t ≧ 0. Note that in this case ∂2T (A) /∂A2 reduces

to g′′ (A). We can think of g (A) as a nonlinear federal tax. There are several alternative

interpretations of tA. It could be a payroll tax, a value added tax or a proportional state

income tax. Within the Scandinavian framework, it could be interpreted as the local

community income tax. What we study is the marginal deadweight loss of an increase

in t. A change in t implies that the marginal tax is increased by the same number of

percentage points at all income levels.

There are two good reasons why we have parameterized the tax system in the way

described above. When we vary the slope of a linear budget constraint, the intercept will

not change. With the parametrization we use, a change in t will not change the virtual

income but only the slope, thereby giving an experiment similar to a change in the slope

of a linear budget constraint.3 A second reason is, of course, that real tax systems are,

as a first approximation, of a form as the one described by g (A) + tA.

3This nice feature of the parameterization used was pointed out to us by H̊akan Selin.
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B. The True Marginal Deadweight Loss

Consider the utility maximization problem:

max
C,A

U (C,A, v) s.t. C ≦ A− g (A)− tA+B, (P1)

where C is consumption, v an individual specific preference parameter and B lump-

sum income. We assume that the utility function U(C,A, v) has the usual properties.

We denote the solution to problem (P1) as C(t, B, v), A(t, B, v). The form of these two

functions depends on the functional forms of U and g. Sticking C(t, B, v), A(t, B, v) back

into the utility function, we obtain the indirect utility u(v) := U(C(t, B, v), A(t, B, v), v).

For each individual, the latter is the maximum utility level obtained under the given tax

system. Because individuals have different v’s, they choose different taxable incomes and

have different u (v).

We now study the marginal deadweight loss of a small increase in t. We also examine

the marginal deadweight loss per marginal tax dollar, as this measure is often used in

the literature. We first derive the correct expressions and then – in the next subsection

– describe how they usually are calculated. For this purpose, we define the expenditure

function as:

E (t, v, u) = min
C,A

{C −A+ g (A) + tA−B} s.t. U (C,A, v) ≧ u. (P2)

This problem also defines the compensated demand and supply functions, Ch (t, v, u) and

Ah (t, v, u) respectively, where the superscript h denotes that it is Hicksian functions. It

is important to note that these functions depend on the functional form of U (C,A, v)

and on the functional form of g (A). In almost all empirical and theoretical analyses,

we work with demand and supply functions generated by linear budget constraints. In

contrast, the functions defined by (P1) and (P2) are generated by a nonlinear budget

constraint.

Let us define the compensated tax revenue function as:

R(Ah (t, v, u)) = g(Ah (t, v, u)) + tAh (t, v, u) (1)

and the marginal tax revenue – whilst keeping utility constant – as:

MTR :=
dR(Ah)

dt
= Ah + (g′(Ah) + t)

dAh

dt
. (2)
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The marginal deadweight loss is the difference between compensated changes in expen-

diture and collected taxes, i.e.,

MDW :=
dE (t, v, u)

dt
−

dR(Ah (t, v, u))

dt

= Ah − g′(Ah)
dAh

dt
−Ah − t

dAh

dt
= −(g′

(
Ah

)
+ t)

dAh

dt
, (3)

where we used the envelope theorem to obtain dE (t, v, u) /dt = Ah. Expression (3) is

the correct expression for the marginal deadweight loss. The ratio (3)/(2) corresponds

to the marginal deadweight loss per marginal tax dollar.

C. A Commonly Used Linearization Procedure

We next describe a commonly used procedure that, in general, overestimates the marginal

deadweight loss.4 Let us consider particular values v∗, t∗ and B∗ and the solution to (P1),

C∗ = C (t∗, v∗, B∗) , A∗ = A (t∗, v∗, B∗). We can linearize the budget constraint around

this point with local prices defined by pc = 1 and pA = g′ (A∗) + t∗ to obtain the linear

budget constraint C = A − pAA + M , where M is defined as M = C∗ − A∗ + pAA
∗.

Consider the problem:

max
C,A

U (C,A, v∗) s.t. C ≦ A− pAA+M. (P3)

We call CL (pA, v
∗,M) , AL (pA, v

∗,M) the solution to this problem. Here, we use the

subscript L to show that these are functions generated by a linear budget constraint.

We define the expenditure function corresponding to this linear budget constraint as

EL (t, v, u) = min
C,A

{C −A+ pAA−M} s.t. U (C,A, v) ≧ u (P4)

and denote its solution by Ch
L (t, v, u) , Ah

L (t, v, u), where the subscript L indicates that

it is the solution to a problem where the objective function is linear and the superscript

h that this is Hicksian demand-supply functions. Let us define the compensated rev-

enue function as: R
(
Ah

L (t, v, u)
)
= g

(
Ah

L (t, v, u)
)
+ tAh

L (t, v, u). Marginal tax revenue,

keeping utility constant, is given by:

MTRL :=
dR(Ah

L)

dt
= Ah

L + (g′(Ah
L) + t)

dAh
L

dt
. (4)

4Feldstein (1999) is an example of an empirical study using a linearization procedure and (Dahlby,
1998) is an example of a theoretical study using a linearization procedure.
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Figure 1: Nonlinear and linearized programmes

We obtain the marginal deadweight loss as:

MDWL :=
dEL(t, v, u)

dt
−

dRL(A
h
L (t, v, u))

dt

= Ah
L − g′(Ah

L)
dAh

L

dt
−Ah

L − t
dAh

L

dt
= −(g′

(
Ah

L

)
+ t)

dAh
L

dt
. (5)

The marginal deadweight loss per marginal tax dollar is the ratio (5)/(4).

