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Abstract

We study a multi-player one-arm bandit game: for in�nitely many stages, players

choose between playing a risky action or dropping out irreversibly to a safe action. Each

player observe his own payo�s and other players' actions. We study equilibria of the game

when the number of players gets large. We argue that either limit equilibrium exhibits

aggregate randomness, or players behaviours leads to a swift determination of the value

of the risky action. The conditions under which one or the other case arises are provided.

KEYWORDS: one-arm bandit, large games, deterministic equilibria, social learning.

Introduction

In this paper, we study situations where many agents deal with a dilemma between exploiting
a known pro�table investment and experimenting others with unknown values. One-arm ban-
dit model provides a good way to address this problem: each player faces a machine which he
sequentially decides to (or not to) operate. This is equivalent to deciding which arm to oper-
ate when facing a machine with a safe arm (representing the exploitation option) and a risky
arm (for the exploration option). When the risky arm is pulled, the player gets a payo� from
which he can learn about the pro�tability of its machine, and when the safe arm is pulled he
is rewarded by a payo� of known value. Without loss of generality, we assume that the value
of the safe arm is normalized to zero. Usually a machine is one of two types, say High and
Low, that the player does not know and that is drawn randomly at the beginning of the game.
This type may also be referred as the state of the nature. The expected value of the risky
action is positive when the type is High, and negative when the type is Low. So the player
has to choose if he stops experimentation, and when: not too early to have time to detect the
High state and not too late to avoid costly bets. Gittings [Git79] was the �rst to describe the
optimal strategy in such a model (one may also look at Ferguson [Fer06] for a review). Models
with a single player and a multi-armed bandit still spawns many publications (e.g. Brezzi
and Lai [BL02]), most of it in a non-bayesian setting ([LR85], [ACBF02], [AMS09], ...). In a
multi-player game, the situation is trickier: a player may be able to watch others' decisions
and/or payo�s, which is another way to get information when the types of the risky arms are
correlated. This is the topic we are interested in, in particular when there is a large number
of players.

First, let us brie�y describe some basic problems raised by the study of multi-player bandit
games, and by games with many players.
A major question is the social e�ciency of Nash equilibria, that is, the di�erence between the
expected gain of a player in a situation of strategic interaction and the expected gain of an
isolated player (who only observes his own payo�s). This di�erence is always positive, since
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a player can not su�er from getting extra information from his neighbours, but the amount
may depend on the level of cooperation between agents. Besides, an alternative way to study
social e�ciency is to look at the di�erence between the gain of a cooperative players (who
fully cooperates to maximize the sum of their rewards) and the gain of the players in strategic
interaction.
In this view, a popular subject is free-riding: some players may have an incentive to take
advantage of other agents' experimentation without taking risks themselves (see Bolton and
Harris [BH99] and Keller, Rady and Cripps [KRC05]). This brings some intricacies in the
description of equilibria, and it a�ects their social e�ciency. As we do not want to focus on
free-riding we will assume that the decision to switch to a safe action is irreversible.
Nevertheless, the fact that there are many players enables them to gather a better amount of
information. As the number of players is growing, this may even asymptotically lead to a full
learning of the state. Thus, the players would eventually all play the same action, which has
proven to be the best. Consequently our subject is linked to herding , which is not restricted
to bandit games (see Banarjee [Ban92] and Aoyagi [Aoy98]). In this case of asymptotic perfect
learning, we can also wonder if it bene�ts to a large proportion of players, and how fast the
state is revealed. This issue was studied by C. Chamley and D. Gale [CG94] in a model of
investment. Among other parameters, they underlined the role of the cost of experimentation:
the more expensive experimentation is expected to be, the more players are willing to take
risks in order to shorten the learning period.

Our subject is the description of equilibria with a large number of players, and to discuss the
possibility of asymptotic perfect learning. To avoid triviality, it is critical that players do not
observe each others payo�s (or, at least, not a good piece of it). If not, by means of the law
of large number and provided that the types of the machines are correlated enough, the state
of the nature would be learned automatically after the �rst stage thanks the massive amount
of observed payo�s.
Previous works are mostly based on models with a continuum of agents (see, e.g. Caplin and
Leahy [CL94], Bergemann and Välimäki [BV97], and Camargo [Cam06]). In these settings,
an individual player can not reveal anything and only massive actions indicate relevant in-
formation. Each player gets a piece of information, which a�ects his decisions, so that the
proportion of players who take a given option is a feature of the state of the nature. For in-
stance, the equilibria considered in [CL94] are depicted as follows: at some point a proportion
of agents is led to leave the market, and this reveals the state to the others. The interest for
these models is justi�ed in so far as a large number of players is expected to be asymptotically
equivalent to a continuum setting. As an example, in Rosenberg, Solan and Vielle [RSV07],
the number of players is �nite but when it gets large we also observe a revealing fraction
of exit. Nevertheless, the equivalence is questionable. In [RSV07], the model assumes that
some payo�s make players so pessimistic after one stage that exiting becomes their dominant
strategy. That is why, when the number of players gets large, a massive departure is observed.
Without this assumption, players could be tempted to delay their exit or to leave far more
scarcely, so that limit aggregate behaviour displays randomness and is not determined by the
state of the nature. In a study that is related to our, P. Murto and J. Välimäki [MV06] study
this randomness and the process of learning. They show that when the number of players is
large and under certain circumstances (basically, when the cost of waiting is not too high),
information aggregates smoothly by several random wave of exits. In their model, a player is
either informed (i.e. he has received the positive signal that tells his that his state is High) or
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uninformed (i.e. he did not get the positive signal).

Our model is close to [RSV07]: each of a large number of players operates in discrete time
a one-arm bandit machine, they observe each others' actions but not each others' payo�s, so
that the only way players can get information is from their own payo�s and from watching
others' decisions. Except from one technical assumption, the distribution of payo�s is general,
and learning is not monotonic as in [MV06]. The type of the machines are perfectly corre-
lated: either they are all in the "High" state, either they are all "Low". This means that all
the machine shares a common distribution of payo�, the expectation of which is positive in
the High state and negative in the Low state. Conditionally to the state, payo�s are drawn
independently across players and across stages. Finally and as mentioned before, the decision
to stop experimentation is irreversible.

Our claim is the existence of an alternative.
For some asymptotic equilibria, players wait until a fraction of them gets too bad news and
is forced to leave. Thus the state is revealed to the remaining players. This case is similar
to models with a continuum of players, as the limit aggregate behaviour does not show un-
certainty. This is also related to herding: except for the �rst leaving players, all players will
act the same. Their decisions are based on others' behaviours rather than on their private
information, but this always leads to the best action anyway. We will call these equilibria
Asymptotically Deterministic. We provide conditions for their existence, which are the in-
equalities that make sure that a non negligible part of the players exits at a given stage and
that all other players are optimistic enough to wait for this revealing stage. In particular,
these inequalities can be viewed as conditions for existence of equilibria in a similar model
with a continuum of players.
For all other asymptotic equilibria, the limit aggregate behaviour exhibits randomness. At
some stage of the game, some of the most pessimistic players will leave but the number of
exits is uncertain, as it is not fully determined by the type of the machines. This situation
is due to the fact there are not enough players willing to reveal a good piece of their private
information. Indeed, we will show that the average number of exits is bounded, with a bound
which is independent of the number of players involved in the game. In particular, if the
equilibrium is symmetric, the law of this number is asymptotically equivalent to a Poisson
distribution. As a consequence, this limit case cannot be modelled by a continuum of players.

The paper is organized as follows. In the �rst section, our model is described and the main
results are presented. Then, we give the main leads of their proofs. The third section is
devoted to the complete proofs.

1 Model and results

1.1 Model

Each of N players sequentially operates a one-arm bandit machine. They have to decide when
to stop. The decision to stop is irreversible and yields a payo� normalized to zero. At any
stage n ≥ 1, each player i:

1. decides to drop out or to stay in,
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2. observes own payo� Xi
n,

3. observes who stayed in.

The machines have a common payo� distribution, which can be one of two possible types:
High or Low. This type is a random variable, denoted Θ, and stands for the state of the
nature. Players are not informed of the value of Θ but they share a common prior p0, which
is the probability of the state being High. We assume that, conditional on Θ, the payo�s
(Xi

n)n≥1,i∈{1,...,N} are i.i.d.

θ (resp. θ) stands for the expected stage payo� of a machine of type High (resp. Low) and
is w.l.o.g. identi�ed with this type. To avoid trivial cases, we assume that θ < 0 < θ.
Players discount payo�s at a common rate δ ∈ (0, 1) so that the overall payo� of player i is∑τi

k=1 δ
k−1Xi

k, where τi is the last stage where player i decides to stay in (possibly +∞).
Lastly, we denote by Pθ the conditional probability given Θ = θ (θ ∈ {θ, θ}).

Remarks

• Payo�s are private information, but decisions are publicly observed. Thus, the only way
a player can learn the state is thanks to his own payo�s on the one hand, and to others'
players decisions on the other hand. If payo�s were publicly disclosed, the study of the
large game (i.e. N → +∞) would be simple: there would be a full learning of the state
after the �rst stage.

• Except for one technical assumption which will be detailed below, there are no restric-
tions on the reward distributions. Thus, the model itself is not very restrictive. For
example, it could be that some payo�s are not a good pro�t but are good news, i.e. they
show that the state is likely to be High.

• The fact that all the machines are either all of type High, or all of type Low is an
assumption of perfect positive correlation. It implies for example that good news for
one player is good news for the others. This assumption is common to most of the
publications in the �eld, but some works investigate negative or partial correlation (e.g.
[KR08] or [RSV10]).

• Lastly, the fact that dropping out is irreversible forbids any player to get back to exper-
iment if they stopped it before. This will enable us to have a simple characterization
of equilibria. Without this assumption, the study would be trickier notably because of
free-riding.

1.2 Cuto� Strategies

We want to study equilibria when N is large. Let us �rst describe the strategies that charac-
terizes equilibria for any N . To this aim, we introduce the notion of private belief and of the
status of players.

To make a decision, a player i may take into account his past payo�s, which partially disclose
the state. For that, he can compute his Private Belief, denoted pin:

pin = P(Θ = θ|Xi
n, ..., X

i
1).
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This is the probability that player i assigns to state High according to his own payo�s, re-
gardless of others players' actions (as if he were alone).

Assuming he knows the others players' strategies, player i also knows how to account for other
players' decisions. Let us set the r.v. αj,Nn , which gives the status of player j at stage n in
the N player game, as follows: αj,Nn = N if player j still active, αj,Nn = m if j left at stage m
(m ≤ n). One can sum up the status of all players (except i) in a random vector ~α−i,Nn whose
coordinates are the r.v. αj,Nn (j 6= i). We will denote ~N the vector such that all coordinates
are N. Moreover, a signi�cant parameter of the N player game is the number of departures

before the end of stage n, and we will denote it k
(N)
n , i.e. k

(N)
n = #{j ∈ {1, ..., N}|αj,Nn 6= N}.

Now, player i can play as follows: at each stage, he computes pin and decides to stay only if it
is above a given cut-o� which depends on n and on the status of the other players ~α−i,Nn .
We de�ne cuto� strategies as a sequence (πi,Nn (~tn)) with values in [0, 1] indexed by the stages
n ≥ 1 and by ~tn, the possible vectors of status at stage n. Player i plays the strategy if he
stops at stage inf{n ≥ 1 : pin−1 < πin−1(~α

−i,N
n−1 )}.

Beware the notations that can be a bit deceptive, because the decision at stage n rely on
private belief pin−1.

These strategies were introduced in [RSV07]. Their study of equilibria is based on the 2-player
game but their results are easily generalized for the game with any number of players. Their
results also suppose the following assumption, and our results are based on this assumption
as well.

Assumption A. The private belief pi1 has a density w.r.t. the Lebesgue Measure.

This implies that the law of pin is continuous for any n ≥ 1 (see section 3.1.1). This is a way
to rule out mixed strategy and to simplify the description of equilibria: if pi1 had atoms, some
players could have the same belief at the same time and there would not exist equilibrium if
they did not mix their strategy.
Another consequence of A is that pin has the same support under Pθ and Pθ: if not, it would
mean that, with positive probability, pin has a value that is characteristic of the state. So the
state could be revealed and this value would be either 0 or 1. Consequently we would have
P(p1n = 0) > 0 or P(p1n = 1) > 0, which contradicts the fact that pin has a density.

The main result of [RSV07] is the following.

Theorem 1.1. Under A, there exist symmetric equilibria. Moreover, every equilibrium strat-
egy is a cuto� strategy.

That is why a sequence of equilibria indexed by the number of players N will be sometimes

referred to by the corresponding sequence of cuto�s
(
πi,Nn (~tn)

)
.

Now we will study the asymptotic equilibria when N → +∞. As we will see, there are mainly
two types of asymptotic equilibria.
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1.3 Asymptotically Deterministic Equilibrium

1.3.1 Introducing example

D.Rosenberg, E.Solan and N.Vieille [RSV07] study limit equilibrium play as N → +∞ in a
particular case. In this setting the support of pi1 is [0, 1] and asymptotic equilibria can be
fully and intuitively described. Basically, this full support assumption makes sure that some
players will be so pessimistic after the �rst stage that they will leave, which enable the other
players to learn the state.
To understand the description, we need to introduce the cuto� p∗, de�ned by the following
equation:

p∗θ

1− δ
+ (1− p∗)θ = 0.

This is the cuto� that makes a player indi�erent between staying and leaving when he is sure
to learn the state at the following stage: leaving yields a payo� of zero, whereas staying yields
one payo� of expectation θ in the Low state and payo�s of expectation θ for all the remaining
stages in the High state. Consequently if a player has a belief below p∗, he has to leave be-
cause even if he could learn the state afterwards, he will still not get a positive expectation.
Conversely, if a player has a belief over p∗ and if he is going to learn the state at the following
stage, he has to stay.

Now let us describe the equilibria of large games when pi1 has full support. After the �rst
payo�, a fraction of players have a belief under p∗ and for them the best strategy is to drop
out. This fraction depends on the state of the world, as players get on average more bad news
in the Low state than in the High state. When the number of players is large, this reveals the
state by the Law of Large Numbers. Thus players who have a belief above p∗ after the �rst
payo� can a�ord to stay for one more stage as the number of departures will show them the
state. Therefore players tends to play with cuto� p∗.

