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Abstract

In many applications of the di�erences-in-di�erences (DID) method, the treatment

increases more in the treatment group, but some units are also treated in the control

group. In such fuzzy designs, a popular estimator of treatment e�ects is the DID of the

outcome divided by the DID of the treatment, or OLS and 2SLS regressions with time and

group �xed e�ects estimating weighted averages of this ratio across groups. We start by

showing that when the treatment also increases in the control group, this ratio estimates

a causal e�ect only if treatment e�ects are homogenous in the two groups. Even when the

distribution of treatment is stable, it requires that treatment e�ects be constant over time.

As this assumption is not always applicable, we propose two alternative estimators. The

�rst estimator relies on a generalization of common trends assumptions to fuzzy designs,

while the second extends the changes-in-changes estimator of Athey & Imbens (2006).

When the distribution of treatment changes in the control group, treatment e�ects are

partially identi�ed. Finally, we prove that our estimators are asymptotically normal and

use them to revisit applied papers using fuzzy designs.
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1 Introduction

Di�erence-in-di�erences (DID) is a popular method to evaluate the e�ect of a treatment in

the absence of experimental data. In its basic version, a �control group� is untreated at two

dates, whereas a �treatment group� becomes treated at the second date. If the e�ect of time

is the same in both groups, the so-called common trends assumption, one can measure the

e�ect of the treatment by comparing the evolution of the outcome in both groups. DID can

be used with panel or repeated cross-section data, when a policy is implemented at a given

date in some groups but not in others. It can also be used when a policy a�ects individuals

born after a given date. In such instances, birth cohort plays the role of time.

However, in many applications of the DID method, the treatment rate or intensity increases

more in some groups than in others, but there is no group which experiences a sharp change

in treatment, and there is also no group which remains fully untreated. In such fuzzy designs,

a popular estimator of treatment e�ects is the DID of the outcome divided by the DID of the

treatment, an estimator referred to as the Wald-DID. For instance, Du�o (2001) uses a school

construction program in Indonesia to measure returns to education. The author uses districts

where many schools were constructed as a treatment group, and districts where few schools

were constructed as a control group. Years of schooling for cohorts born after the program

increased more in treatment districts. The author then estimates returns to schooling through

a 2SLS regression in which dummies for cohorts bene�ting from the program and for being

born in treatment districts are used as controls, while the instrument is the interaction of these

two dummies. The coe�cient for treatment in this regression is the Wald-DID. A number of

papers also estimate 2SLS regressions with time and group �xed e�ects and with a function

of time and group as the excluded instrument, or OLS regressions at the group × period level

with time and group �xed e�ects. In our supplementary material, we show that the coe�cient

of treatment in these two regressions is a weighted average of Wald-DIDs across groups. Such

estimators have been frequently used by economic researchers. From 2010 to 2012, 10.1% of

all papers published by the American Economic Review estimate either a simple Wald-DID,

or the aforementioned IV or OLS regression. Excluding lab experiments and theory papers,

this proportion raises to 19.7%.1 Still, to our knowledge no paper has studied whether these

estimators estimate a causal e�ect in models with heterogeneous treatment e�ects.

This papers makes the following contributions. We start by showing that the Wald-DID

estimand is equal to a local average treatment e�ect (LATE) only if two strong assumptions

are satis�ed. First, time should have the same e�ect on all counterfactual outcomes, thus

implying that the e�ect of the treatment should not vary over time. This assumption is often

not applicable. For instance, in Du�o (2001) it requires that the wage gap between high school

graduates born in younger and older cohorts should be the same had they not completed high

1Detailed results of our literature review can be found in de Chaisemartin & D'Haultf÷uille (2015).
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school. If they had not completed high school, graduates of every cohort would have entered

the labor market earlier, and would have had more labor market experience by the time their

wages are observed. As returns to experience tend to be concave (see Mincer & Jovanovic,

1979), the wage gap between graduates born in younger and older cohorts would presumably

have been lower if they had not completed high school. Second, when treatment increases

both in the treatment and in the control group, treatment e�ects should be homogenous in

the two groups. Indeed, in such instances the Wald-DID is equal to a weighted di�erence

between the LATE of treatment and control group units switching treatment over time. This

weighted di�erence can be interpreted as a causal e�ect only if these two LATEs are equal.

The weights received by each LATE can be estimated. In Du�o (2001), years of education

increased substantially both in treatment and in control districts, so the Wald-DID in this

paper is equal to a weighted di�erence between returns to schooling in treatment and control

districts, and returns in the control group receive a large negative weight. This weighted

di�erence estimates a causal e�ect only if returns to schooling are equal in the two groups of

districts. This might be violated as control districts are more developed and could therefore

have di�erent returns. The IV and OLS regressions we study in our supplementary material

su�er from the same problem. They both estimate a weighted sum of LATEs, with potentially

many negative weights as we illustrate by estimating these weights in two applications.

Second, we propose two alternative estimators for the same LATE when the distribution

of treatment is stable over time in the control group. Our �rst estimator, which we refer

to as the time-corrected Wald ratio (Wald-TC), is a natural generalization of DID to fuzzy

designs. It relies only on common trends assumptions between the treatment and the control

group, within subgroups of units sharing the same treatment at the �rst date. Our second

estimator, which we refer to as the changes-in-changes Wald ratio (Wald-CIC), generalizes the

changes-in-changes estimator introduced by Athey & Imbens (2006) to fuzzy designs. It relies

on the assumption that a control and a treatment unit with the same outcome and the same

treatment at the �rst period will also have the same outcome at the second period.2 Hereafter,

we refer to this condition as the common changes assumption. Our Wald-TC and Wald-CIC

estimators both have advantages and drawbacks, which we discuss later in the paper.

Third, we show that under the same common trends and common changes assumptions as

those underlying the Wald-TC and Wald-CIC estimands, the same LATE can be bounded

when the distribution of treatment changes over time in the control group. The smaller this

change, the tighter the bounds. Fourth, we show how these results extend to settings with

many group and periods, and how one can incorporate covariates in the analysis. Fifth, we

consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands, both with and

without covariates. We show that they are asymptotically normal and prove the consistency

2Strictly speaking, the model in Athey & Imbens (2006) and our CIC model do not impose this restriction

if one allows the unobserved determinant of the outcome to change over time. We still �nd this presentation

of the CIC assumptions very helpful for pedagogical purposes.
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of the bootstrap in some cases. Importantly, all our estimators allow for continuous covariates,

and for some of them we show how to account for clustering.

Finally, we use our results to revisit �ndings in Du�o (2001) on returns to education. The dis-

tribution of schooling substantially changed in the control group used by the author, so using

our Wald-CIC or Wald-TC estimators with her groups would only yield wide and uninforma-

tive bounds. Therefore, we use a di�erent control group where the distribution of schooling

did not change. Our Wald-DID estimate with these new groups is more than twice as large

as the author's. The di�erence between these two estimates could stem from the fact that

districts where years of schooling increased less also have higher returns to education. This

would bias downward the estimate in Du�o (2001), while our estimator does not rely on any

treatment e�ect homogeneity assumption. On the other hand, the validity of our Wald-DID

still relies on the assumption that time has the same e�ect on all potential outcomes, which

is not warranted in this context as we explained above. Because the Wald-TC and Wald-CIC

do not rely on this assumption, we choose them as our favorite estimates. They both lie in

between the two Wald-DIDs.

Overall, our paper shows that to do DID in fuzzy designs, researchers must �nd a control

group in which treatment is stable over time to point identify treatment e�ects without having

to assume that treatment e�ects are homogeneous. In such instances, three estimators are

available: the standard Wald-DID estimator, and our Wald-TC and Wald-CIC estimators.3

While the former estimator requires that treatment e�ects do not change over time, the latter

estimators do not rely on this assumption. In practice, using one or the other estimator can

make a substantial di�erence, as we show in our application.

Though to our knowledge, we are the �rst to study fuzzy DID estimators in models with

heterogeneous treatment e�ects, our paper is related to several other papers in the DID and

panel literature. Blundell et al. (2004) and Abadie (2005) consider a conditional version of the

common trends assumption in sharp DID designs, and adjust for covariates using propensity

score methods. Our Wald-DID estimator with covariates is related to their estimators. Bon-

homme & Sauder (2011) consider a linear model allowing for heterogeneous e�ects of time,

and show that in sharp designs it can be identi�ed if the idiosyncratic shocks are independent

of the treatment and of the individual e�ects. Our Wald-CIC estimator builds on Athey &

Imbens (2006) and is also related to the estimator of D'Haultf÷uille et al. (2013), who study

the possibly nonlinear e�ects of a continuous treatment using repeated cross sections. Finally,

Chernozhukov, Fernández-Val, Hahn & Newey (2013) consider a location-scale panel data

model (see their Assumption 4). Their idea of using always and never treated units in the

panel to recover the location and scale time e�ects is related to our idea of using groups where

treatment is stable to recover time e�ects.4 Our paper is also related to several papers in

3A stata package computing these estimators is available on the authors' webpages.
4There are also di�erences between our approaches. Their location and scale parameters do not depend on
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the partial identi�cation literature. In particular, our bounds are related to those in Manski

(1990), Horowitz & Manski (1995), and Lee (2009).

The remainder of the paper is organized as follows. In Section 2 we introduce our framework.

In Section 3 we present our identi�cation results in a simple setting with two groups, two

periods, a binary treatment, and no covariates. Section 4 considers extensions to settings with

many periods and groups, covariates, or a non-binary treatment. Section 5 considers inference.

In section 6 we revisit results from Du�o (2001). Section 7 concludes. The appendix gathers

the main proofs. Due to a concern for brevity, some further results, our literature review, two

supplementary applications, and additional proofs are deferred to our supplementary material

(see de Chaisemartin & D'Haultf÷uille, 2015).

2 Framework

We are interested in measuring the e�ect of a treatment D on some outcome. For now, we

assume that treatment is binary. Y (1) and Y (0) denote the two potential outcomes of the same

individual with and without treatment. The observed outcome is Y = DY (1) + (1−D)Y (0).

We assume that the data at our disposal can be divided into �time periods� represented by

a random variable T . If the analyst works with panel or repeated cross-sections data, time

periods are dates. But in many DID papers, time periods are cohorts of the same population

born in di�erent years (see, e.g., Du�o, 2001). While with panel or repeated cross-sections

data, each unit is or could be observed at both dates, with cohort data this is not the case. In

what follows, we do not index observations by time, to ensure that our framework can apply

to the three types of data. Referring to the panel data case is sometimes useful to convey the

intuition of our results. However, our analysis is more targeted to the repeated cross-sections

and cohort data cases: observing units at both dates open possibilities we do not explore here.

We also assume that the data can be divided into groups represented by a random variable G.

In this section and in the next, we focus on the simplest possible case where there are only two

groups, a �treatment� and a �control� group, and two periods of time. G is a dummy for units

in the treatment group and T is a dummy for the second period. Contrary to the standard

�sharp� DID setting where D = G×T , we consider a �fuzzy� setting where D 6= G×T . Some
units may be treated in the control group or at period 0, and all units are not necessarily

treated in the treatment group at period 1. However, we assume that the treatment rate

increased more between period 0 and 1 in the treatment than in the control group.