Figure 1 illustrates the links between the four problems that we have studied. The

optimization problem (P1) maximizes utility given the curved budget constraint C =

A− g (A)− tA+B. Let us consider particular values for the proportional tax and lump-

sum income: t∗ and B∗. Suppressing the dependence on v, we denote the solution by C∗ =

C (t∗, B∗) , A∗ = A (t∗, B∗). This defines the utility level u∗ = U (C∗, A∗) . Optimization

problem (P2) minimizes expenditures to reach the utility level u∗ for the given nonlinear

tax system. By construction, the solution to this problem is also C∗, A∗. Linearizing

around (A∗, C∗) , so that the linear budget constraint is tangent to the indifference

curve at (A∗, C∗) , we have two other optimization problems. Problem (P3) maximizes

utility subject to the linear budget constraint going through (A∗, C∗) and having the

same slope as the indifference curve through (A∗, C∗) . Problem (P4) is to minimize

expenditures given the utility level u∗ and the general shape of the budget constraint
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given by the linear budget constraint. By construction, the four optimization problems

have the same solution. For any t and B, we thus have the identities

A (t, B) ≡ Ah (U (C (t, B) , A (t, B)))

≡ AL (pA (C (t, B) , A (t, B)) ,M (C (t, B) , A (t, B))) ≡ Ah
L (U (C (t, B) , A (t, B))) . (6)

D. Comparative Statics for Taxable Income

Expressions (3) and (5) obtained above look quite similar, as do expressions (2) and (4).

By construction, it is true that Ah
L = Ah, implying that g′

(
Ah

L

)
+t = g′

(
Ah

)
+t. However,

dAh/dt and dAh
L/dt usually differ, implying a bias when the linearization procedure is

used. To show this, we start with a simple example, which we then generalize.

A Simple Example

To simplify notation, we in this example suppress the preference parameter v. We assume

that the utility function takes the quasilinear form U = C−αA−γA2. This implies that

the income effect for the supply of A is zero, so that the Marshallian and Hicksian supply

functions are the same. We assume that the tax is given by T (A) = tA+pA+πA2, where

we can interpret tA as the state tax and pA+πA2 as the federal tax. This yields a budget

constraint C = A− (p+ t)A−πA2+B, where B is lump-sum income. Substituting the

budget constraint into the utility function, we obtain U = A − (p+ t)A − πA2 + B −

αA− γA2. Maximizing with respect to A, we get dU/dA = 1− (p+ t)− 2πA−α− 2γA.

We see that a necessary condition for a nonnegative A is 1 − (p+ t) − α ≧ 0. We find

that d2U/dA2 = −2 (π + γ) < 0 for π+ γ > 0. Setting dU/dA = 0 and solving for A, we

obtain

A =
1− (p+ t)− α

2 (π + γ)
. (7)

Since we have the quasilinear form, this is also the Hicksian supply. We immediately

have
dAh

dt
= −

1

2 (π + γ)
. (8)

From (8), we see that the size of the substitution effect depends on the curvatures of

the indifference curve and the budget constraint. We note that it is immaterial whether

the curvature emanates from the indifference curve or from the budget constraint. What

matters is the curvature of the indifference curve in relation to the budget constraint.

The larger the total curvature, given by 2 (π + γ) in our example, the smaller is the

change in taxable income and the smaller is the deadweight loss.
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Suppose that we have particular values for the parameters of the problem and de-

note the solution (C∗, A∗). We can linearize the budget constraint around this point

and get the budget constraint C = A − [(p+ t) + 2πA∗]A + M , where M = C∗ −

[1− (p+ t)− 2πA∗]A∗. Given this linearization, an individual solves:

max
C,A

{
C − αA− γA2

}
s.t. C ≦ A− [(p+ t) + 2πA∗]A+M. (9)

Substituting the binding budget constraint into the utility function, we want to maximize

A − [(p+ t) + 2πA∗]A + M − αA − γA2. Denoting this expression by Ũ , we obtain

dŨ/dA = 1−(p+ t)−2πA∗−α−2γA and d2Ũ/dA2 = −2γ. The second-order condition

is satisfied for γ > 0. Setting dŨ/dA = 0 and solving for A, we get Ah
L = [1− (p+ t) −

2πA∗ − α]/ (2γ) and
dAh

L

dt
= −

1

2γ
. (10)

We see that a marginal increase in the tax rate t induces a smaller response in taxable

income when the budget constraint is linearized. Given the definitions introduced in

Section 2, this implies that the linearization procedure overestimates the marginal dead-

weight loss and underestimates the marginal tax revenue. To get an order of magnitude,

suppose for example that π = γ = 0.1. We then have dAh/dt = −2.5 while using the

supply function generated by the linearized budget constraint gives dAh
L/dt = −5. This

means that the linearization procedure overestimates the deadweight loss with a factor

2. If we choose π = 0.05 and set all other parameters equal to 0.1, then the linearization

procedure overestimates the correct deadweight with a factor 1.5 (1.5 instead of 1.0),

underestimates the correct marginal tax revenue with a factor 1.6 (0.83 instead of 1.33)

and overestimates the marginal deadweight loss per marginal tax dollar with a factor

2.4 (1.8 instead of 0.75).

In Figure 2, we illustrate the deadweight loss of a discrete change in t, from t = 0

to t = 0.3, for parameter values of α = γ = 0.1, p = 0.2, π = 0.05 and B = 1.