In this paper we do not assume that pi1 has full support anymore. We de�ne Fn,θ as the c.d.f.
of pin under Pθ, and we de�ne πn as the worst possible belief at stage n:

πn = inf{π ∈ [0, 1] : Fn,θ(π) > 0}.

Note that πn does not depend on θ, because pin has the same support under Pθ and Pθ.
First casual intuition suggests that learning is only delayed and the equilibria will still be
deterministic: players will remain active until a fraction of them gets too bad news, leaves,
and thus reveals the state to the others. Let us de�ne precisely this kind of asymptotic play.

1.3.2 De�nition

A sequence of equilibria will be called Asymptotically Deterministic if, as the number of players
gets large, the play is roughly always the same: players all experiment for a given number of
stages, then some of them leaves, and then all remaining players play in perfect accordance
to the state.

De�nition 1. A sequence of equilibria indexed by the number of players N for which each
game is set is an Asymptotically Deterministic with delay n ≥ 1 if:

6

ha
l-0

05
62

25
7,

 v
er

si
on

 2
 - 

5 
Fe

b 
20

12



• P
(
k
(N)
n−1 = 0

)
−−−−−→
N→+∞

1

• Pθ

(
k
(N)
n+1 = N

)
−−−−−→
N→+∞

1

• Pθ

(
∀l ≥ n, k(N)

n = k
(N)
l

)
−−−−−→
N→+∞

1.

Such a sequence will also be called an Asymptotically Deterministic Equilibrium (ADE).

The idea is that the number k
(N)
n of departures at stage n reveals the state to the remaining

players, who then all leave in the Low state and all stay forever in the High state.
Note that n = 1 is a possible value of the delay, but this situation basically means that no-
body enters the game, and this does not make a determination of the state possible. Indeed,
this would mean that in the Low state, every player drop out at the very beginning of the
game, before getting any information. Consequently their decisions do not depend on their
private payo�s, or a fortiori on the state, and the players all leave in the High state as well.
In section 1.5, this situation will not be considered as an ADE.

1.3.3 Results

Let us now give necessary conditions and su�cient conditions for the existence of an ADE
with delay n.

Firstly, a fraction of players leave at stage n and this reveals the state to the others. Conse-
quently, the most pessimistic belief is below p∗. If not, any leaving player would have better
stay active one more stage as he would learn the state and thus get a positive average payo�.
Moreover, this guarantees that a non negligible fraction of players, whose belief is below p∗,
does leave at stage n. So we have a �rst condition.

Secondly, nobody leaves before stage n. So we have to ensure that, at any stage m < n, even
the most pessimistic player is willing to stay in. Such a player's belief is πm−1. He expects to
get an average payo� of πm−1θ + (1− πm−1)θ for n−m stages before some players leave. At
stage n he will leave only if his belief is below p∗. If he stays he learns the state by looking
at the number of departures, so that he remains active forever if the state is High, and leaves
if the state is Low. The expected payo� of this strategy must be positive for this player (say
player i) to be right to remain active at stage m, as claimed in the following inequality:

(1 + δ + ...+ δn−m−1)
(
πm−1θ + (1− πm−1)θ

)
+δn−m

(
πm−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 > p∗|pim−1 = πm−1)

)
> 0. (Im)

We also denote by (Ĩm) the corresponding large inequality.

These conditions are summed up in the following theorem.
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Theorem 1.2. If πn−1 < p∗ and if inequalities (I1), (I2),..., (In−1) hold, then there exists an
ADE.
Conversely if there exist an ADE, then πn−1 ≤ p∗ and inequalities (Ĩ1), (Ĩ2),..., (Ĩn−1) hold.
In particular, the delay n is the �rst stage such that πn−1 ≤ p∗.

***This theorem enables us to know when there exists an ADE: as we will see in some exam-
ples (Section 1.5) and in corollary 1.3 below, this depends on the settings of the game (i.e. δ,
p0, and the reward distributions fθ, fθ). One can show that inequalities (Ĩm) and inequality
πn−1 < p∗ are the necessary and su�cient conditions for the existence of an equilibrium in
the same game but with a continuum of players. In this view, our theorem is similar to the
results of A. Caplin and J. Leahy [CL94].
If inequalities (Ĩm) and πn−1 ≤ p∗ hold with at least an equality, the existence of an ADE is

uncertain. For example if (Ĩm) is an equality, two phenomenons compete when N is getting
large: on the one hand the fact that there are more players may reveal the state at stage n
with better accuracy; on the other hand, more and more players may have critical bad news
at stage m and this could entail some exits before stage n. The balance between this two
phenomenons is linked with the equivalent of x 7→ P(pim−1 ≤ x) in a neighbourhood of πm−1
and is left outside the scope of this paper.
Finally, note that this theorem does not claim the uniqueness of asymptotic equilibria: it
could be that...

Now, let us give the main consequences of Theorem 1.2.

Corollary 1.3. • For any n ≥ 2, there exist settings of the game for which there exists
an ADE with delay n.

• There exist settings of the game for which there is no ADE.

***Thus there are more asymptotic equilibria than equilibria in the continuum of player game.

Remember that, even if an ADE exists, it is not necessarily the unique asymptotic equilibrium.
We have a uniqueness result though but, contrary to theorem 1.2, its hypothesis does not only
rely on conditions on the settings of the game. This result is crucial to establish the alternative
between the two types of asymptotic equilibria.

Proposition 1.4. If (ΦN ) is a sequence of equilibria such that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0 and if

πn−1 < p∗, then (ΦN ) is an ADE with delay n.

This result takes up the same ideas as before: players wait for stage n, then a fraction of them
gets a belief below p∗ and reveals it by leaving, which enables the others to learn the state.

The following section describes what happens when limit equilibrium play is not deterministic
and exhibits randomness.

1.4 Other asymptotic equilibria and Poisson aggregate behaviour

Let us �rst deal with symmetric equilibria. If a sequence of equilibria is not A.D. and if players
delay their departures until stage n, then they limit themselves to only a few exits for the
state not to be revealed at once. The distribution of this number of exits is asymptotically a
Poissonian, the parameter of which depends on the state.
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Theorem 1.5. Let (ΦN )N≥1 be a sequence of symmetric equilibria. Assume that there exists
a delay, i.e. a stage n such that

P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and lim sup

N→+∞
P(k(N)

n = 0) < 1,

and assume also that πn−1 > p∗.
Then there exists two bounded sequences (λθ,N )N≥1 and (λθ,N )N≥1, with (λθ,N )N≥1 bounded
away from zero, such that:

∀θ ∈ {θ, θ}, Pθ(k
(N)
n = k|k(N)

n−1 = 0) ∼
N→+∞

e−λθ,N
(λθ,N )k

k!
.

Note that the result still holds for a subsequence (i.e. for a sequence
(
Φϕ(N)

)
N≥1, where

ϕ : N → N is a non-decreasing function). Thus the condition of existence of a delay is not
really binding, because any sequence of equilibria can be divided into subsequences for which
there exists a delay.
What strikes most is that the average number of exits at stage n stands bounded no matter how
large the number of players N can be. This extents to non symmetric equilibria, as expressed
in the following proposition which can be viewed as an alternative result of propostion 1.4.

Proposition 1.6. If (ΦN ) is a sequence of equilibria such that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and if

πn−1 > p∗, then the sequence
(
Eθ[k

(N)
n |k(N)

n−1 = 0]
)
N≥1

is bounded.

Nevertheless it is not sure that we will always observe a Poisson distribution. For example,
it could be that only a given group of players (say player 1 to player n0, where n0 does not
depend on N) may leave at stage n. Every other player may a�ord to stay one more stage
because this would enable them to learn the useful information given by this group.

To complete our study, let us comment the case of a sequence of equilibria (ΦN ) such that

P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and if πn−1 = p∗. This limit case does not entirely �t our alternative,

and what we observe in this case is a sort of weak ADE. The number of exits Eθ[k
(N)
n |k(N)

n−1 = 0]
tends to +∞ and this enables the players to discern the state, but the number of exits can be
less than order N and the revelation is not as clear as in an ADE. One can show that:

• ∀i ≥ 1, Pθ(α
i,N
n+1 = N) −−−−−→

N→+∞
0

• ∀i ≥ 1, ∀l ≥ n, Pθ(α
i,N
n = αi,Nl ) −−−−−→

N→+∞
1.

This is much weaker than in our de�nition of ADE.

As a conclusion, the scenario described in our introducing example (section 1.3.1) is not
general. If we do not assume that players can be arbitrarily pessimistic after the �rst stage,
the scenario is either delayed and still deterministic, either completely di�erent: in particular
the process of learning exhibits randomness.
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1.5 Examples

As an illustration of previous results, we would like to know when there exists ADE and to
see how the parameters of the game a�ect this existence. We call the delay (and denote it
n) the stage when �rst players exit. In the case of ADE, n is the smallest integer such that
πn−1 < p∗.
The setting is the following : the distribution of the Xi

n+1 is exponential, with parameters λθ
if the state is High, and λθ if the state is Low. To avoid trivial case, we must have λθ > 1 > λθ,
as Eθ[X

i
n] = 1

λθ
− 1.

On Figures 1, 2 and 3, x-axis is the prior p0 and y-axis is the discount rate δ. The color
shading from left to right shows the increase of the delay n, except for darkest zones which
are the values of p0 and δ for which there can not be ADE.
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Figure 1:
λθ = 1.1
λθ = 0.9
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Figure 2:
λθ = 1.5
λθ = 0.9
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Figure 3:
λθ = 1.1
λθ = 0.5

With a delay of n = 1, we have p0 < p∗ and no player can a�ord to enter the game. This
situation (an ADE with delay n = 1) is not considered as an ADE here (left of the �gures).
The other possible values of n are bordered by curves πk = p∗, k = 0, 1, 2, ....
For given values of λθ and λθ, an increase of λθ (which is equivalent to a decrease of θ) there
are less possible ADE (see Fig. 1 and Fig. 2). Even if the delay is shorter (for given values of
p0 and δ), it that seems players can not wait for the revelation. Indeed, their average payo�s
before the revelation is not high enough.
On the contrary, a decrease λθ is an incentive for players to wait to learn the state. Thus, in
the particular case of Fig. 3, there always exists ADE.

Similarly, an increase of δ seems to act as an incentive to wait, because after the revelation
the reward is higher when in the High state. Indeed there always exists ADE if δ is close to 1.

Lastly, when δ goes to 0, the game becomes basic because only the following stage is signif-
icant. Thus strategies are straightforward: when it becomes possible that some players are
obliged to quit because they do not expect a positive reward for the next stage, they leave and
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their departures reveals the state to the others. Consequently there are more ADE in this case.

2 Sketch of the proofs

We want to show that, except for some limit cases, asymptotic equilibria are either determin-
istic (when the conditions of existence of theorem 1.2 apply), or the state is not revealed when
�rst players leave and in this case the average number of exits is bounded w.r.t to N (as in
theorem 1.5 and 1.3).
More precisely, we are interested in any sequence of equilibria (ΦN )N≥1 for which we can
de�ne a delay n, which is asymptotically the �rst stage where some players could decide to
leave:

P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and lim sup

N→+∞
P(k(N)

n = 0) < 1.

Remember that any sequence of equilibria can be divided into subsequences for which we can
de�ne a delay. What we are going to explain still hold for subsequences.
Note also that when N is large, all players always remain active before stage n and we can
not derive any information from their behaviour. That is why player i's belief over the state
at any stage m < n is assumed to be equal to his private belief pim.

Let us denote n0 = min{m ≥ 1|πm ≤ p∗}. To avoid a limit case, we assume that πn0
< p∗.

Stage n0 + 1 is then the maximum value of the delay n. Indeed if we had n > n0 + 1, it would

imply that P(k
(N)
n0+1 = 0) −−−−−→

N→+∞
1. Thus, for N large enough, every player would decide to

remain at stage n0 + 1, whereas a non negligible fraction of them would have a belief below
p∗.
What we will see is that the behaviour of the players is di�erent whether n = n0 + 1 or
n < n0 + 1. In the �rst case, players stay active until a fraction of them gets a belief below
p∗ and leaves, which enable other players to learn the state. In the second case, the �rst
departures happen before any player can get a belief below p∗. There can not be too many
exits: if not this would give relevant information about the state and staying would be a
dominant strategy for any player, as all of them has a belief greater than p∗.

2.1 n = n0 + 1: the Asymptotically Deterministic case

First, let us study the asymptotic equilibrium when n = n0 + 1.
In this case, players wait at least until stage n0 +1 before dropping out. Then a non negligible
part of them gets a belief below p∗, and is obliged to drop out. Thus there is a signi�cant
fraction of players who leave at stage n0 + 1. As players get on average better news in the
High state than in the Low state, this fraction depends on the state.
On the other hand, players who decide to remain active after stage n0 + 1 can observe this
fraction and learn the state very accurately when N is large. So if player i decides to stay, he
will get a n0 + 1-th payo� (the expectation of which is pin0

θ+ (1− pin0
)θ), and then by looking

at the fraction of exits he will be able to play in accordance to the state: stay forever if it is
High and drop out if it is Low. On average, player i's asymptotic continuation payo� is then:

pin0
θ + (1− pin0

)θ + δ

(
pin0

θ

1− δ
+ (1− pin0

)0

)
=

pin0
θ

1− δ
+ (1− pin0

)θ.
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Therefore, by de�nition of p∗, if pin0
> p∗ this payo� is non-negative and player i will not drop

out.
This discussion enables us to conclude that players tend to play with cuto� p∗ at stage n0 + 1.

Now let us see on what conditions this strategic pro�le is an asymptotic equilibrium.
We consider the decision of player i at stage m ∈ {1, ..., n0}. If he follows the strategy pro�le
described above, he is going to get n0−m+ 1 payo�s, then at stage n he will remain active if
pin > p∗, and then he will play in accordance to the state. The average payo� of this strategy
is:

(1 + δ + ...+ δn−m−1)
(
pim−1θ + (1− pim−1)θ

)
+δn−m

(
pim−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1) + (1− pim−1)θPθ(p

i
n−1 > p∗|pim−1)

)
.