We now introduce notations that we use throughout the paper. For any random variable R,

let S(R) denote its support. Let also Rgt and Rdgt be two other random variables such that

the treatment while our Wald-TC (resp. Wald-CIC) estimator uses treatment speci�c additive shifts (resp.

quantile-quantile transforms) to account for the e�ect of time; our Wald-TC estimator is not compatible with

a location-scale model. Overall, our estimands are unrelated to theirs.
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Rgt ∼ R|G = g, T = t and Rdgt ∼ R|D = d,G = g, T = t, where ∼ denotes equality in

distribution. Let FR and FR|S denote the cumulative distribution function (cdfs) of R and its

cdf conditional on S. For any event A, FR|A is the cdf of R conditional on A. With a slight

abuse of notation, P (A)FR|A should be understood as 0 when P (A) = 0.

We consider the following model for the potential outcomes and the treatment:

Y (d) = hd(Ud, T ), d ∈ {0, 1},

D = 1{V ≥ vGT }, vG0 = v00 does not depend on G.
(1)

The model on potential outcomes is very general because at this stage, hd is left unrestricted.

We also impose a latent index model for the treatment (see, e.g., Vytlacil, 2002), where the

threshold depends both on time and group. In such a model, V may be interpreted as the

propensity to be treated. Because we do not impose any restriction on the distribution of V ,

the assumption that vG0 does not depend on G is just a normalization.

In addition to this model, we maintain the following assumptions throughout the paper.

Assumption 1 (Time invariance within groups)

For d ∈ S(D), (Ud, V ) ⊥⊥ T |G.

Assumption 2 (First stage)

E(D11) > E(D10), and E(D11)− E(D10) > E(D01)− E(D00).

Assumption 1 requires that the joint distribution of unobserved variables be stable over time in

each group. In other words, the composition of each group should not change over time. This

assumption could be violated if there is endogenous �migration� from one group to another.

However, DID identi�cation strategies always rely on this assumption. Assumption 2 is just a

way to de�ne the treatment and the control group in our fuzzy setting. First, the treatment

should increase in at least one group. If not, one can rede�ne the treatment variable as

D̃ = 1 − D. Then, the treatment group is the one experiencing the larger increase of its

treatment rate.

Before turning to identi�cation, it is useful to de�ne four subpopulations of interest. The model

1 and Assumption 1 imply that P (Dgt = 1) = P (V ≥ vgt|G = g). Therefore, Assumption 2

implies v11 < v00. Let

AT = {V ≥ v00, G = 1} ∪ {V ≥ max(v00, v01), G = 0},

NT = {V < v11, G = 1} ∪ {V < min(v00, v01), G = 0},

S1 = {V ∈ [v11, v00), G = 1},

S0 = {V ∈ [min(v00, v01),max(v00, v01)), G = 0}.

AT stands for �always treated�, and refers to units with a taste for treatment above the

threshold at both periods. NT stands for �never treated�, and refers to units with a taste for
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treatment below the threshold at both periods. S1 stands for �treatment group switchers�,

and refers to treatment group units with a taste for treatment between the second and �rst

period thresholds. S0 stands for �control group switchers�, and refers to control group units

with a taste for treatment between the two thresholds.

When the treatment rate is stable in the control group, time a�ects selection into treatment

only in the treatment group. Table 1 below considers an example. At both dates, untreated

units in the control group belong to the NT subgroup, while treated units belong to the AT

subgroup. On the other hand, untreated units in the treatment group in period 0 belong

either to the NT or S1 subgroup, while in period 1 they only belong to the NT subgroup.

Conversely, treated units in period 0 only belong to the AT subgroup, while in period 1 they

either belong to the NT or S1 subgroup.

Never Treated: Y(0)

Never Treated: Y(0)

Never Treated: Y(0)

Always Treated: Y(1)Always Treated: Y(1)

Always Treated: Y(1)

Switchers: Y(0) Switchers: Y(1)Treatment Group

Control Group

Period 0 Period 1

Never Treated: Y(0)

Always Treated: Y(1)

Table 1: Populations of interest when P (D00 = 0) = P (D01 = 0).

On the other hand, when the treatment rate changes in the control group, time a�ects selection

into treatment in both groups. Table 2 below considers an example where the treatment rate

increases in the control group. Untreated units in the control group in period 0 belong either to

the NT or S0 subgroup, while in period 1 they only belong to the NT subgroup. Conversely,

treated units in period 0 only belong to the AT subgroup, while in period 1 they either belong

to the NT or S0 subgroup.
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Switchers: Y(0) Switchers: Y(1)

Never Treated: Y(0)

Always Treated: Y(1)

Always Treated: Y(1)

Never Treated: Y(0)

Switchers: Y(0) Switchers: Y(1)

Period 1

Control Group

Treatment Group

Period 0

Always Treated: Y(1)

Never Treated: Y(0)      

Always Treated: Y(1)

Never Treated: Y(0)

Table 2: Populations of interest when P (D01 = 1) > P (D00 = 1).

Our identi�cations results focus on treatment group switchers. Our parameters of interest are

their Local Average Treatment E�ect (LATE) and Local Quantile Treatment E�ects (LQTE),

which are respectively de�ned by

∆ = E (Y11(1)− Y11(0)|S1) ,

τq = F−1Y11(1)|S1
(q)− F−1Y11(0)|S1

(q), q ∈ (0, 1).

We focus on this subpopulation because our assumptions either lead to point identi�cation of

∆ and τq, or at least to relatively tight bounds. On the other hand, our assumptions most

often lead to wide and uninformative bounds for the average treatment e�ect and for quantile

treatment e�ects.

3 Identi�cation

3.1 Identi�cation using a Wald-DID ratio

We �rst investigate the commonly used strategy of running an IV regression of the outcome

on the treatment with time and group as included instruments, and the interaction of the

two as the excluded instrument. The estimand arising from this regression is the Wald-DID

de�ned by WDID = DIDY /DIDD where, for any random variable R, we let

DIDR = E(R11)− E(R10)− (E(R01)− E(R00)) .

We consider a set of assumptions under which this estimand can receive a causal interpretation.

Assumption 3 (Common trends)

E(h0(U0, 1)− h0(U0, 0)|G) does not depend on G.
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Assumption 4 (Common average e�ect of time on both potential outcomes)

E(h1(U1, 1)− h1(U1, 0)|G,V ≥ v00) = E(h0(U0, 1)− h0(U0, 0)|G,V ≥ v00).

Assumption 3 requires that the mean of Y (0) follow the same evolution over time in the

treatment and control groups. This assumption is not speci�c to the fuzzy setting we are

considering here: DID in sharp settings also rely on this assumption (see, e.g., Abadie, 2005).

Assumption 4 requires that in both groups, the mean of Y (1) and Y (0) follow the same

evolution over time among units treated in period 0. This is equivalent to assuming that the

average treatment e�ect in this population does not change over time:

E(h1(U1, 1)− h0(U0, 1)|G,V ≥ v00) = E(h1(U1, 0)− h0(U0, 0)|G,V ≥ v00).

This assumption is speci�c to the fuzzy setting.

Theorem 3.1 Assume that Model (1) and Assumptions 1-4 are satis�ed. Let α = P (D11=1)−P (D10=1)
DIDD

.

WDID =αE(Y11(1)− Y11(0)|S1) + (1− α)E(Y01(1)− Y01(0)|S0).

When the treatment rate increases in the control group, α > 1 so the Wald-DID is equal to a

weighted di�erence of the LATEs of treatment and control group switchers in period 1. This

can be seen from Table 2. In both groups, the evolution of the mean outcome between period

0 and 1 is the sum of three things: the e�ect of time on the mean of Y (0) for never treated

and switchers; the e�ect of time on the mean of Y (1) for always treated; the average e�ect

of the treatment for switchers. Under Assumptions 3 and 4, the e�ect of time in both groups

cancel one another out. The Wald-DID is �nally equal to the weighted di�erence between

treatment and control group switchers' LATEs.

This weighted di�erence may not receive a causal interpretation. It might for instance be

negative, while both E(Y11(1) − Y11(0)|S1) and E(Y01(1) − Y01(0)|S0) are positive. If one

is ready to further assume that these two LATEs are equal, the Wald-DID is then equal to

E(Y11(1)−Y11(0)|S1). But E(Y11(1)−Y11(0)|S1) = E(Y01(1)−Y01(0)|S0) is a strong restriction
on the heterogeneity of the treatment e�ect. To better understand why it is needed, let us

consider a simple example in which all control group units have a treatment e�ect equal to

+2, while all treatment group units have a treatment e�ect equal to +1. Let us also assume

that time has no e�ect on the outcome, and that the treatment rate increases twice as much

in the treatment than in the control group. Then, WDID = 2/3× 1− 1/3× 2 = 0: the lower

increase of the treatment rate in the control group is exactly compensated by the fact that

the treatment e�ect is higher in this group. The Wald-DID does not estimate the treatment

e�ect in any of the two groups, or a weighted average of the two.

When the treatment rate diminishes in the control group, α < 1 so the Wald-DID is equal to

a weighted average of the LATEs of treatment and control group switchers in period 1. This
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quantity satis�es the no sign-reversal property: if the treatment e�ect is of the same sign for

everybody in the population, the Wald-DID is of that sign. Finally, when the treatment rate

is stable over time in the control group, α = 1 so the Wald-DID is equal to the LATE of

treatment group switchers.

But even when the treatment rate is stable in the control group, the Wald-DID relies on the

assumption that time has the same e�ect on both potential outcomes, at least among units

treated in the �rst period. Under Assumptions 1-3 alone, one can show that WDID is equal

to the same quantity as in Theorem 3.1, plus a bias term equal to

1

DIDD
[E(C1 − C0|V ≥ v00, G = 1)P (D10 = 1)− E(C1 − C0|V ≥ v00, G = 0)P (D00 = 1)] ,

where Cd = hd(Ud, 1) − hd(Ud, 0). Assumption 5 ensures that this bias term is equal to 0.

Otherwise, it might very well di�er from 0.5

To understand why this restriction is needed, consider a simple example. First, assume that

in period 0, Y (1) = Y (0): treatment has no e�ect. Then, assume that time increases Y (1)

by 1 unit, while leaving Y (0) unchanged. Finally, assume that the treatment rate went from

to 20 to 50% in the treatment group, while it remained equal to 80% in the control group.

Then, DIDY = 0.2× 1 + 0.3× 1 + 0.5× 0− (0.8× 1 + 0.2× 0) = −0.3. The �rst and third

terms respectively come from the e�ect of time on the mean outcome of always and never

treated in the treatment group. Similarly, the fourth and �fth terms respectively come from

the e�ect of time on the mean outcome of always and never treated in the control group.

Finally, the second term comes from the average treatment e�ect among treatment group

switchers. Therefore, WDID = −1, while every unit in the population has a treatment e�ect

equal to 1 in period 1, and to 0 in period 0.

3.2 Identi�cation using a time-corrected Wald ratio

In this section, we consider an alternative estimand to WDID. Instead of relying on Assump-

tions 3 and 4, it relies on the following assumption:

Assumption 5 (Common trends within treatment status at date 0)

E(h0(U0, 1) − h0(U0, 0)|G,V < v00) and E(h1(U1, 1) − h1(U1, 0)|G,V ≥ v00) do not depend

on G.

Assumption 5 requires that the mean of Y (0) (resp. Y (1)) follow the same evolution over time

among treatment and control group units that were untreated (resp. treated) at period 0.