In the left panel, we show the correct calculation using a variation in the nonlinear

budget constraint. The bundle chosen prior to the tax change is A, at the tangency

point between the budget constraint and the highest feasible indifference curve. The

increase in t shifts the nonlinear budget constraint in such a way that A′ is now chosen

instead of A. The deadweight loss corresponds to the difference between the equivalent

variation and the variation in tax revenue, labelled MTR. It is thus shown by the thick

vertical line MDW below A′. In the right panel, we show the standard procedure which

10



Figure 2: Deadweight loss when the budget constraint is nonlinear (left panel) and lin-
earized (right panel)
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employs a variation in the linearized budget constraint. The nonlinear budget constraint

through A is linearized around this point. The increase in t induces a rotation of the

linearized budget constraint around the intercept. The bundle AL is now chosen instead

of A. We see that the deadweight loss, shown by the thick vertical MDW line below AL,

is much larger than when the correct procedure is used. The change in tax revenue is

given by the line MTR. Regarding the deadweight loss per tax dollar (given by the ratio

of MDW and MTR), we see that the figure obtained when linearizing is very different

from the correct one. Hence, the error made for the change in the deadweight loss and

the error made for the change in tax revenue are magnified when one calculates the

marginal deadweight loss per marginal tax dollar.

Generalization of the Example

We can easily generalize the example above. Let us consider the general utility function

U (C,A, v). The Hicksian supply function for taxable income is defined by problem (P2).

We will reformulate this problem. The constraint U (C,A, v) ≧ u is binding at the op-
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timum and can thus be rewritten as C = f (A, v, u), where the function f is defined by

U (f (A, v, u) , A, v) = u. Substituting the constraint C = f (A, v, u) into the objective

function, we obtain the minimization problem minA f (A, v, u) − A + tA + g (A) − B.

Let us for convenience use the notation f ′(·) to denote ∂f/∂A. The first order condi-

tion f ′ (A, v, u) − 1 + t + g′ (A) = 0 defines the Hicksian supply function Ah (t, v, u).

Differentiating it implicitly yields:

dAh

dt
= −

1

g′′ + f ′′
. (11)

In the analysis above, f ′ (A, v, u) is the slope of the indifference curve. Hence, f ′′ (A, v, u)

shows how the slope of the indifference curve changes as A is increased along the indiffer-

ence curve and, thus, gives the curvature of the indifference curve. For the special case of

a quasilinear utility function, with zero income effects for the taxable income function,

u would not be an argument in the f(·) function. From (11), we see that the curvature

of the budget constraint is as important for the size of the marginal deadweight loss as

is the curvature of the indifference curve. What matters is the curvature of the indiffer-

ence curve in relation to the budget constraint. When the budget constraint is linear and

g′′ = 0, dAh/dt reduces to dAh/dt = −1/f ′′. Hence, if we linearized, we would obtain:

dAh
L

dt
= −

1

f ′′
, (12)

which confirms that the linearization procedure leads to an overestimation of the true

marginal deadweight loss.

In empirical studies of the taxable income function, it is usually the taxable income

function Ah
L (t, v, u) , valid for a linear budget constraint, that is estimated and reported.

However, if we know dAh
L/dt as well as the tax function T (A) = g (A) + tA, it is easy

to calculate the comparative statics for the taxable income function Ah (t, v, u). This

is because the comparative statics for the two functions are related according to the

formula:
dAh

dt
=

dAh
L/dt

1− g′′ (A)
(
dAh

L/dt
) . (13)

E. Bias when Linearizing

We below will measure the bias implied by linearizing in three ways: the overestimation

of the marginal deadweight loss, the underestimation of the marginal tax revenue and

overestimation of the marginal deadweight loss per marginal tax dollar. We will see that

12



all these measures depend on the relative sizes of g′′ and f ′′. For simplicity, we use a

to denote the ratio g′′/f ′′. Then, a is a measure of the relative curvature of the budget

constraint and the indifference curve.

The relative error in the marginal deadweight loss when using the linearized budget

constraint is given by the ratio of expressions (5) to (3), i.e. by:

MDWL

MDW
=

dAh
L/dt

dAh/dt
=

g′′ + f ′′

f ′′
= 1 +

g′′

f ′′
= 1 + a. (14)

Hence, a is also a direct measure of the relative bias in the marginal deadweight loss

if we incorrectly linearize. For example, if a = 1 and hence g′′ = f ′′, the linearization

procedure overstates the true marginal deadweight loss by a factor 2. This holds true

irrespective of the absolute size of g′′ and f ′′. It is the relative curvature of the budget

constraint and the indifference curve that matters.

The relative curvature of the budget constraint and the indifference curve as mea-

sured by a also play an important role in the expression for the relative error in marginal

tax revenue. However, f ′′ and g′′ also enter this expression in other ways. The relative

error in the marginal tax revenue is obtained as the ratio of (4) and (2). Using (6) and

(14), we get:
MTRL

MTR
= 1 + a×

(g′(Ah) + t) dAh/dt

Ah + (g′(Ah) + t) dAh/dt
. (15)

In tables presented in section IV, we show the bias in various measures of deadweight

loss if one uses linearized budget constraints. One measure is the deadweight loss per

marginal tax dollar. This is an often used measure and it is easy to understand as long as

we are on the left hand side of the Laffer curve. In the tables, we will see how this measure

changes as we increase the elasticity of taxable income. As we approach the top of the

Laffer curve, the MTR will go to zero and the marginal deadweight loss per marginal

tax dollar to infinity. Then, for further increases in the taxable income elasticity, the

MTR will be negative and the marginal deadweight loss per marginal tax dollar will be

negative. The intuition for such a negative number is less straightforward than when

the MTR is positive. For this reason, we do not report the marginal deadweight loss

per marginal tax dollar for values of the taxable income elasticity where we are on the

right-hand side of the Laffer curve. This does not mean that it is less serious to linearize

the budget constraint. It is really more serious. If one uses a linearized budget constraint,

this procedure will indicate the top of the Laffer curve (MTR = 0) at a lower value of

the taxable income elasticity than what is correct.