This payo� has to be positive. If not this strategy would not be optimal because player i
would have better leave, which yields a continuation payo� of 0. This even has to be positive
for all players in any case. Consequently, this payo� is still positive for a player who got the
worst news from his private payo�s, i.e. whose private belief is πm−1. That gives us inequality

(Ĩm):

(1 + δ + ...+ δn−m−1)
(
πm−1θ + (1− πm−1)θ

)
+δn−m

(
πm−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 > p∗|pim−1 = πm−1)

)
≥ 0.

Conversely if strict inequality (Im) hold for any m ∈ {1, ..., n0} and if N is large enough, our
strategic pro�le is an equilibrium. Indeed, any player at any stage m ∈ {1, ..., n0} can expect
a non negative payo� if he stays, whereas leaving would give him 0. Then at stage n each
player plays with cuto� p∗ which, as explained before, is the optimal strategy.

2.2 n < n0 + 1: the average number of exits is bounded

Now, let us consider the case n < n0 + 1.
This condition is equivalent to πn−1 > p∗, and in this situation the asymptotic proportion of
leaving players at stage n is either 0 or 1. Indeed if the fraction were in-between, it would
depend on the state because players averagely get worse beliefs in the Low state. Then, as
explained in the former case, any player who decides to leave at stage n should deviate and
stay, because staying would enable him to watch the fraction of exits, and thus he could learn
the state and react accordingly. This strategy would yield a positive payo� because private
beliefs are greater than p∗.

In fact the fraction of exits can not be 1 either. Indeed, the condition P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1

means that, asymptotically, every players have planned to stay until the end of stage n − 1,
and being that optimistic is not consistent with dropping out for sure at the next stage (see ??).
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Thus there are few exits at stage n. We denote by λθ,N and λθ,N the average number of
leaving players at stage n, in the N -player equilibrium ΦN , respectively in the High and in
the Low state:

λθ,N = Eθ[k
(N)
n |k

(N)
n−1 = 0], λθ,N = Eθ[k

(N)
n |k

(N)
n−1 = 0].

What we have showed is that
λθ,N
N and

λθ,N
N go to zero as N goes to +∞. In fact λθ,N and

λθ,N are bounded w.r.t. to N because too many exits would still enable active players to
have a good guess on the state if N is large enough. λθ,N is also bounded away from zero:
by de�nition of the delay n some players are likely to leave the game at stage n (that is the

condition lim sup
N→+∞

P(k
(N)
n = 0) < 1), and there are more exits in the Low state than in the

High state.
Now let us consider the case of symmetric equilibria. As players all play the same strategy,

the probability to leave at stage n for each of them is
λθ,N
N , which depends on the state

(θ ∈ {θ, θ}). At stage n the decision only depends on private payo�s, which are independent

across players conditionally to the state. Therefore the number of exits k
(N)
n is the sum of

N independent Bernoulli r.v. with the same parameter
λθ,N
N . So the distribution of k

(N)
n is a

binomial, which is usually equivalent to a Poisson distribution when N is large:

∀θ ∈ {θ, θ}, Pθ(k
(N)
n = k|k(N)

n−1 = 0) ∼
N→+∞

e−λθ,N
λkθ,N
k!

.

Let us sum up our two cases: we have an alternative between a massive and deterministic
dropping out of a fraction of players (if πn−1 < p∗), and a bounded average number of exits
(if πn−1 > p∗). In the �rst case we have established that some inequalities must hold for this
situation to be an equilibrium. That is the content of theorem 1.2, 1.5 and 1.6.

3 Proofs

3.1 Preliminary results

The proof of the main theorems requires some preliminary results that are given in the present
section.

3.1.1 Beliefs

Let us give a more detailed presentation of beliefs.
As pi1 has a density, the payo�s Xi

1 have a density fθ under Pθ.
By means of Bayes rule, we then have an explicit formula:

pin
1− pin

=
p0

1− p0
fθ(X

i
1)

fθ(X
i
1)
· · ·

fθ(X
i
m)

fθ(Xi
m)
· · ·

fθ(X
i
n)

fθ(Xi
n)
,

and in particular we have

pin
1− pin

=
pim

1− pim
fθ(X

i
m+1)

fθ(X
i
m+1)

· · ·
fθ(X

i
n)

fθ(Xi
n)
. (1)
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Now assume that others' strategy pro�le is �xed.
All the information gathered by player i at stage n is then given by his Posterior Belief,
denoted qin:

qin = P(Θ = θ|Xi
n, ..., X

i
1, ~α
−i,N
n ).

Similarly, we have the following formula by Bayes rules:

qin
1− qin

=
pin

1− pin
Pθ(~α

−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

,

whenever ~α−i,Nn = ~α.
We will often debate the case of every player remaining active until a certain stage n as

N is getting large, i.e. P(k
(N)
n = 0) −−−−−→

N→+∞
1. The number of departure observed by

player i is k−i,Nn , de�ned as #
{
j ∈ {1, · · · , N}\{i}|αj,Nn 6= N

}
. As k−i,Nn ≤ k

(N)
n , we have

P(k−i,Nn = 0) −−−−−→
N→+∞

1, and becauseP(k−i,Nn = 0) = p0Pθ(k
−i,N
n = 0)+(1−p0)Pθ(k

−i,N
n = 0)

one can write:
Pθ(k

−i,N
n = 0) −−−−−→

N→+∞
1 and Pθ(k

−i,N
n = 0) −−−−−→

N→+∞
1.

The events {~α−i,Nn = ~N} and {k−i,Nn = 0} are equal, so that player i's posterior belief is

equivalent to his private belief when k
(N)
n = 0:

qin
1− qin

=
pin

1− pin
Pθ(k

−i,N
n = 0)

Pθ(k
−i,N
n = 0)

⇒ qin =
pinPθ(k

−i,N
n = 0)

pinPθ(k
−i,N
n = 0) + (1− pin)Pθ(k

−i,N
n = 0)

∼
N→+∞

pin

This explain the fact mentioned in section 2 that player i can not derive public information
from his opponents, the latter being expected to remain active no matter what their private
payo�s could be.

3.1.2 Special Cut-o�s

One player cut-o� π∗ When there is only one player, the game reduces to an optimal
stopping problem which is equivalent to the classic one-arm bandit problem (see [CR63] and
[Fer06]) where exit decisions can be assumed reversible. Indeed, if the player �nds it optimal
not to play at a given stage, it will remain optimal for the following stages. In this case,
the optimal policy is to leave as soon as the belief pin drops below a time-independent given
cut-o�, denoted π∗ .
Note that, in our multi-player model, if qin ≥ π∗ player i will �nd it optimal to remain active:
in this situation, even if he could not observe the others any more, staying would still be the
best decision.

Myopic cut-o� p A simple way to decide to stay is to account just for the next stage. Its
expected payo�, that we call myopic payo� and denote myop(qin), equals qinθ + (1− qin)θ.
The myopic cut-o�, denoted p is de�ned as the only value such that myop(p) = 0. It is readily
seen that if qin ≥ p, player i has to stay at least one more stage. As this is still true in the
one-player game, one has also p ≥ π∗.
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Best optimal continuation payo� cut-o� p∗ We have already introduced the cuto� p∗.
Let us give an another presentation based on the notion of optimal continuation payo�.
When facing the decision at the beginning of stage n, a player has to balance two things. On
the one hand, there is the next payo� with expectation myop(qin). On the other hand if he
stays he can expect to be informed better for the next decision, thanks to the the payo� Xi

n

and to other players' behavior. At most, he could learn the state nearly perfectly. Thus, if he
stays he can not expect more than the best optimal continuation payo�:

opt(qin) = myop(qin) +
δqinθ

1− δ
=

qinθ

1− δ
+ (1− qin)θ

which is possible to get if at stage n + 1 he leaves when the state is Low, or stays forever if
the state is High.
In [RSV07], it is showed that, a strategy pro�le being �xed, the optimal continuation payo�,
i.e. the expected payo� player i can get from a stage n+ 1 if he stays at stage n+ 1 and then
plays optimally, is a function ωi,Nn which only depends on pin and ~α−i,Nn . This means that the
optimal strategy consists in staying active as long as ωi,Nn (pin, ~α

−i,N
n ) ≥ 0. And from what is

explained above, we deduce that opt(qin) ≥ ωi,Nn (pin, ~α
−i,N
n ).

We de�ne the best optimal continuation payo� p∗ as the unique cut-o� such that opt(p∗)=0.
A simple property of p∗ is that if qin ≤ p∗, it is a dominant strategy to leave.
On the contrary, if qin > p∗ player i has to stay if he is optimistic enough and/or if he expects
to get a good piece of information looking at other players' behavior. In particular, the more
players there are, the more information he can expect.

The optimal continuation payo� has a role in our results. In an ADE with delay n, when the
end of stage n is reached, a wave of exits reveals the state with more and more accuracy as N
is getting large. Asymptotically, any player i is facing the optimal continuation payo� when
making his decision at stage n. Consequently, at stage m, player i expects a continuation
payo� of:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−mE[max
(
0, opt(pin−1)

)
|pim−1].

Asmyop is non decreasing and pin−1 is increasing w.r.t. to p
i
m−1 (equation (1)), this expression

is non decreasing w.r.t. pim−1: this explains explains the intuitive fact that a player is all the
more willing to stay in the game as his belief is higher. Moreover, one can show that:

pim−1
θ

1− δ
Pθ(p

i
n−1 ≥ p∗|pim−1) + (1− pim−1)θPθ(p

i
n−1 ≥ p∗|pim−1)

= E[max
(
0, opt(pin−1)

)
|pim−1]

Combining the last two equalities and with pim−1 = πm−1, we �nd an other expression of

equalities (Im) and (Ĩm). It has to be positive for any player to be right to remain active at
stage m (leaving only yields a payo� of 0).
It is also worth noticing that, the left side of equality (Ĩm) being an expression of a con-
tinuation payo� with belief πm−1, it is strictly lower than opt(πm−1). Consequently if (Ĩm)
holds then πm−1 > p∗. This explains the last part of theorem 1.2: in an ADE, the delay n is
necessarily the �rst stage such that πn−1 ≤ p∗.

15

ha
l-0

05
62

25
7,

 v
er

si
on

 2
 - 

5 
Fe

b 
20

12



No let us give some results about how a player behaviour a�ects the other players' beliefs.
We want to formalize the fact that players get on average better news in the High state than
in the Low state, and as a consequence it is good news for a player to observe his opponents
remaining active.

3.1.3 Staying is always good news

If a player i (with cut-o�s πim(~t)) stays until stage n + 1, his contribution to other active
players' beliefs is given by the following likelihood ratio:

Pθ(p
i
n ≥ π

i,N
n (~α−i,Nn ), pin−1 ≥ π

i,N
n−1(~α

−i,N
n−1 ), ..., pi1 ≥ π

i,N
1 (~α−i,N1 ))

Pθ(pin ≥ π
i,N
n (~α−i,Nn ), pin−1 ≥ π

i,N
n−1(~α

−i,N
n−1 ), ..., pi1 ≥ π

i,N
1 (~α−i,N1 ))

.

Now, if this player is still active at stage n+ 2, the former contribution has to be updated by
multiplying by:

Pθ(p
i
n+1 ≥ π

i,N
n+1(~α

−i,N
n+1 )|pin ≥ π

i,N
n (~α−i,Nn ), ..., pi1 ≥ π

i,N
1 (~α−i,N1 ))

Pθ(p
i
n+1 ≥ π

i,N
n+1(~α

−i,N
n+1 )|pin ≥ π

i,N
n (~α−i,Nn ), ..., pi1 ≥ π

i,N
1 (~α−i,N1 ))

.

The fact that this ratio is always greater than 1, i.e. that it is always good news to observe a
player staying active, is a by-product of proposition 3.2 thereafter. To obtain this result we
need the following lemma, the proof of which can be found in the appendix.

Lemma 3.1. For each stage n and each cuto� π1, ..., πn−1 ∈ [0, 1], the likelihood ratio

π 7→
Pθ(p

i
n ≥ π, pin−1 ≥ πn−1, ..., pi1 ≥ π1)

Pθ(pin ≥ π, pin−1 ≥ πn−1, ..., pi1 ≥ π1)

is increasing.

We now come to our proposition.

Proposition 3.2. (Conditional stochastic dominance)
For each stage n and k ∈ {0, 1, ..., n− 1}, x1, x2, ..., xn ∈ [0, 1],

Pθ(p
i
n ≥ xn, ..., pik+1 ≥ xk+1|pik ≥ xk, ..., pi1 ≥ x1) ≥ Pθ(p

i
n ≥ xn, ..., pik+1 ≥ xk+1|pik ≥ xk, ..., pi1 ≥ x1)

Proof. Thanks to Lemma 3.1, as xn ≥ 0, we can write:

Pθ(p
i
n ≥ xn, pin−1 ≥ xn−1, ..., pi1 ≥ x1)

Pθ(pin ≥ xn, pin−1 ≥ xn−1, ..., pi1 ≥ x1)
≥

Pθ(p
i
n ≥ 0, pin−1 ≥ xn−1, ..., pi1 ≥ x1)

Pθ(pin ≥ 0, pin−1 ≥ xn−1, ..., pi1 ≥ x1)

≥
Pθ(p

i
n−1 ≥ xn−1, ..., pi1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., pi1 ≥ x1)

.

Hence:

Pθ(p
i
n ≥ xn, pin−1 ≥ xn−1, ..., pi1 ≥ x1)
Pθ(p

i
n−1 ≥ xn−1, ..., pi1 ≥ x1)

≥
Pθ(p

i
n ≥ xn, pin−1 ≥ xn−1, ..., pi1 ≥ x1)
Pθ(p

i
n−1 ≥ xn−1, ..., pi1 ≥ x1)

,
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which is exactly the desired result for k = n− 1.
We derived from this the whole proposition, as:

Pθ(p
i
n ≥ xn, ..., pik+1 ≥ xk+1|pik ≥ xk, ..., pi1 ≥ x1)

= Pθ(p
i
n ≥ xn|pin−1 ≥ xn−1, ..., pi1 ≥ x1)×Pθ(p

i
n−1 ≥ xn−1|pin−2 ≥ xn−2, ..., pi1 ≥ x1)

×...×Pθ(p
i
k+1 ≥ xk+1|pik ≥ xk, ..., pi1 ≥ x1).