5Assuming that E(C0 − C1|V < v0, G) does not depend on G is not su�cient to ensure that the bias is

equal to 0, unless P (D00 = 1) = P (D10 = 1).
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Let δd = E(Yd01)− E(Yd00) denote the change in the mean outcome between period 0 and 1

for control group units with treatment status d. Then, let

WTC =
E(Y11)− E(Y10 + δD10)

E(D11)− E(D10)
.

WTC stands for �time-corrected Wald�. When the outcome is bounded, let y and y respectively

denote the lower and upper bounds of its support. For any g ∈ S(G), let λgd = P (Dg1 =

d)/P (Dg0 = d) be the ratio of the shares of people receiving treatment d in period 1 and

period 0 in group g. For instance, λ00 > 1 when the share of untreated observations increases

in the control group between period 0 and 1. For any real number x, let M0(x) = max(0, x)

and m1(x) = min(1, x). Let also, for d ∈ {0, 1},

F d01(y) = M0 [1− λ0d(1− FYd01(y))]−M0(1− λ0d)1{y < y},

F d01(y) = m1 [λ0dFYd01(y)] + (1−m1(λ0d))1{y ≥ y}.

Then de�ne δd =
∫
ydF d01(y)− E(Yd00) and δd =

∫
ydF d01(y)− E(Yd00) and let

W TC =
E(Y11)− E(Y10 + δD10)

E(D11)− E(D10)
, W TC =

E(Y11)− E(Y10 + δD10
)

E(D11)− E(D10)
.

Theorem 3.2 Assume that Model (1) and Assumptions 1-2 and 5 are satis�ed.

1. If 0 < P (D01 = 1) = P (D00 = 1) < 1, WTC = ∆.

2. If 0 < P (D01 = 1) 6= P (D00 = 1) < 1 and P (y ≤ Y (d) ≤ y) = 1 for d ∈ {0, 1},
W TC ≤ ∆ ≤W TC .

6

Note that

WTC =
E(Y |G = 1, T = 1)− E(Y + (1−D)δ0 +Dδ1|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

This is almost the Wald ratio with time as the instrument considered �rst by Heckman &

Robb (1985), except that we have Y + (1−D)δ0 +Dδ1 instead of Y in the second term of the

numerator. This di�erence arises because in our model time is not a standard instrument: it

is directly included in the outcome equation. When the treatment rate is stable in the control

group we can identify the direct e�ect of time on Y (0) and Y (1) by looking at how the mean

outcome of untreated and treated units changes over time in this group. Under Assumption 5,

this direct e�ect is the same in the two groups for units sharing the same treatment in the �rst

period. As a result, we can add these changes to the outcome of untreated and treated units

in the treatment group in period 0, to recover the mean outcome we would have observed in

this group in period 1 if switchers had not changed their treatment between the two periods.

This is what (1 −D)δ0 + Dδ1 does. Therefore, the numerator of WTC is equal to the e�ect

6It is not di�cult to show that these bounds are sharp. We omit the proof due to a concern for brevity.
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of time on the outcome that only goes through its e�ect on selection into treatment. Once

properly normalized, this yields the LATE of treatment group switchers.

The Wald-TC estimand generalizes the DID estimand to fuzzy settings, by using treatment-

speci�c additive shifts to account for the e�ect of time. In sharp settings, the DID estimand

accounts for the e�ect of time on the outcome by adding the evolution of the mean outcome

between period 0 and 1 in the control group to the period 0 outcome of treatment group units.

In fuzzy settings, the Wald-TC estimand accounts for the e�ect of time on the outcome by

adding the evolution of the mean outcome between period 0 and 1 among untreated (resp.

treated) units in the control group to the period 0 outcome of untreated (resp. treated) units

in the treatment group.

When the treatment rate changes in the control group, the evolution of the outcome in this

group can stem both from the direct e�ect of time on the outcome, and from its e�ect on

selection into treatment. For instance, and as can be seen from Table 2, when the treatment

rate increases in the control group, the di�erence between E(Y101) and E(Y100) arises both

from the e�ect of time on Y (1), and from the fact the former expectation is for always treated

and switchers while the later is only for always treated. Therefore, we can no longer identify the

direct e�ect of time on the outcome. However, when the outcome has bounded support, this

direct e�ect can be bounded, because we know the percentage of the control group switchers

account for. As a result, the LATE of treatment group switchers can also be bounded. The

smaller the change of the treatment rate over time in the control group, the tighter the bounds.

When the treatment rate does not change much in the control group, the di�erence between

WTC and ∆ is likely to be small. For instance, when the treatment rate increases in the

control group, it is easy to show that under the Assumptions of Theorem 3.2, WTC is equal

to ∆ plus the following bias term:

P (D10 = 0)
(

1− P (D01=0)
P (D00=0)

)
(E(Y01(0)|S0)− E(Y01(0)|NT ))

P (D11 = 1)− P (D10 = 1)

−
P (D10 = 1)

(
1− P (D00=1)

P (D01=1)

)
(E(Y01(1)|S0)− E(Y01(1)|AT ))

P (D11 = 1)− P (D10 = 1)
. (2)

This term cancels if P (D01 = 1) = P (D00 = 1), but also if

U0|S0, G = 0 ∼ U0|NT,G = 0 and U1|S0, G = 0 ∼ U1|AT,G = 0. (3)

This assumption is not very appealing, as it requires that control group switchers have the

same distribution of U0 as never treated, and the same distribution of U1 as always treated.

But Equations (2) and (3) still show that when the treatment rate does not change much in

the control group, WTC is close to ∆ unless switchers are extremely di�erent from never and

always treated.
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Finally, note that when the treatment rate is stable in the control group, we have

WDID =
E(Y11)− E(Y10 + δD00)

E(D11)− E(D10)
.

When accounting for the e�ect of time on the outcome,WDID weights δ0 and δ1 by P (D00 = 0)

and P (D00 = 1), while WTC weights these terms by P (D10 = 0) and P (D10 = 1). These two

estimands are equal if and only if either δ0 = δ1 or P (D00 = 1) = P (D10 = 1). Otherwise,

they di�er. The assumptions under which WDID and WTC rely are non-nested. WTC requires

more common trends assumptions between groups, but it does not require common trends

assumptions between the two potential outcomes within groups. Therefore, testing WDID =

WTC is a joint test of Assumptions 1 and 3-5.

3.3 Identi�cation using instrumented changes-in-changes

In this section, we consider a second alternative estimand to WDID for continuous outcomes.

This estimand is inspired from the CIC model in Athey & Imbens (2006). It crucially relies

on a monotonicity assumption.

Assumption 6 (Monotonicity)

Ud ∈ R and hd(u, t) is strictly increasing in u for all (d, t) ∈ S(D)× S(T ).

Assumption 6 requires that at each period, potential outcomes are strictly increasing functions

of a scalar unobserved heterogeneity term. Hereafter, we refer to Assumptions 1-2 and 6

as to the IV-CIC model. The IV-CIC model generalizes the CIC model to fuzzy settings.

Assumption 1 implies Ud ⊥⊥ T |G and V ⊥⊥ T |G, which correspond to the time invariance

assumption in Athey & Imbens (2006). As a result, the IV-CIC model imposes a standard CIC

model both on Y and D. But Assumption 1 also implies Ud ⊥⊥ T |G,V : in each group, the

distribution of, say, ability among people with a given taste for treatment should not change

over time. Our results rely on this supplementary restriction.

The assumptions of the IV-CIC model have advantages and drawbacks with respect to those

underlying the Wald-DID and Wald-TC estimands. For instance, one implication of As-

sumptions 1 and 5 is that the di�erence between the mean outcome of always treated in the

treatment and in the control group should remain stable over time. This condition is not

invariant to the scaling of the outcome, but it only restricts its �rst moment. On the other

hand, the corresponding implication of Assumptions 1 and 6 is that the proportion of units in

the treatment group among any quantile group of the always treated remains constant over

time. For instance, if in period 0 70% of units in the �rst decile of always treated belonged

to the treatment group, in period 1 there should still be 70% of treatment group units in the

�rst decile.7 This condition is invariant to the scaling of the outcome, but it restricts its entire

7Unfortunately, this condition is not testable as always treated are not observed.
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distribution. When the treatment and the control groups have di�erent outcome distributions

in the �rst period (see e.g. Baten et al., 2014), the scaling of the outcome might have a large

e�ect on the results, so using a model invariant to this scaling might be preferable. On the

other hand, when the outcome distributions in the treatment and in the control group are

similar in the �rst period, using a model that only restricts the �rst moment of the outcome

might be preferable.

We also impose the assumption below, which is testable in the data.

Assumption 7 (Data restrictions)

1. S(Ydgt) = S(Y ) = [y, y] with −∞ ≤ y < y ≤ +∞, for (d, g, t) ∈ S(D)× S(G)× S(T ).

2. FYdgt is continuous on R and strictly increasing on S(Y ), for (d, g, t) ∈ S(D)× S(G)×
S(T ).

The �rst condition requires that the outcome have the same support in each of the eight

treatment × group × period cell. This condition does not restrict the support to be bounded:

y and y can be equal to − and +∞. Athey & Imbens (2006) make a similar assumption.

Common support conditions might not be satis�ed when outcome distributions di�er in the

treatment and in the control group, the very situations where CIC might be more appealing

than DID. Athey & Imbens (2006) show that in such instances, quantile treatment e�ects are

still point identi�ed over a large set of quantiles, while the average treatment e�ect can be

bounded. Even though we do not present them here, similar results apply in fuzzy settings.

The second condition is satis�ed if the distribution of Y is continuous with positive density in

each of the eight groups × periods × treatment status cells. With a discrete outcome, Athey

& Imbens (2006) show that one can bound treatment e�ects under their assumptions. Similar

results apply in fuzzy settings, but as CIC bounds for discrete outcomes are often not very

informative, we do not present them here.

Let Qd(y) = F−1Yd01
◦ FYd00(y) be the quantile-quantile transform of Y from period 0 to 1

in the control group conditional on D = d. This transform maps y at rank q in period 0

into the corresponding y′ at rank q in period 1. Let also Hd(q) = FYd10 ◦ F
−1
Yd00

(q) be the

inverse quantile-quantile transform of Y from the control to the treatment group in period 0

conditional on D = d. This transform maps rank q in the control group into the corresponding

rank q′ in the treatment group with the same value of y. Finally, for any increasing function

F on the real line, we denote by F−1 its generalized inverse:

F−1(q) = inf {x ∈ R : F (x) ≥ q} .

In particular, F−1R is the quantile function of the random variable R. We adopt the convention

that F−1R (q) = inf S(R) for q < 0, and F−1R (q) = supS(R) for q > 1.

Our identi�cation results rely on the following lemma.
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Lemma 3.1 If Assumptions 1-2 and 6-7 hold and if P (D00 = d) > 0,

FY11(d)|S1
(y) =

P (D10 = d)Hd ◦ (λ0dFYd01(y) + (1− λ0d)FY01(d)|S0
(y))− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
.

This lemma shows that under our IV-CIC assumptions, FY11(d)|S1
is point identi�ed when the

treatment rate remains constant in the control group, as in this case λ0d = 1. Let

FCIC,d(y) =
P (D10 = d)Hd ◦ (FYd01(y))− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
,

WCIC =
E(Y11)− E(QD10(Y10))

E(D11)− E(D10)
.