For values of the taxable income elasticity such that we are on the left-hand side of
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the Laffer curve, we present the bias in the marginal deadweight loss per marginal tax

dollar implied by the linearization procedure computed as:

MDWL/MTRL

MDW/MTR
=

MDWL/MTRL

MDW/ (A−MDW )
=

(1 + a)A−MDWL

MTRL
= 1 +

a A

MTRL
. (16)

Once again, we see that a, the relative curvature between the indifference curve and the

budget constraint, is a key determinant of how serious the bias is.

III. Piecewise Linear Income Tax

In reality, tax systems normally create piecewise linear budget constraints. We now in-

vestigate how the results obtained above are modified if budget constraints are piecewise

linear. More specifically, the tax system that we consider is of the same form as above,

but the federal tax is piecewise linear. To illustrate the mechanisms at work, it is suffi-

cient to consider a tax system generating a budget constraint with two linear segments

and one kink point. The results easily generalize to a tax system with many kinks.5

Let the federal tax system be characterized by the marginal tax rate τ1 for taxable

income up to the break point A1 and the marginal tax τ2 for incomes above the break

point. Let there also be a state income tax of t. The budget constraint generated by this

tax system is shown in Figure 3.

The slope on the first segment is given by θ1 = 1− τ1 − t and on the second segment

by θ2 = 1 − τ2 − t. The intercept for the first segment, R1, is lump-sum income. The

virtual income for the second linear segment is given by R2 = R1 + (θ1 − θ2)A1 =

R1 +(τ2 − τ1)A1. Hence, the latter does not depend on t and does not change when t is

varied.

A. Individual Behavior

To make the problem interesting, we need some individuals locating in the interior of

the segments and some at the kink point. Hence, we now re-introduce the heterogeneity

parameter v explicitly and write the utility function U (C,A, v), where v is a preference

5Dahlby (1998) studies how the marginal cost of public funds should be calculated when the income
tax schedule is piecewise linear. Like us, he considers the case with heterogenous individuals. However,
in his analysis, he does not realize and does not take into account that some individuals will have their
desired hours of work at kink points and that when there is a marginal change in a tax parameter these
individuals will not change their hours of work.
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Figure 3: Piecewise Linear Budget Constraints

parameter with pdf φ (v) over (v, v). If we had a pure labor supply model, it would

be natural to write the utility function as U (C,A/v) and interpret v as the wage rate.

However, since in the taxable income literature it is assumed that there are other margins

than hours of work, we prefer to write it in the more general form U (C,A, v). For one

interval of v, we would have solutions on the first segment, for another interval at the

kink point and, for a third interval, on the second segment.

A first step is to find out how the budget constraint changes as the tax parameter t

increases. We know that R1 and R2 do not change. The slopes of the first and second

segments decrease. The kink point is still at A1. However, its C-coordinate decreases by

dt×A1, the amount of the extra tax paid.

For a person located at the kink point before and after the change in t, we have

dAh/dt = 0. Therefore, there is no marginal deadweight loss from the increase in t for

this person. The increase in taxes paid by a person located at the kink is just like a

lump-sum tax.

For a person with a tangency on one of the linear segments, the variation in the

budget constraint is just like a variation in a linear budget constraint. For such a person,

one can therefore apply the taxable income function that is generated by a linear budget

constraint and the marginal deadweight loss for an individual with parameter v would
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be given by

− (τi + t)
dAh

L (τi + t, v, u)

dt
, (17)

with i = 1, 2, where we should remember that u is a function of v.

The expressions for the marginal tax revenue are quite straightforward. For a person

with desired taxable income located in the interior of the segment i, the marginal tax

revenue is given by MTR = A + (τi + t) dA/dt whereas we obtain MTR = A for a

person with desired taxable income at the kink point.

B. Marginal Deadweight Loss for the Population

If we want to find the aggregate marginal deadweight loss, we can integrate over v. For

simplicity, we assume that v enters the utility function in such a way that Ah
L is strictly

increasing in v. We also assume that 0 < AL (τ1 + t, v) < A1 < AL (τ2 + t, v). Hence, no

one chooses the zero solution and there are individuals choosing a bundle on the first

segment, some others at the kink and some others on the second segment. Let v1 be

defined by AL (τ1 + t, v1) = A1 and v2 by AL (τ2 + t, v2) = A1 as shown in Figure 3.

Define the subsets S1 = (v, v1) and S2 = (v2, v). Likewise define the set K1 = (v1, v2).

Then individuals with v ∈ S1 will have a solution on the first segment, individuals with

v ∈ S2 on the second segment and persons with v ∈ K1 a solution at the kink point.