Let us mention a simple consequence of proposition 3.2 which will be useful subsequently,
and which shows that public information is increasing from stage to stage as long as no more
players leave.

Corollary 3.3. For all cuto� strategy pro�les, for all stages n > m, and for all i ∈ {1, · · · , N},

Pθ

(
k−i,Nn = k−i,Nm |~α−i,Nm

)
Pθ

(
k−i,Nn = k−i,Nm |~α−i,Nm

) ≥ 1 a.s.

Proof. As the payo�s are independent across players conditionally to the state, the above ratio
is equal to

∏
j 6=i|αjm=N

Pθ(p
j
n ≥ πj,Nn (~α−j,Nm ), ..., pjm+1 ≥ π

−j,N
m+1 (~α−j,Nm )|pjm ≥ πjm(~α−j,Nm ), ..., pj1 ≥ π

j,N
1 (~α−j,N1 ))

Pθ(p
j
n ≥ πj,Nn (~α−j,Nm ), ..., pjm+1 ≥ π

j,N
m+1(~α

−j,N
m )|pjm ≥ πj,Nm (~α−j,Nm ), ..., pj1 ≥ π

j,N
1 (~α−j,N1 ))

,

and all the factors in this product are greater than 1 because of proposition 3.2.

Thus, it has been showed that a player staying active increases his contribution in other
players' posterior beliefs from stage to stage. But this is an increase in a large sense, as his
contribution can remain constant. For instance, in an ADE every player asymptotically stay
active until the revelation stage no matter what their private information may be, and their
public contribution remain equal to 1.

Now we will show that someone leaving after a stage where all players were still active repre-
sents a strict decrease of his contribution to others' posterior belief.

3.1.4 Leaving is bad news

What we want to study speci�cally is what happens when �rst players exit. To this aim, we

introduce the probability Pn,θ = Pθ(· · · |k
(N)
n = 0) and En,θ the corresponding expectation (a

sequence of equilibria being given). Let F in,θ be the c.d.f. of p
i
n under this probability:

F in,θ(x) = Pθ

(
pin ≤ x

∣∣ k(N)
n = 0

)
.

Note that F in,θ(x) = Pθ

(
pin ≤ x

∣∣ pin−1 ≥ πi,Nn−1(N), ..., pi1 ≥ π
i,N
1 (N)

)
by independence of pay-

o�s across players conditionally to the state. In particular, by de�nition of cuto� strategies
we have:

Pθ(i leaves at stage n+ 1|k(N)
n = 0) = F in,θ(π

i,N
n (N)).
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To show that leaving is meaningful, we need to prove that one can not forecast with certainty
that a player i will stop at a given stage. If not, this exit cannot give us any information as
it was due to happen, no matter what player i's private information is.
The following lemma states that, in an equilibrium where every player have planned to stay
until stage n, the probability that a rational player leaves the game at stage n+1 is uniformly
less than 1. Indeed, being too pessimistic would not be consistent with staying until stage n.

Lemma 3.4. Let (ΦN ) be a sequence of equilibrium such that P(k
(N)
n = 0) −−−−−→

N→+∞
1.

There exists N0 ≥ 0 and βθ, βθ ∈ [0, 1) such that:

∀N ≥ N0, ∀θ ∈ {θ, θ}, Pn,θ(i leaves at stage n+ 1|pin−1) ≤ βθ Pn,θ − a.s.

In particular:

∀N ≥ N0, ∀θ ∈ {θ, θ}, Pn,θ(i leaves at stage n+ 1) = F in,θ(π
i,N
n (~N)) ≤ βθ.

Proof. Let us �rst prove the existence of βθ.
We are studying the decision of player i at stage n + 1, given that his private belief at stage
n, pin−1, is known. As we are working under the probability Pn,θ, we can also assume that he
has not observe any departure from other players yet. So his posterior belief at stage n is also
known:

qin−1
1− qin−1

=
pin−1

1− pin−1

Pθ(k
−i,N
n−1 = 0)

Pθ(k
−i,N
n−1 = 0)

.

The fact that player i will not decide to leave at stage n + 1 too often is the consequence of
one of two cases: either he has got news good so far and he will mostly remain optimistic at
stage n+ 1, either he has not but the fact that he has not dropped out until stage n anyway
shows that he is still expecting something and will not leave too soon.

Case n◦1: player i is optimistic enough to get a posterior belief at stage n greater than the
myopic cuto� p.
From the inequality θ < 0 < θ, it is easy to show that there exists ε, ε′ > 0 such that

Pθ

(
fθ(X

i
n)

fθ(Xi
n)
≥ 1 + ε

)
≥ ε′. Assume that

qin−1

1−qin−1
> p

1−p
1

1+ε . As it is a strictly dominant strategy

to stay when the belief is greater than p, we have:

Pn,θ(i stays at stage n+ 1|pin−1) ≥ Pn,θ(q
i
n ≥ p|pin−1) = Pn,θ

(
qin

1− qin
≥ p

1− p

∣∣∣∣ pin−1)

= Pn,θ

 qin−1
1− qin−1

fθ(X
i
n)

fθ(Xi
n)

Pθ(k
−i,N
n−1 = 0|k−i,Nn−2 = 0)

Pθ(k
−i,N
n−1 = 0|k−i,Nn−2 = 0)︸ ︷︷ ︸
≥1 see corollary3.3

≥ p

1− p

∣∣∣∣∣∣∣∣∣∣
pin−1


≥ Pn,θ

(
p

1− p
1

1 + ε

fθ(X
i
n)

fθ(Xi
n)
≥ p

1− p

∣∣∣∣ pin−1) = Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)
≥ 1 + ε

∣∣∣∣ pin−1)

As pin−1 and k
(N)
n are measurable w.r.t. σ

(
Xj
m, 1 ≤ m ≤ N, 1 ≤ m ≤ n− 1

)
, they are inde-

18

ha
l-0

05
62

25
7,

 v
er

si
on

 2
 - 

5 
Fe

b 
20

12



pendent from Xi
n under Pθ, and we have:

Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)
≥ 1 + ε

∣∣∣∣ pin−1) = Pθ

(
fθ(X

i
n)

fθ(Xi
n)
≥ 1 + ε

)
≥ ε′.

Case n◦2: he is not that optimistic but he still had to experiment.
In this case, we have:

qin−1
1− qin−1

≤ p

1− p
1

1 + ε
.

We are working under probability Pn,θ, so we assume that k
(N)
n = 0. In particular player

i decides to remain active at stage n and pin−1 ≥ πi,Nn−1(~N). Consequently the continuation
payo� that he was expecting to get at stage n is positive. Let us overestimate this continuation
payo�.

At the beginning of stage n, player i's decision is based on the information k
(N)
n−1 = 0 and on

pin−1. When he stays, he �rst gets a myopic payo� of expectation myop(qin−1). Then, if he

observes k−i,Nn = 0 he will stay if pin ≥ π
i,N
n (~N). Let us say this will never happen in the Low

state and, if he stays in the High state, he will remain active forever (which yields on average
θ

1−δ ). Moreover, we can overestimate his continuation payo� when k−i,Nn 6= 0 by θ
1−δ in the

High state and by 0 in the Low state. So we have the following overestimation:

myop(qin−1) +
qin−1δθ

1− δ
Pθ(p

i
n ≥ πi,Nn (~N)|k−i,Nn = 0, k

(N)
n−1 = 0, pin−1)Pθ(k

−i,N
n = 0|k(N)

n−1 = 0, pin−1)

+ qin−1Pθ(k
−i,N
n 6= 0|k(N)

n−1 = 0, pin−1)
θ

1− δ
.

As pin−1 ≥ πi,Nn−1(~N), we have αi,Nn = N and conditioning by k−i,Nn = 0, k
(N)
n−1 = 0, pin−1 is

equivalent to conditioning by k
(N)
n = 0, pin−1. As a consequence we have:

Pθ(p
i
n ≥ πi,Nn (~N)|k−i,Nn = 0, k

(N)
n−1 = 0, pin−1) = Pn,θ(p

i
n ≥ πi,Nn (~N)|pin−1).

The same argument, together with the fact other players' decisions do not depend on is pin−1
but only on αi,Nn , enables us to write:

Pθ(k
−i,N
n 6= 0|k(N)

n−1 = 0, pin−1) = Pθ(k
−i,N
n 6= 0, αi,Nn = N|k(N)

n−1 = 0, pin−1)

≤ Pθ(k
(N)
n 6= 0|k(N)

n−1 = 0, pin−1)

≤ Pθ(k
(N)
n 6= 0).

Moreover we can simply overestimate Pθ(k
−i,N
n = 0|k(N)

n−1 = 0, pin−1) by 1.
Consequently player i's continuation payo� is less than:

myop(qin−1) +
qin−1δθ

1− δ
Pn,θ(p

i
n ≥ πi,Nn (~N)|pin−1)

+ qin−1Pθ(k
(N)
n 6= 0)

θ

1− δ
.
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And than:

myop(
p

1 + ε(1− p)
) +

δθ

1− δ
Pn,θ(p

i
n ≥ πi,Nn (~N)|pin−1)

+ Pθ(k
(N)
n 6= 0)

θ

1− δ
.

As player i did decide to remain active at stage n, this payo� is necessarily positive: if not he
would have better leave, which yields a payo� of 0. Consequently we have:

Pn,θ(p
i
n ≥ πi,Nn (~N)|pin−1) ≥ −

1− δ
δθ

(
myop(

p

1 + ε(1− p)
) + Pθ(k

(N)
n 6= 0)

θ

1− δ

)
.

As P(k
(N)
n = 0) −−−−−→

N→+∞
1, one can �nd N0 ≥ 1 such that, for any N ≥ N0:

−1− δ
δθ

(
myop(

p

1 + ε(1− p)
) + Pθ(k

(N)
n 6= 0)

θ

1− δ

)
≥ −1− δ

2δθ
myop(

p

1 + ε(1− p)
).

As a conclusion of the two cases, we can set βθ = max(1− ε′, 1 +myop( p
1+ε(1−p))

1−δ
2δθ

).

Now, we will prove the existence of βθ.

Let Gθ be the c.d.f. of
fθ(X

i
n)

fθ(Xi
n)

under Pθ. We have:

Pn,θ(p
i
n ≤ πi,Nn (~N)|pin−1) = Pn,θ

(
pin

1− pin
≤ πi,Nn (~N)

1− πi,Nn (~N)

∣∣∣∣∣ pin−1
)

= Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)

pin−1
1− pin−1

≤ πi,Nn (~N)

1− πi,Nn (~N)

∣∣∣∣∣ pin−1
)

= Gθ

(
πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

)
(2)

because Xi
n is independent from pin−1 and k

(N)
n under Pθ.

As Gθ is continuous and increasing, we can consider the real r = maxG−1
θ

({βθ}). Then
Gθ(r) = βθ < 1, and, according to equation (2) by the property of βθ we have:

πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

≤ r Pn,θ − a.s.

This is equivalent to:

Pθ

({
k(N)
n = 0

}
∩

{
πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

> r

})
= 0.

And to:

Pθ




⋂
i = 1, ..., N

l = 1, ..., n− 1

pil ≥ π
i,N
l (~N)

 ∩
{

πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

> r

} = 0.
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As the private beliefs have the same support under Pθ and Pθ, we have:

Pθ




⋂
i = 1, ..., N

l = 1, ..., n− 1

pil ≥ π
i,N
l (~N)

 ∩
{

πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

> r

} = 0,

and equivalently:

πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

≤ r Pn,θ − a.s.

Then, by means of equation (2):

Pn,θ(p
n
i ≤ πi,Nn (~N)|pin−1) = Gθ

(
πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

)
≤ Gθ(r) Pn,θ − a.s.

As
fθ(X

i
n)

fθ(Xi
n)

has the same support underPθ andPθ, Gθ(r) < 1 so that we can set βθ = Gθ(r).

Remark 1. The proof shows us that the existence of βθ and βθ can be written as the existence

of a non-negative real r such that
πi,Nn (~αin−1)

1−πi,Nn (~αin−1)

1−pin−1

pin−1
≤ r Pn,θ−a.s. Then βθ = Gθ(r), where

Gθ is the c.d.f. of
fθ(X

i
n)

fθ(Xi
n)

under Pθ.

As a consequence of Lemma 3.4, the lemma thereafter states that a player leaving when
everybody is still active implies a strict pessimism for the others. Indeed, the evolution of his
contribution in public information is then

Pθ(p
i
n ≤ π

i,N
n (~N)|pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N))

Pθ(pin ≤ π
i,N
n (~N)|pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N))

=
F i
n,θ

(πi,Nn (~N))

F in,θ(π
i,N
n (~N))

and is smaller than a constant γ < 1.

Proposition 3.5. Let (ΦN ) be a sequence of equilibria such that P(k
(N)
n = 0) −−−−−→

N→+∞
1.

There exists N0 ≥ 0 and γ ∈ [0, 1) such that:

∀N ≥ N0, ∀i ∈ {1, ..., N}, F in,θ(π
i,N
n (~N)) ≤ γF in,θ(πi,Nn (~N)).

Proof. We �rst show that there exists as an upper bound γ < 1 of
Gθ
Gθ

on (ν, r], where Gθ and

r have been introduced in Lemma 3.4, and where ν is the in�mum of the support of
fθ(X

i
n)

fθ(Xi
n)

(for
Gθ
Gθ

to be de�ned).

Notice that:

∀x ∈ [0, r], Gθ(x) =

∫{
f
θ
(u)

fθ(u)
≤x

} fθ(u)du ≤
∫{

f
θ
(u)

fθ(u)
≤x

} xfθ(u)du = xGθ(x) ≤ rGθ(x).