When the treatment rate changes in the control group, FY11(d)|S1
is partially identi�ed. Sharp

bounds can be obtained using Lemma 3.1. For any cdf Td, let

Gd(Td) = λ0dFYd01 + (1− λ0d)Td,

Cd(Td) =
P (D10 = d)Hd ◦Gd(Td)− P (D11 = d)FYd11

P (D10 = d)− P (D11 = d)
.

It follows from Lemma 3.1 that Cd(FY01(d)|S0
) = FY11(d)|S1

. Moreover, one can show that

G0(FY01(0)|S0
) = FY01(0)|V <v00 and G1(FY01(1)|S0

) = FY01(1)|V≥v00 . Therefore, the sharp lower

bound on FY11(d)|S1
is

min
Td∈D

Cd(Td) s.t. (Td, Gd(Td), Cd(Td)) ∈ D3,

where D is the set of cdfs on S(Y ).

It is di�cult to derive a closed-form expression for the solution of this problem, because

it corresponds to an in�nite dimensional optimization problem with an in�nite number of

inequality constraints. We therefore consider simpler bounds, which are sharp under a simple

testable assumption. Speci�cally, let M01(x) = min(1,max(0, x)), and let

T d = M01

(
λ0dFYd01 −H

−1
d (λ1dFYd11)

λ0d − 1

)
, T d = M01

(
λ0dFYd01 −H

−1
d (λ1dFYd11 + (1− λ1d))
λ0d − 1

)
,

FCIC,d(y) = sup
y′≤y

Cd (T d) (y′), FCIC,d(y) = inf
y′≥y

Cd
(
T d
)

(y′),

WCIC =

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y), WCIC =

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y),

τ q = max(F
−1
CIC,1(q), y)−min(F−1CIC,0(q), y), τ q = min(F−1CIC,1(q), y)−max(F

−1
CIC,0(q), y).

Finally, we introduce the two following conditions.

Assumption 8 (Existence of moments)∫
|y|dFCIC,d(y) < +∞ and

∫
|y|dFCIC,d(y) < +∞ for d ∈ {0, 1}.
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Assumption 9 (Increasing bounds)

For (d, g, t) ∈ S(D) × {0, 1}2, FYdgt is continuously di�erentiable, with positive derivative on

the interior of S(Y ). Moreover, T d, T d, Gd(T d), Gd(T d), Cd(T d) and Cd(T d) are increasing on

S(Y ).

Theorem 3.3 Assume that Model (1) and Assumptions 1-2 and 6-7 hold.

1. If 0 < P (D01 = 1) = P (D00 = 1) < 1, then FCIC,d(y) = FY11(d)|S1
(y) for d ∈ {0, 1},

WCIC = ∆ and F−1CIC,1(q)− F
−1
CIC,0(q) = τq.

2. If 0 < P (D01 = 1) 6= P (D00 = 1) < 1 and Assumption 8 is satis�ed, then FY11(d)|S1
(y) ∈

[FCIC,d(y), FCIC,d(y)] for d ∈ {0, 1}, ∆ ∈ [WCIC ,WCIC ] and τq ∈ [τ q, τ q]. Moreover,

if Assumption 9 holds, these bounds are sharp.

Our point identi�cation results combine ideas from Imbens & Rubin (1997) and Athey &

Imbens (2006). We seek to recover the distribution of, say, Y (1) among switchers in the

treatment × period 1 cell. On that purpose, we start from the distribution of Y among all

treated observations of this cell. As shown in Table 1, those include both switchers and always

treated. Consequently, we must �withdraw� from this distribution that of Y (1) among always

treated, exactly as in Imbens & Rubin (1997). But this last distribution is not observed.

To reconstruct it, we adapt the ideas in Athey & Imbens (2006) and apply the quantile-

quantile transform from period 0 to 1 among treated observations in the control group to the

distribution of Y (1) among treated units in the treatment group in period 0.

Intuitively, the quantile-quantile transform uses a double-matching to reconstruct the unob-

served distribution. Consider an always treated in the treatment × period 0 cell. She is �rst

matched to an always treated in the control × period 0 cell with same y. Those two always

treated are observed at the same period of time and are both treated. Therefore, under As-

sumption 6 they must have the same u1. Second, the control × period 0 always treated is

matched to her rank counterpart among always treated of the control × period 1 cell. We

denote y∗ the outcome of this last observation. Because U1 ⊥⊥ T |G,V ≥ v00, those two ob-

servations must also have the same u1. Consequently, y
∗ = h1(u1, 1), which means that y∗ is

the outcome that the treatment × period 0 cell unit would have obtained in period 1.

Note that

WCIC =
E(Y |G = 1, T = 1)− E((1−D)Q0(Y ) +DQ1(Y )|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

Here again, WCIC is almost the standard Wald ratio in the treatment group with T as the

instrument, except that we have (1 − D)Q0(Y ) + DQ1(Y ) instead of Y in the second term

of the numerator. (1 −D)Q0(Y ) + DQ1(Y ) accounts for the fact time has a direct e�ect on

the outcome. When the treatment rate is stable in the control group, we can identify this
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direct e�ect by looking at how the distribution of the outcome evolves in this group. We can

then net out this direct e�ect in the treatment group. This is what (1−D)Q0(Y ) +DQ1(Y )

does. Both WCIC and WTC proceed from the same logic, except that WTC corrects for

the e�ect of time through additive shifts, while WCIC does so in a non-linear fashion. If

hd(Ud, T ) = ad(Ud) + bd(T ) with ad(.) strictly increasing, Assumptions 5 and 6 are both

satis�ed. We then have WCIC = WTC .

Our partial identi�cation results are obtained as follows. When 0 < P (D00 = 1) 6= P (D01 =

1) < 1, the second matching described above collapses, because treated (resp. untreated)

observations in the control group are no longer comparable in period 0 and 1. For instance,

when the treatment rate increases in the control group, treated observations in the control

group include only always treated in period 0. In period 1 they also include switchers, as is

shown in Table 2. Therefore, we cannot match period 0 and period 1 observations on their

rank anymore. However, under Assumption 1 the respective weights of switchers and always

treated in period 1 are known. We can therefore derive best and worst case bounds for the

distribution of the outcome for always treated in period 1, and match period 0 observations

to their best and worst case rank counterparts.

If the support of the outcome is unbounded, FCIC,0 and FCIC,0 are proper cdf when λ00 > 1,

but they are defective when λ00 < 1. When λ00 < 1, switchers belong to the group of treated

observations in the control × period 1 cell (cf. Table 2). Their Y (0) is not observed in period

1, so the data does not impose any restriction on FY01(0)|S0
: it could be equal to 0 or to 1,

hence the defective bounds. On the contrary, when λ00 > 1, switchers belong to the group

of untreated observations in the control × period 1 cell, and under Assumption 1 we know

that they account for 100(1 − 1/λ00)% of this group. Consequently, we can use trimming

bounds for FY01(0)|S0
(see Horowitz & Manski, 1995), hence the non-defective bounds. On the

contrary, FCIC,1 and FCIC,1 are always proper cdf, while we could have expected them to

be defective when λ00 > 1. This asymmetry stems from the fact that when λ00 > 1, setting

FY01(1)|S0
(y) = 0 would yield FY01(1)|S1

(y) > 1 for values of y approaching y, while setting

FY01(1)|S0
(y) = 1 would yield FY01(1)|S1

(y) < 0 for values of y approaching y.

The previous discussion implies that when S(Y ) is unbounded and λ00 < 1, our bounds on ∆

are in�nite because our bounds for the cdf of Y (0) of switchers are defective. Our bounds on

τq are also in�nite for low and high values of q. On the contrary, when λ00 > 1 our bounds on

τq are �nite for every q ∈ (0, 1). Our bounds on ∆ are also �nite provided FCIC,0 and FCIC,0

admit an expectation.

Finally, when the treatment rate changes in the control group, one can recover point identi�-

cation if one is ready to impose the same supplementary assumption as in Equation (3).
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3.4 Identi�cation with a fully treated or fully untreated control group

Up to now, we have considered general fuzzy situations where the P (Dgt = d) were restricted

only by Assumption 2. An interesting special case, which is close to the sharp design, is when

P (D00 = 1) = P (D01 = 1) = P (D10 = 1) = 0. In such instances, identi�cation of the average

treatment e�ect on the treated can be obtained under the same assumptions as those of the

standard DID or CIC models.

Theorem 3.4 Suppose that P (D00 = 1) = P (D01 = 1) = P (D10 = 1) = 0 < P (D11 = 1),

U0 ⊥⊥ T |G, and the outcome equation of Model (1) is satis�ed.

1. If Assumption 3 holds, then WDID = WTC = E(Y11(1)− Y11(0)|D = 1).

2. If Assumptions 6 and 7 hold, then WCIC = E(Y11(1)− Y11(0)|D = 1).

Hence, results of the sharp case extend to this intermediate case. Note that under Model (1)

and Assumption 1, the treated population corresponds to S1, so E(Y11(1)−Y11(0)|D = 1) = ∆

under these additional assumptions.

Another special case of interest is when P (D00 = 0) = P (D01 = 0) ∈ {0, 1}. Such situations

arise when a policy is extended to a previously a group, or when a program or a technology pre-

viously available in some geographic areas is extended to others (see our second supplementary

application in de Chaisemartin & D'Haultf÷uille (2015)). Theorem 3.1 applies in this special

case, but not Theorems 3.2-3.3, as they require that 0 < P (D00 = 0) = P (D01 = 0) < 1. In

such instances, identi�cation must rely on the assumption that time has the same e�ect on

both potential outcomes. For instance, if P (D00 = 1) = P (D01 = 1) = 1 and P (D10 = 1) < 1,

there are no untreated units in the control group that we can use to infer trends for untreated

units in the treatment group. We must therefore use treated units, under the assumption

that time has the same e�ect on both potential outcomes. Instead of the Wald-TC estimand,

one could then use E(Y11)−E(Y10+δ1)
E(D11)−E(D10)

. Because P (D00 = 1) = P (D01 = 1) = 1, this actu-

ally amounts to using WDID. We can also adapt our Wald-CIC estimand by considering the

following assumption.

Assumption 10 (Common e�ect of time on both potential outcomes)

h0(h
−1
0 (y, 1), 0) = h1(h

−1
1 (y, 1), 0) for every y ∈ S(Y ).

Assumption 10 requires that time have the same e�ect on both potential outcomes: once

combined with Equation (1) and Assumption 6, Assumption 10 implies that a treated and

an untreated unit with the same outcome in period 0 also have the same outcome in period

1. This restriction is not implied by the IV-CIC assumptions we introduced in Section 3.3:

Equation (1) and Assumption 6 alone only imply that two treated (resp. untreated) units

with the same outcome in period 0 also have the same outcome in period 1. An example of
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a structural function satisfying Assumption 10 is hd(Ud, T ) = f(gd(Ud), T ) with f(., t) and

gd(.) strictly increasing. This shows that Assumption 10 does not restrict the e�ects of time

and treatment to be homogeneous. Finally, Assumptions 4 and 10 are related, but they also

di�er on some respects. Assumption 4 restricts time to have the same average e�ect on the

potential outcomes of always treated. Assumption 10 restricts time to have the same e�ect

on the potential outcomes of units satisfying Y (0) = Y (1) at the �rst period.