The aggregate (non-marginal) deadweight loss is an expression that can be written

as ∫

S1

δ1 (t, v)φ (v) dv +

∫

K1

δ2 (t, v)φ (v) dv +

∫

S2

δ3 (t, v)φ (v) dv, (18)

where δ generically represents the (non-marginal) deadweight loss for person v. The

aggregate marginal deadweight loss is the derivative of this expression with respect to t,

which by Leibnitz’s rule is equal to

∫

S1

δ′1t (t, v)φ (v) dv + v′1 (t) δ1 (t, v1 (t))φ (v1 (t))

+

∫

K1

δ′2t (t, v)φ (v) dv + v′2 (t) δ2 (t, v2 (t))φ (v2 (t))− v′1 (t) δ2 (t, v1 (t))φ (v1 (t))

+

∫

S2

δ′3t (t, v)φ (v) dv − v′2 (t) δ3 (t, v2 (t))φ (v2 (t)) . (19)

To compute the (non-marginal) deadweight loss for person v1 or v2, we need to consider

his taxable income and his highest feasible indifference curve. So, it is not the slope of the

budget constraint that matters here. The slope of the budget constraint matters when
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evaluating his marginal deadweight loss. We thus have δ1 (t, v1 (t)) = δ2 (t, v1 (t)) and

δ2 (t, v2 (t)) = δ3 (t, v2 (t)), which implies that the terms in (19) showing movements in

and out of the kink point sum to zero. Consequently, the aggregate marginal deadweight

loss is

MDW = −
2∑

i=1

∫

Si

(τi + t)
dAh

L

dt
φ (v) dv + 0×

∫

K1

φ (v) dv. (20)

The aggregate marginal tax revenue is given by:

MTR =
2∑

i=1

∫

Si

[
A+ (τi + t)

dAh
L

dt

]
φ (v) dv +

∫

K1

A φ (v) dv. (21)

The contribution to the aggregate marginal deadweight loss from those at a kink point is

zero. The difference between the smooth case and the piecewise linear case is that, in the

former, the actual marginal deadweight loss is lower than that indicated by the “linear”

taxable income function for any v and the corresponding value of A. In the piecewise

linear case, the difference in the two measures is concentrated to the kink. If there were

several kinks, the difference would also be concentrated to the kinks.

From a welfare point of view, there is no obvious way how one should aggregate

the marginal deadweight loss for different individuals. However, it is fairly common to

calculate the average or total marginal deadweight loss as we just did. Whatever the

weights that are used, it is clear that the aggregate marginal deadweight loss calculated

with the function Ah
L gives a higher value than if calculated using Ah. There is no clear

way of aggregating the marginal deadweight loss per marginal tax dollar. For example, if

one calculates the arithmetic average of the marginal deadweight loss per marginal tax

dollar, individuals for which the marginal tax revenue is low would receive a very large

weight in the aggregation process, which may be difficult to justify and misleading in

terms of policy recommendations. For this reason, we in the next section will compute

the marginal deadweight loss per tax dollar as the ratio between the average marginal

deadweight loss and the average marginal tax revenue.

IV. How Serious is It to Linearize? Numerical Computa-

tions

We now provide computations of the marginal deadweight loss for the US tax systems

in 1979, 1994 and 2006. We choose 1979 to emphasize the important part played by the

curvature of the tax system, as the US taxes were significantly more progressive three
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decades ago. We also consider 1994 as this is the year considered by Feldstein (1999).

The federal income tax is piecewise linear and the resulting budget constraint is of

the form analyzed in the previous section. According to the analysis in that section there

should be individuals with desired taxable income at kink points. Before progressing with

our computations, we have to reflect a bit on the fact that looking at actual data there

is very little bunching at kinks of the US tax schedule.

A. Why Are There so Few Individuals Observed at Kink Points?

The analysis above shows the importance of kink points. Observed wage distributions,

together with budget constraints generated by actual tax systems and (estimated) com-

pensated elasticities, often imply that a significant number of individuals have their

desired hours at a kink point. This seems to be in conflict with the observation that very

few individuals locate at kink points.

Using microdata from US tax returns over the period 1960-97, Saez (2010) finds clear

evidence of bunching around the first kink of the Earned Income Tax Credit among self-

employed workers and, to a lesser extent, around the threshold of the first tax bracket

where tax liability starts. He finds little evidence of bunching at other tax brackets.

Other studies have found modest evidence of bunching, for elderly US workers who are

both working and receiving social security benefits (Burtless and Moffitt (1984) and

Friedberg (2000)), above the first eligibility threshold for the UK earned income tax

credit (Blundell and Hoynes, 2004) or for the Australian Higher Education Contribution

Scheme (Chapman and Leigh, 2009). Bastani and Selin (2011), studying the Swedish

tax system, find very little bunching.

We see several possible explanations for the fact that few people are observed at

kink points. A first explanation is that the compensated elasticity is much smaller than

often assumed. A second explanation, which we believe is the most important one, is

that there are optimization errors. As already mentioned above, Burtless and Hausman

(1978), Hausman (1979), Blomquist (1983), Hausman (1985) and more recently Chetty

(2009) have emphasized that there is usually a difference between desired taxable income

and realized taxable income because of optimization errors or frictions. The latter imply

that even if there would be bunching at kink points of desired taxable income, we should

not expect to see much bunching of actual taxable income.

If the first interpretation is correct (lower compensated elasticity), marginal dead-

weight losses are small and studies indicating large elasticities are incorrect. If the latter

interpretation is correct, it means that the number of individuals that would be at a
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kink point in the long run, when they have been able to fully adjust to the actual tax

schedule, is underestimated in many studies. We will elaborate on this second point.

B. How to Account for Optimization Errors

We see two different ways of accounting for optimization errors. In one, individuals

are aware of the fact that there might be unforeseen shocks to their taxable income

and take this into account when calculating their desired taxable income. In the other,

individuals do not take the optimization errors into account in their decision making,

because they lack sufficient information or face too high (re)optimization costs. In other

words, an individual plans desired income and then faces randomness which introduces

a gap between the planned and realized levels.