Consequently if r < 1, setting γ = r enables us to conclude. If not, thanks to the presence of
bad news, there exists γ1 < 1 such that Gθ(γ1) > 0. Then γ1 > ν, and just as before we have:

∀x ∈ [0, γ1], Gθ(x) ≤ γ1Gθ(x).
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In particular:

Gθ(γ1) < Gθ(γ1) =⇒
1−Gθ(γ1)
1−Gθ(γ1)

> 1.

On the other hand the function

x 7→
1−Gθ(x)

1−Gθ(x)
=

Pθ

(
fθ(X

i
n)

fθ(Xi
n)
≥ x

)
Pθ

(
fθ(X

i
n)

fθ(Xi
n)
≥ x

)
is well de�ned on [γ1, r] (because x ≤ r implies that Gθ(x) ≤ Gθ(r) < 1) and increasing (see
Lemma 3.1). Thus:

∀x ∈ [γ1, r],
1−Gθ(x)

1−Gθ(x)
≥

1−Gθ(γ1)
1−Gθ(γ1)

> 1,

and:
∀x ∈ [γ1, r], Gθ(x) < Gθ(x).

Going back to the function
Gθ
Gθ

, we then see that, on the segment [γ1, r], its values are all in

(0, 1). As this function is continuous, we have by compactness:

max
[γ1,r]

Gθ
Gθ

< 1.

To conclude, we can set γ = max(γ1,max[γ1,r]
Gθ
Gθ

), so that:

∀x ∈ [0, r], Gθ(x) ≤ γGθ(x). (3)

γ is indeed the upper bound we were looking for.

Now, let us see why γ applies to the conclusion of our lemma. We choose N0 as given by
Lemma 3.4.
We have:

F in,θ(π
i,N
n (~N)) = Pn,θ(p

i
n ≤ πi,Nn (~N)) = En,θ

(
Pn,θ(p

i
n ≤ πi,Nn (~N)|pin−1)

)
= Eθ

(
Gθ

(
πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

)∣∣∣∣∣ pin−1 ≥ πi,Nn−1(~N), ..., pi1 ≥ π
i,N
1 (~N)

)

by means of equation (2), and because conditioning by k
(N)
n = 0 is equivalent to conditioning

by {pin−1 ≥ π
i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)} by independence of payo�s across player conditionally

to the state.
As πi,Nn (~N)

1−πi,Nn (~N)

1−pin−1

pin−1
≤ r, (3) applies and one can write by positivity of expectation:

F i
n,θ

(πi,Nn (~N)) = Eθ

(
Gθ

(
πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

)∣∣∣∣∣ pin−1 ≥ πi,Nn−1(~N), ..., pi1 ≥ π
i,N
1 (~N)

)

≤ γEθ

(
Gθ

(
πi,Nn (~N)

1− πi,Nn (~N)

1− pin−1
pin−1

)∣∣∣∣∣ pin−1 ≥ πi,Nn−1(~N), ..., pi1 ≥ π
i,N
1 (~N)

)
.
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In order to conclude, we need to replace Eθ by Eθ. As Gθ

(
πi,Nn (~N)

1−πi,Nn (~N)

1−pin−1

pin−1

)
is positive and

decreasing w.r.t. pin−1, this can be done by approximation by positive linear combination of
functions of the form 1pin−1<π

, with π in [0, 1]. Consequently, it remains to show that:

Pθ

(
pin−1 < π|pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

)
≤ Pθ

(
pin−1 < π|pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

)
,

which is equivalent to:

Pθ

(
pin−1 ≥ π|pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)) ≥ Pθ(p

i
n−1 ≥ π|pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

)
.

If π ≤ πi,Nn−1(~N), both terms of the inequality equal 1. If not, the former inequality can be
written as:

Pθ

(
pin−1 ≥ π, ..., pi1 ≥ π

i,N
1 (~N)

)
Pθ

(
pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

) ≥ Pθ

(
pin−1 ≥ π, ..., pi1 ≥ π

i,N
1 (~N)

)
Pθ

(
pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

) ,
and:

Pθ

(
pin−1 ≥ π, ..., pi1 ≥ π

i,N
1 (~N)

)
Pθ

(
pin−1 ≥ π, ..., pi1 ≥ π

i,N
1 (~N)

) ≥ Pθ

(
pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

)
Pθ

(
pin−1 ≥ π

i,N
n−1(~N), ..., pi1 ≥ π

i,N
1 (~N)

) .
The result then follows from Lemma 3.1.

3.2 Main theorems

3.2.1 Proposition 1.6 and consequences

First, let us demonstrate proposition 1.6, and then draw some useful consequences.

Proof. Assume for contradiction that
(
Eθ[k

(N)
n |k(N)

n−1 = 0]
)
N≥1

=
(∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

)
N≥1

is not bounded. Up to a subsequence, one has

lim
N→+∞

Eθ[k
(N)
n |k

(N)
n−1 = 0] = +∞.

Let us show that this assumption enables to learn the state at the following stage if N is large

enough, by comparing k
(N)
n to MN =

Eθ[k
(N)
n |k(N)

n−1=0]+Eθ[k
(N)
n |k(N)

n−1=0]

2 . Indeed k
(N)
n tends to be

greater than MN in the Low state and lower than MN in the High State, because players get
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worse news in the Low state and leave more often. Let us prove this:

Pθ

(
k(N)
n < MN

∣∣∣ k(N)
n−1 = 0

)
= Pθ

k(N)
n <

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N)) + F in−1,θ(π

i,N
n−1(~N))

2

∣∣∣∣∣∣ k(N)
n−1 = 0



= Pθ


N∑
i=1

F in−1,θ(π
i,N
n−1(~N))− k(N)

n >
N∑
i=1

F in−1,θ(π
i,N
n−1(~N))− F i

n−1,θ(π
i,N
n−1(~N))

2︸ ︷︷ ︸
>0

∣∣∣∣∣∣∣∣∣∣
k
(N)
n−1 = 0


≤ Pθ

∣∣∣∣∣
N∑
i=1

F in−1,θ(π
i,N
n−1(~N))− k(N)

n

∣∣∣∣∣ >
N∑
i=1

F in−1,θ(π
i,N
n−1(~N))− F i

n−1,θ(π
i,N
n−1(~N))

2

∣∣∣∣∣∣ k(N)
n−1 = 0


≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))− F in−1,θ(π

i,N
n−1(~N))2(∑N

i=1 F
i
n1,θ

(πi,Nn−1(~N))− F i
n−1,θ(π

i,N
n (~N))

)2
by means of Tchebychev's inequality.

Moreover, thanks to proposition 3.5:

γF in−1,θ(π
i,N
n−1(~N)) ≥ F i

n−1,θ(π
i,N
n−1(~N))

with γ ∈ [0, 1) and N large enough, so that:

Pθ

(
k(N)
n < MN

∣∣∣ k(N)
n−1 = 0

)
≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1− γ)2
(∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2
≤ 4

(1− γ)2
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

=
4

(1− γ)2Eθ[k
(N)
n |k(N)

n−1 = 0]
−−−−−→
N→+∞

0.

Similarly, one can show that:

Pθ

(
k(N)
n ≥MN

∣∣∣ k(N)
n−1 = 0

)
≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1− γ)2
(∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2 ≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1− γ)2
(∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2
=

4

(1− γ)2
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

=
4

(1− γ)2Eθ[k
(N)
n |k(N)

n−1 = 0]
−−−−−→
N→+∞

0.

Now let us see how this a�ects player i's decision. He is able to make to make a similar
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comparison, between k−i,Nn and M i
N =

Eθ[k
−i,N
n |k(N)

n−1=0]+Eθ[k
−i,N
n |k(N)

n−1=0]

2 . In this case we have:

Pθ

(
k−i,Nn < M i

N

∣∣ k(N)
n−1 = 0

)
≤ 4

(1− γ)2Eθ[k
−i,N
n |k(N)

n−1 = 0]

≤ 4

(1− γ)2
(
Eθ[k

(N)
n |k(N)

n−1 = 0]− 1
) (4)

and

Pθ

(
k−i,Nn ≥M i

N

∣∣ k(N)
n−1 = 0

)
≤ 4

(1− γ)2
(
Eθ[k

(N)
n |k(N)

n−1 = 0]− 1
) . (5)

Consider the strategy consisting in leaving if k−i,Nn ≥M i
N and staying forever otherwise, when

everybody is still active at the end of stage n− 1, i.e. k
(N)
n−1 = 0. The overall expected payo�

after stage n− 1 is:

opt(qin−1) −
δqin−1θ

1− δ
Pθ

(
k−i,Nn ≥M i

N

∣∣ k(N)
n−1 = 0

)
+

(1− qin−1)δθ
1− δ

Pθ

(
k−i,Nn−1 < M i

N

∣∣∣ k(N)
n−1 = 0

)
.

Thanks to equation 4 and 5, one can underestimate this by:

opt(qin−1)−
4δ(θ − θ)

(1− δ)(1− γ)2
(
Eθ[k

(N)
n |k(N)

n−1 = 0]− 1
) (6)

In our case
qin−1

1−qin−1
=

pin−1

1−pin−1

Pθ(k
(N)
n−1=0)

Pθ(k
(N)
n−1=0)

≥ pin−1

1−pin−1
thanks to Lemma 3.3, so that qin−1 ≥ pin−1 ≥

πn−1. Therefore, our strategy yields at least an average payo� of:

opt(πn−1)−
4δ(θ − θ)

(1− δ)(1− γ)2
(
Eθ[k

(N)
n |k(N)

n−1 = 0]− 1
)

−−−−−→
N→+∞

πn
θ

1− δ
+ (1− πn−1)θ = opt(πn−1) > 0, as πn−1 > p∗.

Consequently, this payo� is non-negative for any qin−1 and for N large enough and any player
should stay active at stage n. This is absurd because the equilibrium strategy leads some

players to leave in some non negligible cases: if not, the sequence
(
Eθ[k

(N)
n |k(N)

n−1 = 0]
)
N≥1

would not converge to +∞.

Remark 2. In this proof, notice that we compared k
(N)
n toMN =

Eθ[k
(N)
n |k(N)

n−1=0]+Eθ[k
(N)
n |k(N)

n−1=0]

2 ,

but we could equivalently have compared it to any strict convex combination of Eθ[k
(N)
n |k(N)

n−1 =

0] and Eθ[k
(N)
n |k(N)

n−1 = 0].
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More generally, for every sequence (aN )N≥1 converging to a ∈ (0, 1), and if (Eθ[k
(N)
n |k(N)

n−1 =
0])N≥1 converges to +∞:

Pθ

(
k(N)
n < aNEθ[k

(N)
n |k

(N)
n−1 = 0] + (1− aN )Eθ[k

(N)
n |k

(N)
n−1 = 0]

∣∣∣ k(N)
n−1 = 0

)
−−−−−→
N→+∞

{
1 if θ = θ
0 if θ = θ

.

Others conclusion can be drawn by the former proof, that generalizes the large game result
which can be found in [RSV07].

Proposition 3.6. For any sequence
(
πi,Nm (~t)

)
N≥1

of equilibria such that

P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞,

the cuto�s πi,Nn−1(~N) uniformly converge to p∗, i.e.:

sup
i∈{1,··· ,N}

|πi,Nn−1(~N)− p∗| −−−−−→
N→+∞

0.

Moreover there exists a sequence of real numbers (KN )N≥1 such that KN −−−−−→
N→+∞

0 and:

opt(qin−1) ≥ ω
i,N
n−1(p

i
n−1, ~N) ≥ opt(qin−1)−KN a.s.

Proof. According to the de�nition of p∗, a player whose posterior belief qin−1 is below p∗

should exit. Moreover if no player has left until the end of stage n− 1, we have that
qin−1

1−qin−1
=

Pθ(k
−i,N
n−1 =0)

Pθ(k
−i,N
n−1 =0)

pin−1

1−pin−1
. Consequently we can underestimate πi,Nn−1(~N):

πi,Nn−1(~N)

1− πi,Nn−1(~N)
≥

Pθ(k
−i,N
n−1 = 0)

Pθ(k
−i,N
n−1 = 0)

p∗

1− p∗

⇔ πi,Nn−1(~N) ≥ p∗
Pθ(k

−i,N
n−1 = 0)

(1− p∗)Pθ(k
−i,N
n−1 = 0) + p∗Pθ(k

−i,N
n−1 = 0)

.

Now we want an overestimation, and for this we have to �nd a cuto� that makes player i
optimistic enough to stay. In the former proof, we provided a strategy that guarantees at
least a payo� of opt(qin−1)−KN , where

KN =
4δ(θ − θ)

(1− δ)(1− γ)2
(
Eθ[k

(N)
n |k(N)

n−1 = 0]− 1
) ,

and with γ ∈ [0, 1) and N large enough (see equation 6).
If our strategy yields a positive payo�, player i has to stay. This is the case if qin−1 ≥ p∗+∆N ,
where

∆N =
4δ(θ − θ)

(1− γ)2(θ − (1− δ)θ)
(
Eθ[k

(N)
n |k(N)

n−1 = 0]− 1
) .

A straightforward calculus leads us to the overestimation of πi,Nn (~N) we were looking for:

πi,Nn−1(~N) ≤
Pθ(k

−i,N
n−1 = 0)(p∗ + ∆N )

Pθ(k
−i,N
n−1 = 0)(1− p∗ −∆N ) + Pθ(k

−i,N
n−1 = 0)(p∗ + ∆N )

.
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Both sides of our estimation tends to p∗. The convergence is uniform w.r.t. to i because

Pθ(k
(N)
n−1 = 0) ≤ Pθ(k

−i,N
n−1 = 0) ≤ 1. That gives us the �rst part of the proposition.

The fact we have a strategy that guarantees a payo� of opt(qin−1)−KN implies that ωin−1(p
i
n−1, ~N) ≥

opt(qin−1) − KN by de�nition of ωin−1. The inequality opt(qin−1) ≥ ωin−1(p
i
n−1, ~N) is also a

by-product of the de�nition of ωin−1 (see section 3.1.2), hence the second part of the proposi-
tion.