Under Assumption 10, if P (D00 = d) = P (D01 = d) = 1 we can use changes in the distribution

of Y (d) in the control group over time to identify the e�ect of time on Y (1−d), hence allowing

us to recover both FY11(d)|S1
and FY11(1−d)|S1

.

Theorem 3.5 If Assumptions 1-2, 6-7, and 10 hold, and P (D00 = d) = P (D01 = d) = 1 for

some d ∈ {0, 1},
P (D10 = d)FQd(Yd10)(y)− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
= FY11(d)|S1

(y),

P (D10 = 1− d)FQd(Y1−d10)(y)− P (D11 = 1− d)FY1−d11
(y)

P (D10 = 1− d)− P (D11 = 1− d)
= FY11(1−d)|S1

(y),

E(Y11)− E(Qd(Y10))

E(D11)− E(D10)
= ∆.

The estimands introduced in this theorem are very similar to those considered in the �rst point

of Theorem 3.3, except that they apply the same quantile-quantile transform to all treatment

units in period 0, instead of applying di�erent transforms to units with a di�erent treatment.

Finally, when 0 < P (D00 = 1) = P (D01 = 1) < 1, Assumption 10 is testable. If it is satis�ed,

the quantile-quantile transforms Q0 and Q1 must be equal. When this test is not rejected,

applying a weighted average of these two transforms to all treatment group units in period 0

might result in e�ciency gains with respect to our Wald-CIC estimator.8

3.5 Panel data models

Model (1) is well suited for repeated cross sections or cohort data where we observe units only

once. On the other hand, it implies a strong restriction on selection into treatment when panel

data are available. As V does not depend on time, our selection equation implies that within

each group, time can a�ect individuals' treatment decision in only one direction. Actually, all

our results remain valid if Ud and V are indexed by time, provided that we rewrite Assumption

1 as follows: for d ∈ S(D), the distribution of (Udt, Vt) |G does not depend on t. Within each

group, time could then induce some units to go from non-treatment to treatment, while having

the opposite e�ect on other units.

We now discuss whether the common trends and monotonicity assumptions we introduced

above are satis�ed in standard panel data models. We index random variables by i, to distin-

guish individual e�ects from constant terms.

8We would like to thank an anonymous referee for pointing this out to us.
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First, we consider the following model:

Yit = γt + αi + βiDit + εit, (4)

Dit = 1{Vit ≥ vGit}, (5)

(εi1, Vi1, αi, βi)|Gi ∼ (εi0, Vi0, αi, βi)|Gi. (6)

The outcome equation has time and individual e�ects. It allows for heterogeneous but time

invariant treatment e�ects which can be arbitrarily correlated with the treatment, the indi-

vidual e�ect αi, and the idiosyncratic shocks. Equation (6) requires that the distribution of

(εit, Vit, αi, βi)|Gi does not depend on time. On the other hand, it does not restrict the cross-

sectional dependence between εit and Vit, nor the serial dependence between (εi0, Vi0) and

(εi1, Vi1). This implies in particular that in the �rst-di�erence equation, Di1 −Di0 is endoge-

nous in general. The Wald-DID estimand then amounts to instrumenting Di1 −Di0 by Gi in

this �rst-di�erence equation. It is easy to see that if Equations (4)-(6) hold, then Assumptions

1-6 are satis�ed:9 the additive separability of the time e�ect ensures that Assumptions 3, 5,

and 6 are satis�ed, while the time invariant treatment e�ects ensure that Assumption 4 is

satis�ed.

Second, we consider the following outcome equation instead of Equation (4):

Yit = γt + λtDit + αi + βiDit + εit. (7)

Under Equation (7), Assumption 4 is no longer satis�ed because treatment e�ects change

over time. On the other hand, the e�ect of time is still additively separable from treatment

and from the unobserved heterogeneity terms, so Equations (7) and (5)-(6) guarantee that

Assumptions 1-2 and 5-6 are satis�ed.

Then, we consider the following outcome equation:

Yit = γt + λtDit + µt(αi + βiDit + εit). (8)

Under Equation (8), Assumption 5 is no longer satis�ed because time has an heterogeneous

e�ect on the outcome. On the other hand, if Equations (8) and (5)-(6) hold, then Assumptions

1-2 and 6 are satis�ed. To see this, de�ne hd(u, t) = γt + λtd+ µtu and Udit = αi + βid+ εit.

Finally, we consider a last outcome equation:

Yit = γt + λtDit + αi + βiDit + µtεit. (9)

All our assumptions fail to hold under this �xed e�ects model with time-varying e�ects of

the idiosyncratic shock. As above, Assumption 5 fails because time has heterogeneous e�ects

9As mentioned above, Ud and V should be indexed by time, and Assumption 1 should be rewritten as

follows: for d ∈ S(D), the distribution of (Udt, Vt) |G is independent of t.
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on the outcome. Assumption 6 also fails because the outcome can no longer be written as a

function of time and a scalar unobserved term. Bonhomme & Sauder (2011) study a similar

model with �xed e�ects and non-stationary idiosyncratic shocks. In the sharp case, they

show that average and quantile treatment e�ects are identi�ed if the idiosyncratic shocks are

independent of treatment and of the �xed e�ects.

4 Extensions

In this section, we extend our analysis to situations where the data can be divided into several

groups and several periods, where covariates are available, or where the treatment is non-

binary. To generalize our results, we have to modify some of the assumptions we introduced

above. To ease the comparison, we label these assumptions using su�xes. For instance

Assumption 1X is similar to Assumption 1 except that it accounts for covariates X.

4.1 Multiple groups and time periods

Let us consider the case where the data can be divided into more than two groups and

time periods. Let G ∈ {0, 1, ..., g} be the group a unit belongs to. Let T ∈ {0, 1, ..., t}
be the period when she is observed. For any (g, t) ∈ S(G) × {1, ..., t}, let Sgt = {V ∈
[min(vgt−1, vgt),max(vgt−1, vgt)), G = g} be the subset of group g which switches treatment

status between t − 1 and t. Also, let St = ∪gg=0Sgt denote the units switching between t − 1

and t. Finally, let S =
⋃t
t=1 St be the union of all switchers. At each date, we can partition

the groups into three subsets, depending on whether their treatment rate is stable, increases,

or decreases between t− 1 and t. For every t ∈ {1, ..., t}, let

Gst = {g ∈ S(G) : E(Dgt) = E(Dgt−1)}

Git = {g ∈ S(G) : E(Dgt) > E(Dgt−1)}

Gdt = {g ∈ S(G) : E(Dgt) < E(Dgt−1)},

and let G∗t = 1{G ∈ Git} − 1{G ∈ Gdt}. We introduce the following assumptions, which

generalize Assumptions 3-5 to settings with multiple groups and periods (Assumptions 6 and

7 apply to this case without modi�cations).

Assumption 3M (Common trends)

For every t ∈ {1, ..., t}, E(h0(U0, t)− h0(U0, t− 1)|G) does not depend on G.

Assumption 4M (Common average e�ect of time on both potential outcomes)

For every t ∈ {1, ..., t}, E(h1(U1, t) − h1(U1, t − 1)|G,V ≥ vGt−1) = E(h0(U0, t) − h0(U0, t −
1)|G,V ≥ vGt−1).
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Assumption 5M (Common trends within treatment at previous period)

For every t ∈ {1, ..., t}, E(h0(U0, t)−h0(U0, t− 1)|G,V < vGt−1) and E(h1(U1, t)−h1(U1, t−
1)|G,V ≥ vGt−1) do not depend on G.

Theorem 4.1 below shows that when there is at least one group in which the treatment rate

is stable between each pair of consecutive dates, combinations of these assumptions allow us

to point identify ∆w, a weighted average of LATEs over di�erent periods:

∆w =

t∑
t=1

P (St)∑t
t=1 P (St)

E(Y (1)− Y (0)|St, T = t).

We also consider the following assumption, under which ∆w is equal to the LATE among the

whole population of switchers S.

Assumption 11 (Monotonic evolution of treatment, and homogenous e�ects over time)

1. For every t 6= t′ ∈ {1, ..., t}2 Git ∩ Gdt′ = ∅.

2. For every (t, t′) ∈ {1, ..., t}2, E(Y (1)− Y (0)|St, T = t′) = E(Y (1)− Y (0)|St, T = 1).

The �rst point of Assumption 11 requires that in every group, the treatment rate follows a

monotonic evolution over time. The second point requires that switchers' LATE be constant

over time.

For any random variable R and for any g 6= g′ ∈ {−1, 0, 1}2 and t ∈ {1, ..., t} let

DID∗R(g, g′, t) = E(R|G∗t = g, T = t)− E(R|G∗t = g, T = t− 1)

− (E(R|G∗t = g′, T = t)− E(R|G∗t = g′, T = t− 1))

W ∗DID(g, g′, t) =
DID∗Y (g, g′, t)

DID∗D(g, g′, t)

wt =
DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)∑t
t=1DID

∗
D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)

w10|t =
DID∗D(1, 0, t)P (G∗t = 1)

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)
.

Let also

δ∗dt = E(Y |D = d,G∗t = 0, T = t)− E(Y |D = d,G∗t = 0, T = t− 1) for d ∈ {0, 1}

W ∗TC(1, 0, t) =
E(Y |G∗t = 1, T = t)− E(Y + δ∗Dt|G∗t = 1, T = t− 1)

E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1)

W ∗TC(−1, 0, t) =
E(Y |G∗t = −1, T = t)− E(Y + δ∗Dt|G∗t = −1, T = t− 1)

E(D|G∗t = −1, T = t)− E(D|G∗t = −1, T = t− 1)
.

22



Finally, let

Q∗dt(y) = F−1Y |D=d,G∗t=0,T=t ◦ FY |D=d,G∗t=0,T=t−1(y) d ∈ {0, 1}

W ∗CIC(1, 0, t) =
E(Y |G∗t = 1, T = t)− E(Q∗Dt(Y )|G∗t = 1, T = t− 1)

E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1)

W ∗CIC(−1, 0, t) =
E(Y |G∗t = −1, T = t)− E(Q∗Dt(Y )|G∗t = −1, T = t)

E(D|G∗t = −1, T = t)− E(D|G∗t = −1, T = t− 1)
.

Theorem 4.1 Assume that Model (1) and Assumption 1 are satis�ed. Assume also that for

every t ∈ {1, ..., t}, Gst 6= ∅. Finally, assume that G ⊥⊥ T .

1. If Assumptions 3M and 4M are satis�ed,

t∑
t=1

wt(w10|tW
∗
DID(1, 0, t) + (1− w10|t)W

∗
DID(−1, 0, t)) =∆w.

2. If Assumption 5M is satis�ed,

t∑
t=1

wt(w10|tW
∗
TC(1, 0, t) + (1− w10|t)W

∗
TC(−1, 0, t)) =∆w.

3. If Assumptions 6 and 7 are satis�ed,

t∑
t=1

wt(w10|tW
∗
CIC(1, 0, t) + (1− w10|t)W

∗
CIC(−1, 0, t)) =∆w.

4. If either t = 1 or Assumption 11 holds,

∆w = E(Y (1)− Y (0)|S, T > 0).