The second way of taking uncertainty into account was clearly described by Burtless

and Hausman (1978, p. 1115): “Indexing individuals by i, we expect random differences

to occur between observed hours supplied, Hi, and preferred hours of work, Hr. This

random variation may be the result of measurement error, but a more important source

of randomness arises because of unexpected variations in hours worked. Unexpected

temporary layoffs, involuntary overtime, or short time due to cyclical downturns all

provide potential reasons actual hours may diverge from ‘normal’ hours associated with

a given job. These variations in hours are unanticipated by the individual and cause his

actual hours Hi to differ from his preferred hours Hr”.

Desired, or planned, taxable income is directly determined by the statutory piece-

wise linear budget constraint. However, for various reasons desired taxable income can

sometimes not be realized. For many objects of choice, the actual amount bought or

sold would be equal to the desired quantity. For example, the actual number of dresses

bought during a year is probably pretty close to the desired number of dresses. However,

for taxable income there can be unexpected events (shocks) that make actual taxable

income deviate from the desired or planned taxable income. Let us first give examples

why actual taxable income might be lower than desired taxable income. The individual

might plan for a given taxable income. However, because of unexpected sickness, layoff,

new vacation plans because of a new love, etc., actual taxable income might be lower

than the planned one. This effect of unexpected events would be larger the later in the

tax year the event occurs. Taxable income might be higher than the income planned for

because of vacation plans that are changed for some reason, better health than expected,

assigned overtime, etc.

Let us write realized taxable income as Ar = Ad + ǫ, where ǫ is the shock or opti-
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mization error. Let us make the reasonable assumption that the shocks are independent

of desired hours and the tax system. Then, ∂Ar/∂ζ = ∂Ad/∂ζ for any tax parameter ζ

of the tax system. This implies that for individuals with actual taxable income in the

interior of a linear segment but with desired income at a kink point, neither desired nor

actual taxable income will change as a response to a marginal change in a tax parameter

and their marginal deadweight loss will be zero.

An implication of the above is that for some individuals with their taxable income in

the interior of a linear segment, it is appropriate to calculate the marginal deadweight

loss as for a linear budget constraint, while for some other individuals with their actual

taxable income in the interior of a linear segment the marginal deadweight loss is zero.

The reason is that individuals in the first group have their desired income on a linear

segment while individuals in the second group have desired income at a kink point.

It is very important to recognize the part played by random shocks to taxable income

(optimization errors) when computing the marginal deadweight loss and marginal tax

revenue. Below we perform computations assuming that an individual plans desired

income and then faces randomness.

C. Calibration

We undertake our calculations of the marginal deadweight loss of the US tax system for

three different years. We take into account the federal income tax, the state income tax,

the earned income tax credit, the payroll tax, the state sales tax and the local sales tax

and restrict the analysis to single men with no children.6 We use the Californian tax

schedule to compute the state taxes. California is the state with the largest population

and many other states have similar income tax schedules. The payroll tax and the sales

taxes are linear (however, above a annually adjusted threshold, the payroll tax only

consists of the Medicare tax of 2.9%). The payroll tax (FICA) is 15.3% in 2006 and

1994, and 12.26% for 1979. The Californian sales tax is 7.25%. Local taxes vary. In our

computations, we assume that the local sales tax is 0.5%. Overall, the linear component

of the tax system, denoted by t in the previous sections, is equal to 20.01% in 1979,

and 23.05% in 1994 and 2006. Altogether, the budget constraint in the US exhibits

nonconvexities in 1994 and 2006. They are sharp in 1994 and we therefore fully took

them into account in our computations. By contrast, they are rather negligible in 2006.

We thus convexified the budget constraint by taking its convex hull. We obtain budget

constraints with 18, 20 and 13 kinks in 1979, 1994 and 2006 respectively.

6For 1979, the number of children is not available in the CPS dataset.We took the whole population
of single men into account.
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As in Saez (2010), we consider that individual preferences are described by a quasi-

linear and isoelastic function of the form

U (C,A, v) = C −
v

1 + 1/β

(
A

v

)1+1/β

, (22)

where v can be interpreted as a wage parameter. The quasilinearity assumption implies

that there is no income effect on taxable income and that the Marshallian and Hicksian

taxable income functions are equal. The isoelastic assumption implies that the elasticity

of taxable income is constant, equal to β. Given the preference specification, a v-person

facing a linear budget constraint with slope θ has taxable income A = vθβ , where v is

the annual wage rate.

The distribution of the heterogeneity parameter v is obtained from the CPS labor

extracts 1979, 1994 and 2006. We assume that this parameter is distributed according

to a lognormal distribution, that we calibrate so as to replicate the first two moments of

the actual distribution. We proceed as follows to recover the underlying distribution of v

from the distribution of realized incomes Ar. We know that, for a given person, desired

income differs from realized income by an amount ǫ, i.e. Ar = Ad + ǫ. Desired income

is equal to Ad = vθβ along a linear segment of the budget constraint with slope θ. The

underlying wage rate v is therefore given by v = (Ar − ǫ) /θβ. It is reasonable to assume

that ∂Ar/∂ζ = ∂Ad/∂ζ for any tax parameter ζ and E (ǫ) = 0. When calibrating v, we

use the slope θ̃ of the budget constraint faced by the individual with average realized

income. Denoting σ2 = Var (ǫ) , this implies that E (v) = E (Ar) /θ̃β and Var (v) =(
Var (Ar)− σ2

)
/θ̃2β . For example, for 2006 and β = 0.2, we get E (v) = 40, 081 and

Var (v) = 28, 0122.