3.2.2 Theorem 1.2, Necessary conditions

Our aim is to show that if there exists an ADE with delay n, then πn−1 ≤ p∗ and inequalities
(Im), 1 ≤ m ≤ n − 1, hold. We will reach this goal by dividing the proof into simpler
intermediate results.

Lemma 3.7. If there exists an ADE with delay n, then Eθ[k
(N)
n |k(N)

n−1 = 0] −−−−−→
N→+∞

+∞.

Proof. We proceed using reductio ad absurdum. Up to a subsequence,
(
Eθ[k

(N)
n |k(N)

n−1 = 0]
)
N≥1

=(∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

)
N≥1

is bounded.

And we have:

Pθ(k
(N)
n = 0) = Pθ(k

(N)
n = 0|k(N)

n−1 = 0)Pθ(k
(N)
n−1 = 0)

= Pθ

(
n⋂
i=1

{i stays at stage n}

∣∣∣∣∣ k(N)
n−1 = 0

)
Pθ(k

(N)
n−1 = 0)

=
N∏
i=1

(
1− F in−1,θ(π

i,N
n−1(~N))

)
Pθ(k

(N)
n−1 = 0),

and

logPθ(k
(N)
n = 0) =

N∑
i=1

log
(

1− F in−1,θ(π
i,N
n−1(~N))

)
+ log

(
Pθ(k

(N)
n−1 = 0)

)
.

The sum has the same behaviour as −
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N)), for we know that

F in−1,θ(π
i,N
n−1(~N)) ≤ βθ < 1 (see Lemma 3.4) so that, by concavity:

log(1− F in−1,θ(π
i,N
n−1(~N))) ≥

log(1− βθ)
βθ

F in−1,θ(π
i,N
n−1(~N)).

Combining these facts and the fact that Pθ

(
k
(N)
n−1 = 0

)
−−−−−→
N→+∞

1, we get:

∃α > 0, ∃N0 ≥ 1, ∀N ≥ N0, Pθ(k
(N)
n = 0) > α.

And in these conditions (see corollary 3.3) Pθ(k
(N)
n = 0) > α, so that we have:

Pθ(k
(N)
n+1 6= 0|k(N)

n = 0) = Pθ(k
(N)
n+1 6= k(N)

n |k(N)
n = 0) ≤

Pθ(k
(N)
n+1 6= k

(N)
n )

Pθ(k
(N)
n = 0)

≤
Pθ(k

(N)
n+1 6= k

(N)
n )

α
−−−−−→
N→+∞

0

27

ha
l-0

05
62

25
7,

 v
er

si
on

 2
 - 

5 
Fe

b 
20

12



by means of the third condition in the de�nition of ADE. Therefore we have:

Pθ(k
(N)
n+1 = 0|k(N)

n = 0) −−−−−→
N→+∞

1.

And then:

Pθ(k
(N)
n+1 = 0) = Pθ(k

(N)
n+1 = 0|k(N)

n = 0)Pθ(k
(N)
n = 0) ≥ αPθ(k

(N)
n+1 = 0|k(N)

n = 0)

so that Pθ(k
(N)
n+1 = 0) ≥ α

2 for N large enough.
In particular:

Pθ

(
p11 ≥ π

1,N
1 (~N), p12 ≥ π

1,N
2 (~N), ..., p1n ≥ π1,Nn (~N)

)
≥ α

2
.

Up to a subsequence, one can assume that:

∀l ∈ {1, · · · , n}, ∃πl ∈ [0, 1], π1,Nl (~N) −−−−−→
N→+∞

πl.

Consequently, we have Pθ

(
p11 ≥ π1, p12 ≥ π2, ..., p1n ≥ πn

)
≥ α

2 and by continuity:

∃π̃1 > π1, ∃π̃2 > π2, ..., ∃π̃n > πn, Pθ

(
p11 ≥ π̃1, p12 ≥ π̃2, ..., p1n ≥ π̃n

)
≥ α

4
.

As the private beliefs have the same support under Pθ and under Pθ, one can write:

∃β > 0, Pθ

(
p11 ≥ π̃1, p12 ≥ π̃2, ..., p1n ≥ π̃n

)
≥ β.

Therefore, one have, for N large enough:

Pθ

(
p11 ≥ π

1,N
1 (~N), p12 ≥ π

1,N
2 (~N), ..., p1n ≥ π1,Nn (~N)

)
≥ β.

And then:

Pθ(k
(N)
n+1 ≤ N − 1) ≥ Pθ (Player 1 is still active at stage n + 1)

≥ Pθ

(
{Player 1 is still active at stage n + 1} ∩ {k(N)

n = 0}
)

= Pθ(k
(N)
n = 0)Pθ

(
Player 1 is still active at stage n + 1|k(N)

n = 0
)

≥ αPθ

(
p1n ≥ π1,Nn (~N)

∣∣ p1n−1 ≥ π1,Nn−1(~N), ..., p11 ≥ π
1,N
1 (~N)

)
≥ αPθ

(
p1n ≥ π1,Nn (~N), p1n−1 ≥ π

1,N
n−1(~N), ..., p11 ≥ π

1,N
1 (~N)

)
≥ αβ > 0.

This contradicts the fact that Pθ(k
(N)
n+1 = N) −−−−−→

N→+∞
1.

Corollary 3.8. If there exists an ADE with delay n, then πn−1 ≤ p∗.

Proof. This is a direct consequence of proposition 1.6 and lemma 3.7.

Lemma 3.9. If there exists an ADE with delay n then the inequalities (Ĩm), 1 ≤ m ≤ n− 1,
hold.

28

ha
l-0

05
62

25
7,

 v
er

si
on

 2
 - 

5 
Fe

b 
20

12



Proof. Let us prove inequality (Ĩm). To this aim, we �x an ADE with delay n and we overes-
timate the continuation payo� that player i gets at stage m in such a strategic pro�le when

no player has left, i.e. k
(N)
m−1 = 0.

Let us say that if any player leaves before stage n, player i could at best play in perfect
accordance to the state: stay forever in the High state and drop out in the Low state . If
not, he will stay in the game until stage n, and then stay i� the optimal optimal continuation
payo� ωi,Nn−1(p

i
n−1, ~α

−i,N
n−1 ) is positive (see section 3.1.2). The corresponding overestimation is

the following:

Pθ(k
(N)
n−1 6= 0|k(N)

m−1 = 0, pim−1)q
i
m−1

θ

1− δ

+ P(k
(N)
n−1 = 0|k(N)

m−1 = 0, pim−1)

[
(1 + δ + ...+ δn−m−1)

(
myop(qim−1)

)
+δn−mE

[
max

(
0, ωi,Nn−1(p

i
n−1, ~N)

)∣∣∣ pim−1]
]
,

where
qim−1

1−qim−1
=

pim−1

1−pim−1

Pθ(k
(N)
m−1=0)

Pθ(k
(N)
m−1=0

. We denote by fNm (pim−1) this upper bound.

We have that {fNm (pim−1) < 0} ∩ {k(N)
m−1 = 0} ⊆ {k(N)

n−1 6= 0}: if fNm (pim−1) < 0 and k
(N)
m−1 = 0,

player i prefers to leaves at stage m (which yields at payo� of 0) because his continuation
payo� is non-positive. Consequently we have

P
(
{fNm (pim−1) < 0} ∩ {k(N)

m−1 = 0}
)
≤ P

(
k
(N)
n−1 6= 0

)
−−−−−→
N→+∞

0,

and:
P
(
fNm (pim−1) ≥ 0

∣∣ k(N)
m−1 = 0

)
−−−−−→
N→+∞

1. (7)

On the other hand the fact that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 implies that

P(k
(N)
n−1 = 0|k(N)

m−1 = 0, pim−1) −−−−−→
N→+∞

1 a.s.

As qin =
pinPθ(k

−i,N
n =0)

pinPθ(k
−i,N
n =0)+(1−pin)Pθ(k

−i,N
n =0)

, it also implies that:

qim−1 −−−−−→
N→+∞

pim−1 a.s.

Then thanks to lemma 3.7 and proposition 3.6 we have fNm (pim−1) −−−−−→
N→+∞

fm(pim−1) a.s.,

where:

fm(pim−1) = (1 + δ + ...+ δn−m−1)
(
pim−1θ + (1− pim−1)θ

)
+δn−mE

[
max

(
0, opt(pin−1)

)∣∣ pim−1] .
This function is non-decreasing (see section 3.1.2). Consequently there is at most one value
of pim−1 for which fm(pim−1) = 0, and because the law pim−1 is continuous, we have:

1fNm (pim−1)≥0
−−−−−→
N→+∞

1fm(pim−1)≥0
a.s.
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Finally we have that P(k
(N)
m−1 = 0) −−−−−→

N→+∞
1 and, up to a subsequence, 1

k
(N)
m−1=0

−−−−−→
N→+∞

1 a.s.

From this we deduce that:

P
(
fNm (pim−1) ≥ 0

∣∣ k(N)
m−1 = 0

)
=

P

(
1fNm (pim−1)≥0

1
k
(N)
m−1=0

)
P
(
k
(N)
m−1 = 0

) −−−−−→
N→+∞

P
(
fm(pim−1) ≥ 0

)
.

Then fm(pim−1) ≥ 0 a.s. by means of equation (7). As fm is continuous, one can conclude

that fm(πm−1) ≥ 0, which is the desired equation (Ĩm).

The �rst part of theorem 1.2 is then the conjunction of corollary 3.8 and lemma 3.9.

3.2.3 Theorem 1.2, Su�cient conditions

To prove the second part of theorem 1.2, we �rst need to show proposition 1.4, and before
that we will begin by two useful lemmas.

In proposition 1.4 we have P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0 and πn−1 < p∗. After stage n, a signi�cant

proportion of players have to leave because their private beliefs are less than p∗, and this
proportion depends on the state. That is the content of the following lemma.

Lemma 3.10. Assume that πn−1 < p∗. For any sequence
(
πi,Nm (~t)

)
N≥1

of equilibria such

that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1, we have:

∀θ ∈ {θ, θ}, Eθ[k
(N)
n |k

(N)
n−1 = 0] ∼

N→+∞
NFn−1,θ(p

∗).

In particular Eθ[k
(N)
n |k(N)

n−1 = 0] −−−−−→
N→+∞

+∞.

Proof. As in the proof of proposition 3.6, the fact that a player whose posterior belief is below

p∗ will necessarily leave implies that: πi,Nn−1(~N) ≥ p∗ Pθ(k
−i,N
n−1 =0)

(1−p∗)Pθ(k−i,Nn−1 =0)+p∗Pθ(k
−i,N
n−1 =0)

.

Therefore we have:

F in−1,θ(π
i,N
n−1(~N)) = Pθ(p

i
n−1 ≤ π

i,N
n−1(~N)|k(N)

n−1 = 0) ≥
Pθ(p

i
n−1 ≤ π

i,N
n−1(~N))−Pθ(k

(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

≥
Pθ

(
pin−1 ≤ p∗

Pθ(k
−i,N
n−1 =0)

(1−p∗)Pθ(k−i,Nn−1 =0)+p∗Pθ(k
−i,N
n−1 =0)

)
−Pθ(k

(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

≥
Fn−1,θ

(
p∗

Pθ(k
−i,N
n−1 =0)

(1−p∗)Pθ(k−i,Nn−1 =0)+p∗Pθ(k
−i,N
n−1 =0)

)
−Pθ(k

(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

.

The term p∗
Pθ(k

−i,N
n−1 =0)

(1−p∗)Pθ(k−i,Nn−1 =0)+p∗Pθ(k
−i,N
n−1 =0)

converges to p∗, and the convergence is uniform
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w.r.t. i because Pθ(k
(N)
n−1 = 0) ≤ Pθ(k

−i,N
n−1 = 0) ≤ 1. Consequently we have:

Eθ[k
(N)
n |k

(N)
n−1 = 0] =

N∑
i=1

F in−1,θ(π
i,N
n−1(~N))

≥
N∑
i=1

Fn−1,θ

(
p∗

Pθ(k
−i,N
n−1 =0)

(1−p∗)Pθ(k−i,Nn−1 =0)+p∗Pθ(k
−i,N
n−1 =0)

)
−Pθ(k

(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

∼
N→+∞

NFn−1,θ(p
∗). (8)

In particular Eθ[k
(N)
n |k(N)

n−1 = 0] −−−−−→
N→+∞

+∞, and by means of proposition 3.6 the cuto�s

πi,Nn−1(~N) uniformly converge to p∗. Moreover we have that:

F in−1,θ(π
i,N
n−1(~N)) = Pθ(p

i
n−1 ≤ π

i,N
n−1(~N)|k(N)

n−1 = 0)

≤
Pθ

(
pin−1 ≤ π

i,N
n−1(~N)

)
Pθ(k

(N)
n−1 = 0)

=
Fn,θ(π

i,N
n−1(~N))

Pθ(k
(N)
n−1 = 0)

.

And:

Eθ[k
(N)
n |k

(N)
n−1 = 0] =

N∑
i=1

F in−1,θ(π
i,N
n−1(~N)) ≤

N∑
i=1

Fn,θ(π
i,N
n−1(~N))

Pθ(k
(N)
n−1 = 0)

∼
N→+∞

NFn−1,θ(p
∗). (9)

Equations (8) and (9) together give the result we were looking for.

The basic idea is that, after the wave of exits, in the Low state qin is mostly below p∗ so that
any player will leave, and in the High state qin is mostly high enough for all the future believes
to be greater than p, so that any remaining player will stay forever.
Remember that the posterior belief of player i (after stage n) is expressed by:

qin
1− qin

=
pin

1− pin
×

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

whenever the status of the players is ~α. This can also be written as:

qin
1− qin

=
pin

1− pin
×

∏
j 6=i,pjn−1<π

j,N
n−1(~N)

F j
n−1,θ(π

j,N
n−1(~N))

F jn−1,θ(π
j,N
n−1(~N))

×
∏

j 6=i,pjn−1≥π
j,N
n−1(~N)

1− F j
n−1,θ(π

j,N
n−1(~N))

1− F jn−1,θ(π
j,N
n−1(~N))

.