Let us �rst consider the simple case with multiple groups and two periods. In such instances,

the �rst, second, and third results of the theorem can respectively be rewritten as

w10|1W
∗
DID(1, 0, 1) + (1− w10|1)W

∗
DID(−1, 0, 1) = E(Y (1)− Y (0)|S1, T = 1),

w10|1W
∗
TC(1, 0, 1) + (1− w10|1)W

∗
TC(−1, 0, 1) = E(Y (1)− Y (0)|S1, T = 1),

w10|1W
∗
CIC(1, 0, 1) + (1− w10|1)W

∗
CIC(−1, 0, 1) = E(Y (1)− Y (0)|S1, T = 1).

This shows that with multiple groups and two periods of time, treatment e�ects for switchers

are identi�ed if there is at least one group in which the treatment rate is stable over time.

This holds under each of the three sets of assumptions we considered in the previous section.

The estimands we propose can be computed in four steps. First, we form three �super groups�,

by pooling together the groups where treatment increases (G∗ = 1), those where it is stable

(G∗ = 0), and those where it decreases (G∗ = −1). While in some applications these three

23



sets of groups are known to the analyst, in other applications they must be estimated. In

our supplementary material, we review results from Gentzkow et al. (2011) where these sets

are known to the analyst. In Section 6 we review results from Du�o (2001) where these sets

are not known to the analyst and need to be estimated. Second, we compute the estimand

we suggested in the previous section with G∗ = 1 and G∗ = 0 as the treatment and control

groups. Third, we compute the estimand we suggested in the previous section with G∗ = −1

and G∗ = 0 as the treatment and control groups. Finally, we compute a weighted average of

those two estimands.

In the general case where t > 1, aggregating estimands at di�erent dates proves more di�-

cult than aggregating estimands from di�erent groups. This is because populations switching

treatment between di�erent dates might overlap. For instance, if a unit goes from non treat-

ment to treatment between period 0 and 1, and from treatment to non treatment between

period 1 and 2, she both belongs to period 1 and period 2 switchers. A weighted average of,

say, our Wald-DID estimands between period 0 and 1 and between period 1 and 2 estimates a

weighted average of the LATEs of two potentially overlapping populations. There is therefore

no natural way to weight these two estimands to recover the LATE of the union of period 1

and 2 switchers. As shown in the fourth point of the theorem, the aggregated estimand we

put forward still satis�es a nice property: it is equal to the LATE of the union of switchers in

the special case where each group experiences a monotonic evolution of its treatment rate over

time. When this is the case, populations switching treatment status at di�erent dates cannot

overlap, so our weighted average of switchers' LATE across periods is actually the LATE of

all switchers.

Theorem 4.1 relies on the Assumption that G ⊥⊥ T . This requires that the distribution of

groups be stable over time. This will automatically be satis�ed if the data is a balanced panel

and G is time invariant. With repeated cross-sections or cohort data, this assumption might

fail to hold. However, large deviations from this stable group assumption indicate that some

groups grow much faster than others, which might anyway call into question the common

trends assumptions underlying DID identi�cation strategies. Moreover, this assumption is

only a su�cient condition to rationalize our estimands under assumptions at the group level.

Another way to rationalize our estimands is to state our assumptions directly at the �super

group� level. For instance, if Assumptions 1, 3M, and 5M are satis�ed with G∗t instead of G,

then the �rst statement of Theorem 4.1 is still valid even if G is not independent of T . Finally,

when G is not independent of T , it is still possible to form a Wald-DID and a Wald-TC type of

estimand identifying a weighted average of LATEs under group-level assumptions. To do so,

one merely needs to implement some reweighting to ensure that the distribution of groups is the

same in periods t−1 and t in the reweighted population. For all (g, t) ∈ {0, 1, ..., g}×{1, ..., t},
let

rgt =
P (G = g|T = t)

P (G = g|T = t− 1)
.
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One can show that a weighted average of

E(Y |G∗t = 1, T = t)− E (rGtY |G∗t = 1, T = t− 1)− (E(Y |G∗t = 0, T = t)− E (rGtY |G∗t = 0, T = t− 1))

E(D|G∗t = 1, T = t)− E (rGtD|G∗t = 1, T = t− 1)− (E(D|G∗t = 0, T = t)− E (rGtD|G∗t = 0, T = t− 1))

and

E(Y |G∗t = −1, T = t)− E (rGtY |G∗t = −1, T = t− 1)− (E(Y |G∗t = 0, T = t)− E (rGtY |G∗t = 0, T = t− 1))

E(D|G∗t = −1, T = t)− E (rGtD|G∗t = −1, T = t− 1)− (E(D|G∗t = 0, T = t)− E (rGtD|G∗t = 0, T = t− 1))

identi�es a weighted average of LATEs under Assumptions 1, 3M, and 4M even if G is not

independent of T .10 One can follow similar steps to construct a Wald-TC type of estimand

identifying a weighted average of LATEs under Assumptions 1 and 5M even if G is not

independent of T .

Three last comments on Theorem 4.1 are in order. First, it contrasts with the current practice

in empirical work. When many groups and periods are available, researchers usually include

group and time �xed e�ects in their regressions, instead of pooling together groups into super

control and treatment groups as we advocate here. In de Chaisemartin & D'Haultf÷uille

(2015), we show that such regressions estimate a weighted average of switchers' LATEs across

groups, with potentially many negative weights and without the aggregation property we

obtain here (see Theorems S1 and S2). Second, groups where the treatment rate diminishes

can be used as �treatment� groups, just as those where it increases. Indeed, it is easy to show

that all the results from the previous section still hold if the treatment rate decreases in the

treatment group and is stable in the control group. Finally, when there are more than two

groups where the treatment rate is stable between two consecutive dates, our three sets of

assumptions become testable. Under each set of assumptions, using any subset of Gst as the
control group should yield the same result.

We now turn to partial identi�cation results when the treatment rate changes in every group.

To simplify the exposition, we focus on the case with multiple groups and two periods. Results

can easily be extended to accommodate multiple periods.

When the outcome has bounded support [y, y], let, for (d, g) ∈ {0, 1} × S(G),

F dg1(y) = M0

[
1− λgd(1− FYdg1(y))

]
−M0(1− λgd)1{y < y},

F dg1(y) = m1

[
λgdFYdg1(y)

]
+ (1−m1(λgd))1{y ≥ y}.

Then de�ne

δ
−
d = max

g∈S(G)

∫
ydF dg1(y)− E(Ydg0), δ+d = min

g∈S(G)

∫
ydF dg1(y)− E(Ydg0),

W−TC(g) =
E(Yg1)− E(Yg0 + δ+Dg0

)

E(Dg1)− E(Dg0)
, W+

TC(g) =
E(Yg1)− E(Yg0 + δ

−
Dg0

)

E(Dg1)− E(Dg0)
.

10The weights are the same as those in Theorem 4.1, except that one needs to replace P (G∗t = 1) and

P (G∗t = −1) by P (G∗t = 1|T = t) and P (G∗t = −1|T = t) in their de�nition.
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Let also F gg′d(y) and F gg′d(y) denote the lower and upper bounds on FYg1(d)|Sg
one can obtain

using G = g as the treatment group and G = g′ as the control group and applying Theorem

3.3. Finally, let

W−CIC(g) =

∫ (
max

g′∈S(G)
F gg′0(y)− min

g′∈S(G)
F gg′1(y)

)
dy, W+

CIC(g) =

∫ (
min

g′∈S(G)
F gg′0(y)− max

g′∈S(G)
F gg′1(y)

)
dy.

Theorem 4.2 Assume that Model (1) and Assumption 1 is satis�ed. Assume also that Gs1 =

∅.

1. If Assumption 5 is satis�ed and P (y ≤ Y (d) ≤ y) = 1 for d ∈ {0, 1},

W−TC(g) ≤ E(Yg1(1)− Yg1(0)|Sg1) ≤W+
TC(g).

2. If Assumptions 6 and 7 are satis�ed,

W−CIC(g) ≤ E(Yg1(1)− Yg1(0)|Sg1) ≤W+
CIC(g).

This theorem shows that with multiple groups, one can construct intersection bounds for

switchers' LATE when the treatment rate changes in every group over time. This holds under

the two sets of assumptions for which we considered partial identi�cation results in the previous

section. Under Assumption 5, one can bound the LATE among switchers in a given group

by using every other group as a potential control group and applying Theorem 3.2. One can

then select the control group yielding the highest (resp. smallest) lower (resp. upper) bound.

Under Assumption 6, one can bound the cdf of Y (1) and Y (0) among switchers in a given

group by using every other group as a potential control group and applying Theorem 3.3.

For each value of y, one can then select the control group yielding the highest (resp. lowest)

lower (resp. upper) bound. One can �nally bound switchers LATEs by using integration by

parts for Lebesgue-Stieljes integrals. Note that any group can be used to construct bounds

for the LATE of switchers in group g, even groups g′ which experienced a larger change of

their treatment rate. Here, we only present partial identi�cation results for treatment e�ects

among switchers of group g. One can also derive bounds for the entire population of switchers,

by taking a weighted average of these bounds.

4.2 Covariates

We now return to our initial setup with two groups and two periods but consider a framework

incorporating covariates. Let X be a vector of covariates. Assume that

Y (d) = hd(Ud, T,X), d ∈ S(D),

D = 1{V ≥ vGTX}, vG0X = v00X does not depend on G.
(10)

Then we replace Assumptions 1-7 by the following conditions.
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Assumption 1X (Conditional time invariance within groups)

For d ∈ S(D), (Ud, V ) ⊥⊥ T |G,X.

Assumption 2X (Conditional �rst stage)

Almost surely, E(D11|X) > E(D10|X), and E(D11|X)−E(D10|X) > E(D01|X)−E(D00|X).

Assumption 3X (Conditional common trends)

Almost surely, E(h0(U0, 1, X)− h0(U0, 0, X)|G,X) does not depend on G.

Assumption 4X (Conditional common e�ect of time on both potential outcomes)

Almost surely,

E(h1(U1, 1, X)−h1(U1, 0, X)|G,V ≥ v00X , X) = E(h0(U0, 1, X)−h0(U0, 0, X)|G,V ≥ v00X , X).

Assumption 5X (Conditional common trends within treatment status)

Almost surely, E(h0(U0, 1, X)−h0(U0, 0, X)|G,V < v00X , X) and E(h1(U1, 1, X)−h1(U1, 0, X)|G,V ≥
v00X , X) do not depend on G.

Assumption 6X (Monotonicity)

Ud ∈ R and hd(u, t, x) is strictly increasing in u for all (d, t, x) ∈ S(D)× S(T )× S(X).

Assumption 7X (Data restrictions)

1. S(Ydgt|X = x) = S(Y ) = [y, y] with −∞ ≤ y < y ≤ +∞, for (d, g, t, x) ∈ S(D) ×
S(G)× S(T )× S(X).

2. FYdgt|X=x is strictly increasing on R and continuous on S(Y ), for (d, g, t, x) ∈ S(D) ×
S(G)× S(T )× S(X).

3. S(Xgt) = S(X) for (g, t) ∈ S(G)× S(T ).

For any random variable R, let DIDR(X) = E(R11|X)−E(R10|X)−(E(R01|X)−E(R00|X)).

We also let δd(x) = E(Yd01|X = x)−E(Yd00|X = x), Qd,x(y) = F−1Yd01|X=x ◦FYd00|X=x(y), and

WDID(X) =
DIDY (X)

DIDD(X)

WTC(X) =
E(Y11|X)− E(Y10 + δD10(X)|X)

E(D11|X)− E(D10|X)

WCIC(X) =
E(Y11|X)− E(QD10,X(Y10)|X)

E(D11|X)− E(D10|X)
.