The standard deviation σ of the error term ǫ is a key element. For many occupations

in the U.S. labor market, supplemental pay – overtime, bonuses, and shift differentials

– is an important component of overall cash compensation. Overtime pay is especially

important in production occupations and other blue-collar jobs; bonus pay is mostly

a feature of high-wage managerial and sales occupations; and shift differentials play a

prominent role in a particular set of occupations – healthcare practitioner and technical

occupations. Regarding sick leave, private industry workers access to paid sick leave ben-

efits varied by occupational group and ranged from 84% for management, professional,

and related occupations to 42% for service workers.7 For example, a worker who does

not benefit from paid sick leave, taking the average number of sick days (14 days) and

7US Bureau of Labor Statistics, ”On paid sick leave”, Program Perspective, vol. 2, issue 2, March
2010
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working 260 days/year (average number of working days in 2006) would incur of mone-

tary loss of around 6% of his annual income. There is no obvious way to calibrate ǫ. We

herein assume that it is normally distributed and that individuals face a positive shock

larger than 10% of average gross income with a probability of 10% (and the same for

a negative shock). Under these assumptions, we get σ = 1, 550/1.28 = 1, 211 for 1979,

σ = 2, 095 for 1994 and σ = 2, 787 for 2006.

The size of the bias of the linearization procedure depends on the relative curvature

of the budget constraint and the indifference curve. The latter is closely related to the

taxable income elasticity; the larger the taxable income elasticity, the less curvature

has the indifference curve. The curvature of the budget constraints is given by the tax

systems of the three years, but how should we choose the taxable income elasticity?

In the literature, there is a wide range of estimated labor supply and taxable income

elasticities and there is no consensus about what the size of the elasticity really is. The

only consensus that seems to exist is that the elasticity for secondary earners (usually

women) is higher than that for primary earners (usually men).

Looking at the empirical literature that have used micro data to estimate labor

supply elasticities, we find for men estimates of the compensated elasticity ranging from

around 0.05 (Kosters, 1967) up to 1.22 (MaCurdy, 1983). These elasticities are for the

intensive margin. Kimmel and Kniesner (1998) estimate both the intensive and extensive

elasticity and find the total elasticity to be 1.25. For females the range for the intensive

elasticity is from around 0.2 (Blundell, Duncan, and Meghir, 1998) up to around 2.0

(Blundell, Duncan, and Meghir, 1998) and extensive elasticities up to around 1.8 (Keane

and Moffitt, 1998). Kimmel and Kniesner (1998) find a total elasticity for females of 3.05.

Prominent macro economists argue that the labor elasticity is around 3.0 (Prescott,

2004; Rogerson and Wallenius, 2009). There is also a large literature on the taxable

income elasticity. Blomquist and Selin (2010), using Swedish data estimates the taxable

income elasticity for men to around 0.2 and around 1.0 to 1.5 for women. In general,

the elasticities found in the taxable income literature are spanned by the labor supply

elasticities given above. Given the wide variation in estimated elasticities, we calculate

the bias that arises from linearizing for the following values of the elasticity: 0.2, 0.4,

0.6, 0.8 and 1.0.

D. Numerical Results

The linearization procedure ignores the issue of kink points. In order to compare it with

our procedure, we allocate 50% of the individuals whose desired income would be at
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Table 1: Results for 1979

β 0.2 0.4 0.6 0.8 1.0

% with desired A at a kink 7.1% 12.8% 18.1% 24.4% 28.9%

MDW correct $22 $44 $66 $86 $106

MDW linear $24 $50 $78 $109 $141

Bias +6.6% +12.7% +19.0% +26.6% +33.0%

MTR correct $102 $84 $67 $50 $33

MTR linear $100 $79 $54 $27 −2

Bias -1.4% -6.6% -18.7% -45.4% −

MDW per $ $0.22 $0.52 $0.98 $1.71 $3.18

MDW per $ linear $0.23 $0.63 $1.43 $3.96 −

Bias +8.2% +20.7% +46.4% +132.1% −

a kink to the linear segment to the left of the kink and 50% to the linear segment to

the right, i.e. we assume that the distribution of random shocks is symmetric in the

sense that half of the shocks are positive and half of them negative. In the linearization

procedure, we treat those with desired hours at a kink point but actual hours on a linear

segment as if desired taxable income was also on a linear segment.

Tables 1, 2 and 3 summarize the results. In 1979, the linearization procedure incor-

rectly indicate that we are on the downward sloping part of the Laffer curve when the

elasticity is 1.0. In the tables, this is indicated by a hyphen. The linearization procedure

overestimates the change in marginal deadweight loss and underestimates the change in

tax revenue in a significant way. For an elasticity of 0.2, the marginal deadweight loss

is overestimated by 6.6% and 4.7% in 1979 and 1994. This figure drops to 3.6% in 2006

because of the limited curvature of the budget constraint in that year. For larger values

of the elasticity, the bias becomes more severe. For example, it is about 33% in 1979

for an elasticity of 1.0. We see that the magnitude of the error has decreased over the

last three decades, reflecting the reduction in the curvature of the US tax schedule. The

underestimation of the marginal tax revenue follows the same pattern. The two mistakes

are magnified so that the bias in marginal deadweight loss per dollar in some cases be-

comes very large. Equal to 4.1% in 2006 for an elasticity of 0.2, it goes up to 132% in
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Table 2: Results for 1994