The terms F jn−1,θ(π
j,N
n−1(~N)) converges to Fn−1,θ(p

∗), because P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and

because of lemma 3.10 and proposition 3.6. This leads us to set ρ∗ such that :

ρ∗ log
Fn−1,θ(p

∗)

Fn−1,θ(p∗)
+ (1− ρ∗) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)
= 0.

Using convexity properties, it is readily seen that Fn−1,θ(p
∗) < ρ∗ < Fn−1,θ(p

∗). The real ρ∗

represents a critical fraction of players leaving at stage n above which the posterior beliefs
will decrease exponentially to 0 and under which it will increase exponentially, as stated in
the lemma below.
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Lemma 3.11. Let (ΦN ) be a sequence of equilibria such that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0, and

assume that πn−1 < p∗. For every ρ > ρ∗, there exists K > 0 and N0 ≥ 1 such that:

∀N ≥ N0,∀i ∈ {1, ..., N}, ∀~β−i ∈ {N, n}N−1 s.t. #
{
j ∈ {1, ..., N}\{i}, βj 6= N

}
≥ Nρ,

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≤ e−KN .

Similarly, for every ρ < ρ∗, there exists K > 0 and N0 such that:

∀N ≥ N0,∀i ∈ {1, ..., N}, ∀~β−i s.t. #
{
j ∈ {1, ..., N}\{i}, αj 6= N

}
< Nρ :

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≥ eKN .

The proof of this lemma is in the appendix.

Let us now prove proposition 1.4.

Proof. First let us show the second condition in the de�nition of ADE.

We just have to show that Pn−1,θ(k
(N)
n+1 < N) −−−−−→

N→+∞
0, because then:

Pθ(k
(N)
n+1 = N) = 1−Pθ(k

(N)
n+1 < N) = 1−Pθ(k

(N)
n+1 < N, k

(N)
n−1 = 0)−Pθ(k

(N)
n+1 < N, k

(N)
n−1 6= 0)

≥ 1−Pn−1,θ(k
(N)
n+1 < N)P(k

(N)
n−1 = 0)−Pθ(k

(N)
n−1 6= 0) −−−−−→

N→+∞
1.

We set ρ =
Fn−1,θ(p

∗)+ρ∗

2 . As Eθ[k
(N)
n |k(N)

n−1 = 0] ∼ NFn−1,θ(p∗) (lemma 3.10), and because ρ∗

is a convex combination of Fn−1,θ(p
∗) and Fn−1,θ(p

∗), remark 2 enables us to write:

lim
N→+∞

Pn−1,θ

(
k(N)
n ≤ Nρ

)
= 0. (10)

Then we have:

Pn−1,θ(k
(N)
n+1 < N) = Pn−1,θ

(
k
(N)
n+1 < N, k(N)

n > Nρ
)

+ Pn−1,θ

(
k
(N)
n+1 < N, k(N)

n ≤ Nρ
)

≤ Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ)Pn−1,θ(k
(N)
n > Nρ) + Pn−1,θ(k

(N)
n ≤ Nρ)

≤ Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) + Pn−1,θ(k
(N)
n ≤ Nρ)

As Pn−1,θ(k
(N)
n ≤ Nρ) −−−−−→

N→+∞
0, we focus on the other term. We use the basic idea that we

mentioned before, i.e. the posterior belief of active player is necessarily greater than p∗:

Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) = Pn−1,θ

(
∃i ∈ {1, ..., N}, αi,Nn+1 = N

∣∣∣ k(N)
n > Nρ

)
≤ Pn−1,θ

(
∃i ∈ {1, ..., N}, qin ≥ p∗ and αi,Nn = N

∣∣ k(N)
n > Nρ

)
≤ NPn−1,θ

(
qin ≥ p∗ and αi,Nn = N

∣∣ k(N)
n > Nρ

)
= NPn−1,θ

(
qin

1− qin
≥ p∗

1− p∗
and αi,Nn = N

∣∣∣∣ k(N)
n > Nρ

)
= NPn−1,θ

(
pin

1− pin
Pθ(~α

−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

≥ p∗

1− p∗
, αi,Nn = N

∣∣∣∣∣ k(N)
n > Nρ

)
.
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The fact that k
(N)
n > Nρ and that i is still active implies that, for N large enough and for a

given K > 0,
Pθ(~α

−i,N
n =~α)

Pθ(~α
−i,N
n =~α)

≤ e−KN by means of lemma 3.11. This enables us to write:

Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) ≤ NPn−1,θ

(
pin

1− pin
e−KN ≥ p∗

1− p∗
, αi,Nn = N

∣∣∣∣ k(N)
n > Nρ

)
.

And then:

Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) ≤ N
Pθ

(
pin

1−pin
e−KN ≥ p∗

1−p∗ , α
i,N
n = N, k(N)

n > Nρ, k
(N)
n−1 = 0

)
Pn−1,θ(k

(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

≤ N
Pθ

(
pin

1−pin
e−KN ≥ p∗

1−p∗
)

Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

≤ Ne−KN
(1− p∗)Eθ

(
pin

1−pin

)
p∗Pn−1,θ(k

(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

by means of Markov inequality.
This last term converges to 0. Indeed we have:

• Ne−KN −−−−−→
N→+∞

0,

• Pn−1,θ(k
(N)
n > Nρ) −−−−−→

N→+∞
1 (see equation (10))

• Pθ(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 by hypothesis.

And

Eθ

(
fθ(X

i
1)

fθ(X
i
1)

)
=

∫
fθ(u)

fθ(u)
fθ(u)du =

∫
fθ(u)du = 1,

so that:

Eθ

(
pin

1− pin

)
= Eθ

(
p0

1− p0
fθ(X

i
n)

fθ(Xi
n)
...
fθ(X

i
1)

fθ(X
i
1)

)
=

p0
1− p0

Eθ

(
fθ(X

i
1)

fθ(X
i
1)

)n
=

p0
1− p0

by independence of payo�s conditionally to the state.

We are then able to conclude that Pθ(k
(N)
n+1 = N) −−−−−→

N→+∞
1, hence the second condition in

the de�nition of ADE.

Now, let us show the third condition.
Similarly to equation (10) we have

lim
N→+∞

Pn−1,θ

(
k(N)
n < Nρ

)
= 1,

where ρ =
Fn−1,θ(p

∗)+ρ∗

2 . And, as in the former point, we just have to show that:

Pn−1,θ

(
∃l ≥ n, k(N)

l+1 6= k(N)
n

∣∣∣ k(N)
n < Nρ

)
−−−−−→
N→+∞

0.
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We use the fact that a player whose posterior belief is greater than p necessarily remains
active:

Pn−1,θ

(
∃l ≥ n, k(N)

l+1 6= k(N)
n

∣∣∣ k(N)
n < Nρ

)
= Pn−1,θ

(
∃l ≥ n, k(N)

l+1 6= k(N)
n and k

(N)
l = k(N)

n

∣∣∣ k(N)
n < Nρ

)
≤ Pn−1,θ

(
∃l ≥ n, ∃i ∈ {1, ..., N}, i leaves at stage l + 1 and k

(N)
l = k(N)

n

∣∣∣ k(N)
n < Nρ

)
≤ Pn−1,θ

(
∃l ≥ n, ∃i ∈ {1, ..., N}, qil ≤ p and k

(N)
l = k(N)

n

∣∣∣ k(N)
n < Nρ

)
≤ Pn−1,θ

(
∃l ≥ n, ∃i ∈ {1, ..., N},

qil
1− qil

≤ p

1− p
and k

(N)
l = k(N)

n

∣∣∣∣ k(N)
n < Nρ

)
≤

∑
l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
qil

1− qil
≤ p

1− p
and k

(N)
l = k(N)

n

∣∣∣∣ k(N)
n < Nρ

)
.

Since

qil
1− qil

=
pil

1− pil

Pθ(~α
−i,N
l = ~α)

Pθ(~α
−i,n
l = ~α)

=
pin

1− pin
×

l∏
m=n+1

fθ(X
i
m)

fθ(Xi
m)
×

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

×
Pθ(k

−i,N
l = k−i,Nn |~α−i,Nn )

Pθ(k
−i,N
l = k−i,Nn |~α−i,Nn )

,

and k−i,Nn ≤ k(N)
n < Nρ, we can underestimate

qil
1−qil

using lemma 3.11 and corollary 3.3:

qil
1− qil

≥ πn
1− πn

×
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)
× eKN × 1

for N large enough and for a given K > 0.
Consequently:

∑
l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
qil

1− qil
≤ p

1− p
and k

(N)
l = k(N)

n

∣∣∣∣ k(N)
n < Nρ

)

≤
∑
l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)
≤ p

1− p
1− πn
πn

e−KN

∣∣∣∣∣ k(N)
n < Nρ

)

=
∑
l≥n

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)
≤ p

1− p
1− πn
πn

e−KN

)
(11)

= Pθ

(
1 ≤ p

1− p
1− πn
πn

e−KN
)

︸ ︷︷ ︸
=0 for N large enough

+
∑
l≥n+1

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)
≤ p

1− p
1− πn
πn

e−KN

)
.

Equality (11) is a by-product of the independence of payo�s conditionally to the state.
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Then, we set the r.v. Y i
m = log

fθ(X
i
m)

fθ(Xi
m)
, and denote by y its expectation under Pθ. We have:

Eθ

[
fθ(X

i
m)

fθ(X
i
m)

]
=

∫
fθ(u)

fθ(u)
fθ(u)du =

∫
fθ(u)du = 1,

which gives thanks to Jensen inequality:

0 = logEθ

[
fθ(X

i
m)

fθ(X
i
m)

]
≥ Eθ

[
log

fθ(X
i
m)

fθ(X
i
m)

]
= −y.

And because
fθ(X

i
m)

fθ(Xi
m)

is not constant (it has a density) and log is not a�ne, y > 0. Moreover,

we can assume that the r.v. Y i
m are upper bounded and y is �nite: if not, one can replace

Y i
m by Ỹ i

m = sup(Y i
m, L) with L with large enough for the correspondent expectation ỹ to

be non-negative (which is made possible by dominated convergence). Plus, the estimations
thereafter will hold a fortiori because Ỹ i

m ≤ Y i
m.

We also de�ne Sil =
∑l

m=n+1(Y
i
m − y) and s = log

(
p

1−p
1−πn
πn

)
. Then, we have:

∑
l≥n+1

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)
≤ p

1− p
1− πn
πn

e−KN

)
≤

∑
l≥n+1

NPθ(S
i
l ≤ s−KN − (l − n)y).

The r.v. Y i
m − v are upper bounded by a real M , and lower bounded by a real M ′. Using

Hoe�ding's inequality we have (with N large enough to have NK > s):

Pθ(S
i
l ≤ s−KN − (l − n)y) ≤ exp

−2(s−NK − (l − n)y)2

(l − n)(M −M ′)2
.

This leads us to the �nal conclusion since∑
l≥n+1

NPθ(S
i
l ≤ s−KN − (l − n)y) ≤

∑
l≥n+1

N exp
−2(s−NK − (l − n)y)2

(l − n)(M −M ′)2

≤
∑
l≥1

N exp
−2(s−NK − ly)2

l(M −M ′)2

and by dominated convergence this converges to 0 as N → +∞.

Now let us prove the second part of theorem 1.2.

Proposition 3.12. If πn−1 < p∗ and if inequalities (Im) (1 ≤ m ≤ n − 1) hold, then there
exists an ADE with delay n.

Proof. Consider the game where each player is obliged to stay until stage n, and is still obliged
to stay then if pin−1 > πn−2. This game is very similar to the original one, there still exists
equilibria and all of them are in cuto� strategy. In this new game, we have:

Pθ(i leaves at stage n|k(N)
n = 0, pin−2) ≤ Pθ(p

i
n−1 ≤ πn−2|pin−2)

≤ Pθ(p
i
n−1 ≤ πn−2|pin−2 = πn−2) = Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

≤ 1

)
< 1.
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By setting β̃θ = Pθ(p
i
n−1 ≤ πn−2|pin−2 = πn−2) (and r̃ = 1) we get the same inequality as

in Lemma 3.4, and all that was proven thereafter is still true with these new bounds. In

particular, the fact that P(k
(N)
n = 0) = 1 and that πn−1 < p∗ implies thanks to the previous

theorem (1.4) that any sequence of equilibria is an ADE.
Let (ΦN ) be a sequence of such equilibria. Our goal is to show that there exists N0 such that
(ΦN )N≥N0 is a sequence of equilibria in the original game.

First, thanks to lemma 3.10 and to proposition 3.6, the cuto�s πi,Nn (~N) uniformly tend to p∗.
Inequality (In−1) implies that πn−2 > p∗ (see section 3.1.2), so that the rule which compels
player i to remain active if pin−1 > πn−2 is still obeyed in the original game for N large enough.
Now let us see if any player i is not tempted to deviate unilaterally by leaving at a stagem < n.
If this player sticks to his strategy in the constrained game, he will remain active until stage
n, and then stay i� his continuation payo� ωi,Nn−1(p

i
n−1, ~α

−i,N
n−1 ) is positive (see section 3.1.2).

In the constrained game we have Pθ

(
k−i,Nl = 0

)
= Pθ

(
k−i,Nl = 0

)
= 1 (1 ≤ l ≤ n − 1),

this implies that pil = qil (see section 3.1.1) and that ~α−i,Nl = ~N. This gives us the following
underestimation of the payo� that player i gets from stage m if he stays and follows his
strategy in the constrained game:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−mE
[

max
(

0, ωi,Nn−1(p
i
n−1, ~N)

)∣∣∣ pim−1]
By lemma 3.10 and propostion 3.6, we have ωi,Nn−1(p

i
n−1, ~N) ≥ opt(pin−1)−KN , whereKN −−−−−→

N→+∞
0 (irrespective to i). Consequently, by staying at stage m, player i can expect at least a payo�
of:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−mE
[
max

(
0, opt(pin−1)

)∣∣ pim−1]− δn−mKN

As mentioned in section 3.1.2 this lower bound is nearly the left side of inequality (Im) and is
increasing in pim−1. Consequently, it is non-negative for N large enough, and player i is right
to stay at stage m because leaving would yield a payo� of 0.