Finally, let S1 = {V ∈ [v11X , v00X), G = 1} and ∆(X) = E(Y11(1)− Y11(0)|S1, X).
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Theorem 4.3 Assume that Model (10) and Assumptions 1X-2X hold, and that for every

d ∈ S(D), 0 < P (D00 = d|X) = P (D01 = d|X) almost surely. Then

1. If Assumptions 3X-4X are satis�ed, WDID(X) = ∆(X) and

WX
DID ≡

E[DIDY (X)|G = 1, T = 1]

E[DIDD(X)|G = 1, T = 1]
= ∆.

2. If Assumption 5X is satis�ed, WTC(X) = ∆(X) and

WX
TC ≡

E(Y11)− E[E(Y10 +D10δ1(X) + (1−D10)δ0(X)|X)|G = 1, T = 1]

E(D11)− E(E(D10|X)|G = 1, T = 1)
= ∆.

3. If Assumptions 6X-7X are satis�ed, WCIC(X) = ∆(X) and

WX
CIC ≡

E(Y11)− E[E(D10Q1,X(Y10) + (1−D10)Q0,X(Y10)|X)|G = 1, T = 1]

E(D11)− E(E(D10|X)|G = 1, T = 1)
= ∆.

Incorporating covariates into the analysis has two advantages. First, it allows us to weaken

our identifying assumptions. For instance, when the distribution of some X evolves over time

in the control or in the treatment group, Assumption 1X is more plausible than Assumption

1: if the distribution of X is not stable over time and X is correlated with (Ud, V ), then the

distribution of (Ud, V ) is also not stable. Second, there might be instances where P (D00 =

d) 6= P (D01 = d) but P (D00 = d|X) = P (D01 = d|X) > 0 almost surely, meaning that in

the control group, the evolution of the treatment rate is entirely driven by a change in the

distribution of X. If that is the case, one can use the previous theorem to point identify

treatment e�ects among switchers, while our theorems without covariates only yield bounds.

When P (D00 = d|X) 6= P (D01 = d|X), one can derive bounds for ∆(X) and then for ∆.

These bounds could be tighter than the unconditional ones if changes in the distribution of

X drive most of the evolution of the treatment rate in the control group.

4.3 Non-binary, ordered treatment

We �rst consider the case where the treatment is not binary but takes a �nite number of

values and is ordered: D ∈ {0, 1, ..., d}. One prominent example is years of schooling, as in

our application in Section 6. We extend our model to this case as follows:

Y (d) = hd(Ud, T ), for d ∈ {0, ..., d},

D =
∑d

d=1 1{V ≥ vdGT }, −∞ = v0gt < v1gt... < vd+1
gt = +∞ for (g, t) ∈ {0, 1}2.

(11)

Assumption 4O (Common average e�ect of time on all potential outcomes)

For d ∈ {0, ..., d},

E(hd(Ud, 1)− hd(Ud, 0)|G,V ∈ [vdG0, v
d+1
G0 )) = E(h0(U0, 1)− h0(U0, 0)|G,V ∈ [vdG0, v

d+1
G0 )).
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Assumption 5O (Common trends within treatment status at date 0)

For every d ∈ S(D), E(hd(Ud, 1)− hd(Ud, 0)|G,V ∈ [vdG0, v
d+1
G0 )) does not depend on G.

Model (11) and Assumptions 4O-5O generalize respectively Model (1) and Assumptions 4-5 to

situations where the treatment is non-binary and ordered . Let & denote stochastic dominance

between two random variables, while ∼ denotes equality in distribution.

Theorem 4.4 Assume that Model (11) and Assumptions 1-2 are satis�ed, that D01 ∼ D00,

and that D11 & D10. Let wd = P (D11≥d)−P (D10≥d)
E(D11)−E(D10)

.

1. If Assumptions 3 and 4O are satis�ed,

WDID =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))wd.

2. If Assumption 5O is satis�ed,

WTC =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))wd.

3. If Assumptions 6 and 7 are satis�ed,

WCIC =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))wd.

Theorem 4.4 shows that with an ordered treatment, the estimands we considered in the previ-

ous sections are equal to the average causal response (ACR) parameter considered in Angrist

& Imbens (1995). This parameter is a weighted average, over all values of d, of the e�ect

of increasing treatment from d − 1 to d among switchers whose treatment status goes from

strictly below to above d over time.

For this theorem to hold, two conditions have to be satis�ed. First, in the treatment group,

the distribution of treatment in period 1 should dominate stochastically the corresponding

distribution in period 0. Angrist & Imbens (1995) also require that the distribution of treat-

ment conditional on Z = 1 dominate that conditional on Z = 0. Actually, this assumption is

not necessary for our three estimands to identify a weighted sum of treatment e�ects. If it is

not satis�ed, one still has that WDID, WTC , or WCIC identify

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [min(vd10, v
d
11),max(vd10, v

d
11))wd,

which is a weighted sum of treatment e�ects with some negative weights. Second, the dis-

tribution of treatment should be stable over time in the control group. When it is not, one
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can still obtain some identi�cation results. Firstly, Theorem 3.1 generalizes to non-binary and

ordered treatments taking a �nite number of values. When treatment increases in the control

group, the Wald-DID identi�es a weighted di�erence of the ACRs in the treatment and in

the control group; when treatment decreases in the control group, the Wald-DID identi�es

a weighted average of these two ACRs. The weights are the same as those in Theorem 3.1.

Secondly, the second statement of Theorems 3.2 and 3.3 also generalize to non-binary and

ordered treatments taking a �nite number of values. When the distribution of treatment is

not stable over time in the control group, the ACR in the treatment group can be bounded

under Assumption 5O, or Assumptions 6 and 7.

Theorem 4.4 could easily be extended to continuous treatments. Our three estimators would

then estimate a weighted average derivative similar to that studied in Angrist et al. (2000).

However, non-parametric estimation of the Wald-CIC might be challenging, as one would have

to estimate the function d 7→ Qd in a �rst step.

5 Inference

In this section, we study the asymptotic properties of the estimators corresponding to the

estimands introduced in the previous sections. We focus on the point identi�ed case. Es-

timators of the bounds on average and quantile treatment e�ects in the partially identi�ed

case are considered in de Chaisemartin & D'Haultf÷uille (2015). We restrict ourselves to

repeated cross sections. For now, we suppose that an i.i.d. sample with the same distribution

as (Y,D,G, T,X) is available.

Assumption 12 (Independent and identically distributed observations)

(Yi, Di, Gi, Ti, Xi)i=1,...,n are i.i.d.

Even if we do not observe the same unit twice, independence may be a strong assumption

in some applications: clustering at the group level can induce both cross-sectional and serial

correlation within clusters. However, we can extend some of our results to allow for clustering,

as we discuss below.

5.1 Inference without covariates

Let Igt = {i : Gi = g, Ti = t} (resp. Idgt = {i : Di = d,Gi = g, Ti = t}) and ngt (resp.

ndgt) denote the size of Igt (resp. Idgt) for all (d, g, t) ∈ {0, 1}3. The Wald-DID and Wald-TC
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estimators are simply de�ned by

ŴDID =
1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Yi −

1
n01

∑
i∈I01 Yi + 1

n00

∑
i∈I00 Yi

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di − 1

n01

∑
i∈I01 Di + 1

n00

∑
i∈I00 Di

,

ŴTC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

,

where δ̂d (d ∈ {0, 1}) is de�ned by

δ̂d =
1

nd01

∑
i∈Id01

Yi −
1

nd00

∑
i∈Id00

Yi.

Let F̂Ydgt denote the empirical cdf of Y on the subsample Idgt:

F̂Ydgt(y) =
1

ndgt

∑
i∈Idgt

1{Yi ≤ y}.

Similarly, we estimate the quantile of order q ∈ (0, 1) of Ydgt by F̂
−1
Ydgt

(q) = inf{y : F̂Ydgt(y) ≥
q}. The estimator of the quantile-quantile transform is Q̂d = F̂−1Yd01

◦ F̂Yd00 . Then, the Wald-

CIC estimator is de�ned by

ŴCIC =
1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Q̂Di(Yi)

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

.

Let P̂ (Dgt = d) be the proportion of subjects with D = d in the sample Igt, let Ĥd =

F̂Yd10 ◦ F̂
−1
Yd00

, and let

F̂Y11(d)|S1
=
P̂ (D10 = d)Ĥd ◦ F̂Yd01 − P̂ (D11 = d)F̂Yd11

P̂ (D10 = d)− P̂ (D11 = d)
.

Our estimator of the LQTE of order q for switchers is

τ̂q = F̂−1Y11(1)|S1
(q)− F̂−1Y11(0)|S1

(q).

We derive the asymptotic behavior of our CIC estimators under the following assumption,

which is similar to the one made by Athey & Imbens (2006) for the CIC estimators in sharp

settings.

Assumption 13 (Regularity conditions for the CIC estimators)

S(Y ) is a bounded interval [y, y]. Moreover, for all (d, g, t) ∈ {0, 1}3, FYdgt and FY11(d)|S1
are

continuously di�erentiable with strictly positive derivatives on [y, y].
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Theorem 5.1 below shows that all our estimators are root-n consistent and asymptotically

normal. We also derive the in�uence functions of our estimators. However, because these

in�uence functions take complicated expressions, using the bootstrap might be convenient for

inference. For any statistic T , we let T ∗ denote its bootstrap counterpart. For any root-n

consistent statistic θ̂ estimating consistently θ, we say that the bootstrap is consistent if with

probability one and conditional on the sample,
√
n(θ̂∗−θ̂) converges to the same distribution as

the limit distribution of
√
n(θ̂− θ).11 Theorem 5.1 implies that bootstrap con�dence intervals

are asymptotically valid for all our estimators.

Theorem 5.1 Suppose that Assumptions 1-2, 12 hold and 0 < P (D00 = 1) = P (D01 = 1) <

1. Then

1. If E(Y 2) <∞ and Assumptions 3-4 also hold,

√
n
(
ŴDID −∆

)
L−→ N (0, V (ψDID)) ,

where ψDID is de�ned in Equation (42) in the appendix. Moreover, the bootstrap is

consistent for ŴDID.

2. If E(Y 2) <∞ and Assumption 5 also holds,

√
n
(
ŴTC −∆

)
L−→ N (0, V (ψTC))

where ψTC is de�ned in Equation (43) in the appendix. Moreover, the bootstrap is

consistent for ŴTC .

3. If Assumptions 6, 7 and 13 also hold,

√
n
(
ŴCIC −∆

)
L−→ N (0, V (ψCIC)) ,

√
n (τ̂q − τq)

L−→ N (0, V (ψq,CIC)) ,

where ψCIC and ψq,CIC are de�ned in Equations (44) and (45) in the appendix. More-

over, the bootstrap is consistent for both estimators.

The result is straightforward for the Wald-DID and Wald-TC. Regarding the CIC, our proof

di�ers from the one of Athey & Imbens (2006). It is based on the weak convergence of the

empirical cdfs of the di�erent subgroups, and on a repeated use of the functional delta method.

This approach can be readily applied to other functionals of (FY11(0)|S1
, FY11(1)|S1

). We also

show in the supplementary material how it can be applied to estimate bounds on average and

quantile treatment e�ects in the partially identi�ed case.