β 0.2 0.4 0.6 0.8 1.0

% with desired A at a kink 3.8% 7.1% 9.6% 12.0% 13.2%

MDW correct $29 $55 $78 $97 $116

MDW linear $31 $60 $87 $113 $138

Bias +4.7% +8.4% +12.6% +16.7% +19.0%

MTR correct $168 $139 $114 $92 $71

MTR linear $167 $134 $104 $76 $49

Bias -0.8% -3.3% -8.5% -17.7% -31.4%

MDW per $ $0.17 $0.40 $0.68 $1.06 $1.63

MDW per $ linear $0.18 $0.45 $0.84 $1.50 $2.83

Bias +5.6% +12.1% +23.1% +41.8% +73.4%

Table 3: Results for 2006

β 0.2 0.4 0.6 0.8 1.0

% with desired A at a kink 3.4% 5.6% 6.6% 9.8% 12.0%

MDW correct $33 $67 $100 $131 $162

MDW linear $34 $70 $108 $145 $185

Bias +3.6% +5.3% +6.7% +11.0% +14.2%

MTR correct $246 $218 $190 $163 $137

MTR linear $245 $215 $183 $149 $114

Bias -0.5% -1.6% -3.6% -8.8% -16.8%

MDW per $ $0.13 $0.31 $0.53 $0.79 $1.18

MDW per $ linear $0.14 $0.33 $0.59 $0.97 $1.62

Bias +4.1% +7.0% +10.6% +21.6% +37.2%
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1979 for an elasticity of 0.8.

Feldstein (1999) uses a linearization procedure to calculate the marginal deadweight

loss for the income tax rates and rules of 1994 as described in TAXSIM and an elasticity

of taxable income equal to 1.04. It can be of interest to see by how much this linearization

biases his results. We have therefore replicated his calculations using both the correct

and the linearization procedures.

There are three differences between his computations and the ones we provided above:

Feldstein uses a triangle approximation of the deadweight loss while we used an exact

computation; he also uses a different set of taxes, consisting of the FICA and federal

income tax, while we also included the state income tax as well as the sales tax; lastly as

already emphasized Feldstein employs a linearization procedure that ignores the issue of

kink points while we take them into account. These three reasons are intertwined when

explaining why the numerical results reported in Table 2 are not the same as those of

Feldstein. The triangle approximation is known to lead to an underestimation of the

deadweight loss. As this approximation is used by Feldstein, we have to slightly modify

the set of taxes to replicate his numerical results. We do that by including a sales tax

of 4.97%, corresponding to the population-weighted average across US states. Thanks

to that, we get a value of the marginal deadweight loss per marginal tax dollar very

close to that computed by Feldstein when we employ the linearization procedure as he

does: we obtain a marginal deadweight loss per tax dollar of $2.16 when Feldstein finds a

value of $2.06. In contrast, when calculating the marginal deadweight loss per tax dollar

taking the curvature and kink points of the budget constraint into account, we find the

marginal deadweight loss per tax dollar to be $1.35. This allows us to identify the effects

of the linearization and to conclude that, in this situation, the linearization procedure

overestimates the marginal deadweight loss per tax dollar by 61%. The different biases

are shown in the next table.

Year 1994 DW DWL TR TRL DW/$ DWL/$

β = 1.04

Bias

$69 $82
︸ ︷︷ ︸

+19%

$51 $38
︸ ︷︷ ︸

−26%

1.35 2.16
︸ ︷︷ ︸

+61%

V. Conclusion

Actual tax systems are usually such that the marginal tax changes with the income

level, implying that the budget constraints that individuals face are nonlinear. It is of

interest to calculate the marginal deadweight loss of changes in a nonlinear income tax. A
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nonlinear income tax can be varied in many different ways. Break points can be changed,

the intercept can be changed and the slope can be changed. Moreover, the slope can be

changed in different ways. We do not cover all these different possibilities to vary a

nonlinear tax. We focus on a particular kind of change in the slope, namely a change

in the slope such that the marginal tax changes with the same number of percentage

points at all income levels. Such a change can represent, for example, a change in the pay

roll tax, the value added tax or a proportional state income tax. A common procedure

to calculate the marginal deadweight loss of a change as described above has been to

linearize the budget constraint at some point and then calculate the marginal deadweight

loss for a variation in the linearized budget constraint. As shown in the article, such a

procedure does not give the correct value of the marginal deadweight loss.

In this article, we first derive the correct way to calculate the marginal deadweight

loss when the budget constraint is smooth and convex. It is well known that the size of

the deadweight loss depends on the curvature of the indifference curves, with more curved

indifference curves yielding smaller substitution effects and lower marginal deadweight

losses. We show that the curvature of the budget constraint is equally important for

the size of the marginal deadweight loss. In fact, the curvature of the budget constraint

enters the expression for the marginal deadweight loss in exactly the same way as the

curvature of the indifference curve.

We next show how to calculate the marginal deadweight loss when the tax system

generates a piecewise linear budget constraint. It is equally true in this case as for the

case with a smooth budget constraint that the curvature of the budget constraint is of

the same importance for the marginal deadweight loss as the curvature of the indifference

curve. However, the impact of the curvature of the budget constraint to diminish the

deadweight loss is now concentrated to the kink points. For individuals located at a kink

point, there is no marginal deadweight loss, for them the increase in the marginal tax is

just like a lump-sum tax.

We also perform numerical calculations where we calculate the true marginal dead-

weight loss and compare this with computations obtained by linearizing the budget con-

straint and performing the marginal deadweight calculations on the linearized budget

constraint. The bias introduced by the linearization is often quite large, for reasonable

parameter values.

It is very simple to use the correct procedure to compute the marginal deadweight

loss. Therefore, there is no need to rely on a linearization procedure which leads to an

incorrect measure.
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