To conclude the results about ADE, note that the proof of corollary 1.3 can be found in the
appendix.
Our last proof deals with other asymptotic equilibria.

3.2.4 Theorem 1.5

Proof. Let (ΦN ) be a sequence of symmetric equilibria such that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1

and lim sup
N→+∞

P(k
(N)
n = 0) < 1. We also assume that πn−1 ≥ p∗. Then by theorem 1.6 the

sequence
(
Eθ[k

(N)
n |k(N)

n−1 = 0]
)
N≥1

is bounded, and so is the sequence
(
Eθ[k

(N)
n |k(N)

n−1 = 0]
)
N≥1

by stochastic dominance. Let us set λθ,N = Eθ[k
(N)
n |k(N)

n−1 = 0]. As lim sup
N→+∞

P(k
(N)
n = 0) < 1

and Pθ(k
(N)
n = 0) ≥ Pθ(k

(N)
n = 0) by stochastic dominance, Pθ(k

(N)
n = 0) is bounded away

from 1 and λθ,N is bounded away from zero. We can also assert that Pθ(k
(N)
n = 0) < 1 for N

large enough, because k
(N)
n is measurable w.r.t. the pim (1 ≤ i ≤ N and 1 ≤ m ≤ n− 1) and

the pim have the same support under Pθ and Pθ. Therefore λN,θ > 0 for N large enough.
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As the equilibria are symmetric, players all play the same strategy and the probability under

Pθ(·|k
(N)
n−1 = 0) to leave at stage n for each of them is

λθ,N
N (θ ∈ {θ, θ}). Moreover each

decision only depends on private payo�s, which are independent across players conditionally

to the state. Therefore the number of exits k
(N)
n is the sum of N independent Bernoulli r.v.

with the same parameter
λθ,N
N . So the distribution of k

(N)
n is a binomial distribution:

∀N ≥ 1, ∀k ∈ {0, ..., N}, Pθ(k
(N)
n = k|k(N)

n−1 = 0) = CkN

(
λθ,N
N

)k (
1−

λθ,N
N

)N−k
.

This asymptotically equals a Poisson distribution:

Pθ(k
(N)
n = k|k(N)

n−1 = 0) = CkN

(
λθ,N
N

)k (
1−

λθ,N
N

)N−k
=

N(N − 1) · · · (N − k + 1)

Nk

(λθ,N )k

k!

(
1−

λθ,N
N

)N (
1−

λθ,N
N

)−k
∼

N→+∞

(λθ,N )k

k!
e
N log

(
1−

λθ,N
N

)

∼
N→+∞

(λθ,N )k

k!
e−λθ,N .
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Appendix

Proof of Lemma 3.1

Proof. As the link between pik and the likelihood ratio
pik

1−pik
is an increasing bijection between

[0, 1] and [0,+∞), we can restate the result as:

x 7→
Pθ

(
fθ(X

i
n)

fθ(Xi
n)

fθ(X
i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
≥ x, fθ(X

i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
≥ xn−1, ...,

fθ(X
i
1)

fθ(X
i
1)
≥ x1

)
Pθ

(
fθ(X

i
n)

fθ(Xi
n)

fθ(X
i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
≥ x, fθ(X

i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
≥ xn−1, ...,

fθ(X
i
1)

fθ(X
i
1)
≥ x1

)
is increasing, with xi = πi

1−πi
1−p0
p0

.

Let us then denote Rim =
fθ(X

i
m)

fθ(Xi
m)

fθ(X
i
m−1)

fθ(X
i
m−1)

...
fθ(X

i
1)

fθ(X
i
1)

and:

Pθ(x) = Pθ

(
Rin ≥ x,Rin−1 ≥ xn−1, ..., Ri1 ≥ x1

)
.

We consider two positive reals x and x′ with x′ > x. We have to show that:

Pθ(x
′)Pθ(x)− Pθ(x)Pθ(x

′) ≥ 0.

First, note that:

Pθ(x
′)Pθ(x)− Pθ(x)Pθ(x

′) = Pθ(x
′)
(
Pθ(x)− Pθ(x′)

)
− Pθ(x′)

(
Pθ(x)− Pθ(x

′)
)
, (12)

and:

Pθ(x)− Pθ(x
′) = Pθ

(
x′ > Rin ≥ x,Rin−1 ≥ xn−1, ..., Ri1 ≥ x1

)
= Eθ

[∫
1A(un)fθ(un)dun

]
,

where A(un) is the event
{
x′ >

fθ(un)

fθ(un)

fθ(X
i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
≥ x,Rin−1 ≥ xn−1, ..., Ri1 ≥ x1

}
.

On A(un), we have fθ(un) ≤ fθ(X
i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
x′fθ(un), so that:

Pθ(x)− Pθ(x
′) ≤ Eθ

[∫
1A

fθ(X
i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
x′fθ(un)dun

]
= x′

∫
1B(u1,...,un)

fθ(un−1)

fθ(un−1)
...
fθ(u1)

fθ(u1)
fθ(un)fθ(un−1)...fθ(u1)du1...dun

= x′
∫

1B(u1,...,un)fθ(un)fθ(un−1)...fθ(u1)du1...dun

where B(u1, ..., un) is the set
{
x′ >

fθ(un)

fθ(un)
...
fθ(u1)

fθ(u1)
≥ x, ..., fθ(u1)fθ(u1)

≥ x1
}
. We then have:

Pθ(x)− Pθ(x
′) ≤ x′Pθ

(
x′ > Rin ≥ x,Rin−1 ≥ xn−1, ..., Ri1 ≥ x1

)
= x′

(
Pθ(x)− Pθ(x′)

)
.

Combining this with (12), we get:

Pθ(x
′)Pθ(x)− Pθ(x)Pθ(x

′) ≥ Pθ(x
′)
(
Pθ(x)− Pθ(x′)

)
− x′Pθ(x′)

(
Pθ(x)− Pθ(x′)

)
=

(
Pθ(x)− Pθ(x′)

) (
Pθ(x

′)− x′Pθ(x′)
)
.

Using similar arguments, we �nd that Pθ(x
′) ≥ x′Pθ(x′).

Then : Pθ(x
′)Pθ(x)− Pθ(x)Pθ(x

′) ≥ 0, and the result follows.
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Proof of lemma 3.11

Proof. First notice that the function

gN,θ : (x, j) 7→ Pθ

(
pjn−1 ≤ x, p

j
n−2 ≥ π

j,N
n−1(~N), · · · , pj1 ≥ π

j,N
1 (~N)

)
uniformly converges to Fn−1,θ as N → +∞. Indeed, on the one hand we have that:

gN,θ(x, j) ≤ Pθ(p
j
n−1 ≤ x) = Fn−1,θ(x).

On the other hand we have:

gN,θ(x, j) ≥ Pθ

(
pjn−1 ≤ x, k

(N)
n−1 = 0

)
≥ Pθ

(
pjn−1 ≤ x

)
−Pθ(k

(N)
n−1 6= 0)

≥ Fn−1,θ(x)−Pθ(k
(N)
n−1 6= 0).

Similarly, the function

hN,θ : (x, j) 7→ Pθ

(
pjn−1 > x, pjn−2 ≥ π

j,N
n−1(~N), · · · , pj1 ≥ π

j,N
1 (~N)

)
uniformly converges to 1− Fn−1,θ as N → +∞.

Now let us set ρ > ρ∗. By stochastic dominance Fn−1,θ(p
∗) < Fn−1,θ(p

∗) which implies that
the function

x 7→ x log
Fn−1,θ(p

∗)

Fn−1,θ(p∗)
+ (1− x) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)

is increasing. Consequently, by de�nition of ρ∗, we have:

ρ log
Fn−1,θ(p

∗)

Fn−1,θ(p∗)
+ (1− ρ) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)
< 0.

Because of the uniform convergences mentioned above and by continuity of Fn−1,θ, one can

choose K in
(

0,−ρ log
Fn−1,θ(p

∗)

Fn−1,θ(p∗)
− (1− ρ) log

1−Fn−1,θ(p
∗)

1−Fn−1,θ(p∗)

)
, ε > 0 and N0 such that

∀π, π′ ∈ [p∗ − ε, p∗ + ε], ∀N ≥ N0, ∀j ∈ {1, · · · , N},

ρ log
gN,θ(π, j)

gN,θ(π, j)
+ (1− ρ) log

hN,θ(π
′, j)

hN,θ(π′, j)
< −K. (13)

By lemma 3.10 and proposition 3.6, one can also choose N0 large enough such that:

∀N ≥ N0, ∀j ∈ {1, ..., N}, p∗ − ε ≤ πN,jn−1(~N) ≤ p∗ + ε.
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Then, for all N ≥ N0:

log
Pθ(~α

−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

=
∑

j 6=i|pjn−1<π
N,i
n−1(~N)

log
gN,θ(π

N,j
n−1(~N), j)

gN,θ(π
N,j
n−1(~N), j)

+
∑

j 6=i|pjn−1≥π
N,j
n−1(~N)

log
hN,θ(π

N,j
n−1(~N), j)

hN,θ(π
N,j
n−1(~N), j)

≤ #{j 6= i| pjn−1 < πN,jn−1(~N)} log
gN,θ(π

N,jN0
n−1 (~N), jN0 )

gN,θ(π
N,jN0
n−1 (~N), jN0 )︸ ︷︷ ︸
≤0

+#{j 6= i| pjn−1 ≥ π
N,j
n−1(~N)} log

hN,θ(π
N,jN1
n−1 (~N), jN1 )

hN,θ(π
N,jN1
n−1 (~N), jN1 )︸ ︷︷ ︸
≥0

,

where jN0 = argmax
j 6=i| pjn−1<π

N,j
n−1(~N)

gN,θ(π
N,j
n−1(~N),j)

gN,θ(π
N,j
n−1(~N),j)

and jN1 = argmax
j 6=i| pjn−1<π

N,j
n−1(~N)

hN,θ(π
N,j
n−1(~N),j)

hN,θ(π
N,j
n−1(~N),j)

.

Then, thanks to equation (13) we have:

log
Pθ(~α

−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≤ Nρ log
gN,θ(π

N,jN0
n−1 (~N), jN0 )

gN,θ(π
N,jN0
n−1 (~N), jN0 )

+N(1− ρ) log
hN,θ(π

N,jN1
n−1 (~N), jN1 )

hN,θ(π
N,jN1
n−1 (~N), jN1 )

≤ −KN.

The proof of the second assertion of the lemma is very similar.

Proof of corollary 1.3

Proof. The second point of the corollary is a by-product of the examples in section 1.5.

Let us prove the �rst point. We �x n ≥ 2, and set µ = ess inf
fθ>0

fθ
fθ
. In particular the relation

pim
1− pim

=
fθ(X

i
1)

fθ(X
i
1)
· · ·

fθ(X
i
m)

fθ(Xi
m)

p0
1− p0

implies that
πm

1−πm
= µm p0

1−p0 . If there exists an ADE with delay n ≥ 2, we have πn−1 < p∗ ≤
πn−2 which equivalent to µn−1 p0

1−p0 <
p∗

1−p∗ ≤ µn−2 p0
1−p0 . To ensure the relation, we set the

following equality between the settings of the game:

µn−
3
2

p0
1− p0

=
p∗

1− p∗
. (14)

As suggested in section 1.5, we �x all the settings of the games except for p0 and δ and we
show that, when δ is close enough to 1 and under certain circumstances, all the inequalities
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(Im) (1 ≤ m ≤ n− 1) are satis�ed so that there exists an ADE with delay n.
Let us study inequality (Im). First we set Λn,m,θ = Pθ

(
pin−1 ≥ p∗|pim−1 = πm−1

)
. We have:

Λn,m,θ = Pθ

(
pin−1

1− pin−1
≥ p∗

1− p∗
|pim−1 = πm−1

)
= Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

· · ·
fθ(X

i
m)

fθ(Xi
m)

πm−1
1− πm−1

≥ p∗

1− p∗

)
= Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

· · ·
fθ(X

i
m)

fθ(Xi
m)
µm−n+

1
2 ≥ 1

)
by means of equation 14. Thus Λn,m,θ does not depend on δ or p0. Moreover we have:

πm−1
1− πm−1

=
p0

1− p0
µm−1 =

p∗

1− p∗
µm−n+

1
2 =

(1− δ)(−θ)µm−n+
1
2

θ

and

πm−1 =
(1− δ)(−θ)µm−n+

1
2

θ + (1− δ)(−θ)µm−n+
1
2

.

Then one can check that:

(1 + δ + ...+ δn−m−1)
(
πm−1θ + (1− πm−1)θ

)
+δn−m

(
πm−1

θ

1− δ
Pθ(p

i
n−1 ≥ p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 ≥ p∗|pim−1 = πm−1)

)
−−−→
δ→1

−θ
(
µm−n+

1
2 Λn,m,θ − n+m− Λn,m,θ

)
.

We want this limit to be non-negative for any m ∈ {1, · · · , n−1}. To be more explicit, we set
the distribution of Xi

m + 1 as an exponential law of parameter λθ, as in section 1.5. In this

case µ =
λθ
λθ
, and thanks to the property of summation of gamma distributions we get that:

Λn,m,θ = µ
1

2λθ(λθ−λθ)
n−m−1∑
i=0

xi

i!λiθ
, where x =

− logµ

2(λθ − λθ)
.

Consequently 1 ≥ Λn,m,θ ≥ µ
1

2λθ(λθ−λθ) , and:

−θ
(
µm−n+

1
2 Λn,m,θ − n+m− Λn,m,θ

)
≥ −θ

(
µ
m−n+ 1

2
+ 1

2λ
θ
(λθ−λθ) − n+m− 1

)
.

The latter is non-negative for any m ∈ {1, · · · , n− 1} i�:

∀k ∈ {1, · · · , n− 1},
(

1

µ

)k− 1
2
− 1

2λ
θ
(λθ−λθ)

> k + 1.
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This is clearly the case if µ is small enough and λθ(λθ − λθ) is large enough, e.g. λθ = 10 and
λθ = 1

2 .
As a conclusion, with these values of λθ and with δ close enough to 1, all inequalities (Im)
hold so that there exists an ADE with delay n.
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