11See, e.g., van der Vaart (2000), Section 23.2.1, for a formal de�nition of conditional convergence.
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5.2 Inference with covariates

In this section, we consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands

with covariates derived in Subsection 4.2. For the Wald-DID and Wald-TC, our estimators

are entirely non-parametric.12 For the Wald-CIC, we could de�ne an estimator using a non-

parametric estimator of the conditional quantile-quantile transform Qd,X . However, such an

estimator would be cumbersome to compute. Following Melly & Santangelo (2015), we con-

sider instead an estimator of Qd,X based on quantile regressions. This estimator relies on the

assumption that conditional quantiles of the outcome are linear. However, it does not require

that the e�ect of the treatment be the same for units with di�erent values of their covariates,

contrary to the estimator with covariates suggested in Athey & Imbens (2006).

Let us assume that X ∈ Rr is a vector of continuous covariates. Adding discrete covariates is
easy by reasoning conditional on each corresponding cell. We take an approach similar to, e.g.,

Frölich (2007) by estimating in a �rst step conditional expectations by series estimators. For

any positive integer K, let pK(x) = (p1K(x), ..., pKK(x))′ be a vector of basis functions and

PK = (pK(X1), ..., p
K(Xn)). For any random variable R, we estimate mR(x) = E(R|X = x)

by the series estimator

m̂R(x) = pKn(x)′
(
PKnPKn ′)− PKn (R1, ..., Rn)′ ,

where (.)− denotes the generalized inverse and (Kn)n∈N is a sequence of integers tending

to in�nity at a rate speci�ed below. Following Frölich (2007), for any (g, t) ∈ {0, 1}2 we

estimate mR
gt(x) = E(Rgt|X = x) by m̂R

gt(x) = m̂1{G=g,T=t}R(x)/m̂1{G=g,T=t}(x). mR
dgt(x) =

E(Rdgt|X = x) is estimated similarly. Then our Wald-DID and Wald-TC estimators with

covariates are de�ned by

ŴX
DID =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂Y
01(Xi) + m̂Y

00(Xi)
]

1
n11

∑
i∈I11

[
Di − m̂D

10(Xi)− m̂D
01(Xi) + m̂D

00(Xi)
] ,

ŴX
TC =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂D
10(Xi)δ̂1(Xi)− (1− m̂D

10(Xi))δ̂0(Xi)
]

1
n11

∑
i∈I11

[
Di − m̂D

10(Xi)
] ,

where δ̂d(x) = m̂Y
d01(x)− m̂Y

d00(x).

We then introduce our Wald-CIC estimator with covariates. Suppose that for all (d, g, t, τ) ∈
{0, 1}3 × (0, 1),

FYdgt|X=x = x′βdgt(τ).

12In our Stata package, we also implement estimators relying on the assumption that all the conditional

expectations in WX
DID and WX

TC are linear functions of X and can therefore be estimated through simple

OLS regressions. These estimators might prove useful when the set of covariates is rich and the estimation of

our non-parametric estimators is cumbersome. Asymptotic normality of these estimators follows directly from

standard results on OLS regressions and the Delta method.
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Using the fact that FYdgt|X=x =
∫ 1
0 1{F

−1
Ydgt|X=x(τ) ≤ y}dτ (see, e.g., Chernozhukov et al.,

2010), we obtain

Qd,x(y) = x′βd01

(∫ 1

0
1{x′βd00(τ) ≤ y}dτ

)
.

Besides, some algebra shows that

E [QD10,X(Y10)|X] = mD
10(X)

∫ 1

0
Q1,X(X ′β110(u))du+ (1−mD

10(X))

∫ 1

0
Q0,X(X ′β010(u))du.

Hence, we estimate ŴX
CIC by

ŴX
CIC =

1
n11

∑
i∈I11

[
Yi − m̂D

10(Xi)
∫ 1
0 Q̂1,Xi(X

′
iβ̂110(u))du− (1− m̂D

10(Xi))
∫ 1
0 Q̂0,Xi(X

′
iβ̂010(u))du

]
1
n11

∑
i∈I11

[
Di − m̂D

10(Xi)
] ,

where the estimator of the conditional quantile-quantile transform satis�es

Q̂d,x(y) = x′β̂d01

(∫ 1

0
1{x′β̂d00(τ) ≤ y}dτ

)
,

and β̂dgt(τ) is obtained from a quantile regression of Y on X on the subsample Idgt:

β̂dgt(τ) = arg min
β∈B

∑
i∈Idgt

(τ − 1{Yi −X ′iβ ≤ 0})(Yi −X ′iβ).

Here B denotes a compact subset of Rr including βdgt(τ) for all (d, g, t, τ) ∈ {0, 1}3 × (0, 1).

In practice, instead of computing the whole quantile regression process, we can compute

τ 7→ β̂dgt(τ) on a �ne enough grid and replace integrals by corresponding averages. See Melly

& Santangelo (2015) for a detailed discussion on computational issues.

We prove the asymptotic normality of our estimators under the following assumptions.

Assumption 14 (Regularity conditions for the series estimators)

1. For any (d, g, t, α) ∈ {0, 1}3×{0, 1, 2}, infx∈S(X) P (D = d,G = g, T = t|X = x) > 0 and

x 7→ E(1{D = d}1{G = g}1{T = t}Y α|X = x) is s times continuously di�erentiable

on S(X), with s > 3r.

2. S(X) is a Cartesian product of compact connected intervals on which X has a probability

density function that is bounded away from zero. Moreover E(XX ′) is nonsingular.

3. The series terms pkKn, 1 ≤ k ≤ Kn, are products of polynomials orthonormal with

respect to the uniform weight. Moreover, K
4(s/r−1)
n /n→∞ and K7

n/n→ 0.

Assumption 15 (Regularity conditions for the conditional Wald-CIC estimator)

For all (d, g, t, x, τ) ∈ {0, 1}3 × S(X) × (0, 1), F−1Ydgt|X=x(τ) = x′βdgt(τ), with βdgt(τ) ∈ B, a
compact subset of Rr. Moreover, FYdgt|X=x is di�erentiable, with

0 < inf
(x,y)∈S(X)×S(Y )

fYdgt|X=x(y) ≤ sup
(x,y)∈S(X)×S(Y )

fYdgt|X=x(y) < +∞.
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Assumption 15 implies that Y has a compact support. If its conditional density is not bounded

away from zero, trimming may be necessary as discussed in Chernozhukov, Fernández-Val &

Melly (2013) and Melly & Santangelo (2015).

Theorem 5.2 Suppose that Model (10) and Assumptions 1X-2X, 12 and 14 hold. Then

1. If Assumptions 3X-4X also hold,

√
n
(
ŴX
DID −∆

)
L−→ N

(
0, V (ψXDID)

)
,

where the variable ψXDID is de�ned in Equation (46) in the appendix.

2. If Assumption 5X also holds,

√
n
(
ŴX
TC −∆

)
L−→ N

(
0, V (ψXTC)

)
,

where the variable ψXTC is de�ned in Equation (47) in the appendix.

3. If Assumptions 6X-7X and 15 also hold,

√
n
(
ŴX
CIC −∆

)
L−→ N

(
0, V (ψXCIC)

)
,

where the variable ψXCIC is de�ned in Equation (49) in the appendix.

We prove the asymptotic normality of the Wald-DID andWald-TC estimators using repeatedly

results on two-step estimators involving nonparametric �rst-step estimators, see e.g. Newey

(1994). Proving the asymptotic normality of the Wald-CIC estimator is more challenging. We

have to prove the weak convergence of
√
n
(
β̂dgt(.)− βdgt(.)

)
, seen as a stochastic process, on

the whole interval (0, 1). To our knowledge, this convergence has been established so far only

on [ε, 1−ε], for any ε > 0 (see, e.g., Angrist et al., 2006). Here, this result holds thanks to our

assumptions on the conditional distribution of Y . Finally, note that our Wald-CIC estimator

does not require any �rst-step nonparametric estimator in the special case where P (D10 =

1) = 0. In such a case, asymptotic normality still holds without the regularity conditions in

Assumption 14. Only the nonsingularity of E(XX ′) is needed. In our supplementary material,

we revisit results from Field (2007), where P (D10 = 1) = 0 and where the set of covariates is

very rich.

5.3 Accounting for clustering

In many applications, the i.i.d. condition in Assumption 12 is too strong, because of cross-

sectional or serial dependence within clusters. However, in such instances one can build upon

our previous results to draw inference on the Wald-DID and Wald-TC without covariates, and

on the Wald-CIC without covariates if clusters are of the same size.
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We consider an asymptotic framework where the number of clusters C tends to in�nity while

the sample size within each cluster remains bounded in probability. Let nc = #{i ∈ c}, nc =
1
C

∑C
c=1 nc, nct = #{i ∈ c : Ti = t}, ncdt = #{i ∈ c : Ti = t,Di = d}, Dct = 1

nct

∑
i∈c:Ti=tDi,

Yct = 1
nct

∑
i∈c:Ti=t Yi, and Ycdt = 1

ncdt

∑
i∈c:Ti=t,Di=d

Yi, with the convention that the sums are

equal to zero if they sum over empty sets. Then we can write the estimators of the Wald-DID

and Wald-TC as simple functions of averages of these variables de�ned at the cluster level.

Using the same reasoning as in the proof of Theorem 5.1, we can linearize both estimators,

ending up with

√
C
(
ŴDID −∆

)
=

1√
C

C∑
c=1

nc
nc
ψc,DID + oP (1),

√
C
(
ŴTC −∆

)
=

1√
C

C∑
c=1

nc
nc
ψc,TC + oP (1),

where ψc,DID = 1
nc

∑
i∈c ψi,DID and similarly for ψc,TC . In other words, to estimate the

asymptotic variance of our estimators while accounting for clustering, it su�ces to compute

the average over clusters of the in�uence functions we obtained assuming that observations

were i.i.d, multiply them by nc
nc
, and then compute the variance of this variable over clusters.

Our other estimators cannot be written as functions of variables aggregated at the cluster

level: they depend on the variables of every unit in each cluster. But as long as they can

still be linearized in the presence of clustering, the same argument as above applies. Such a

linearization can be obtained for the Wald-CIC estimator with clusters of same size, because

weak convergence of the empirical cdfs of the di�erent subgroups still holds in this context.13

We conjecture that it can also be obtained when clusters are of random sizes, or with our

estimators including covariates. Proving this last point would nevertheless require to adapt

results on two-step estimators to such a clustering framework. To the best of our knowledge,

no such results have been established yet.

6 Application: returns to education in Indonesia

6.1 Estimation strategy

In 1973-1974, the Indonesian government launched a major primary school construction pro-

gram, the so-called INPRES program. Du�o (2001) uses it to measure returns to education

among men through a fuzzy DID identi�cation strategy. In her analysis, groups are districts,

13To simplify, let us ignore the di�erent subgroups and let us consider the standard empirical process on

Y . Let Yc = (Yc1, ...., Ycnc)
′, where Yci denotes the outcome variable of individual i in cluster c. Because

the (Yc)c=1...C are i.i.d., its multivariate empirical process converges to a multivariate gaussian process. The

standard empirical process on Y can be written as the average over the nc components of this multivariate

process. Therefore, it also converges to a gaussian process.
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the administrative unit at which the program was implemented. This de�nition of groups

could violate Assumption 1 if the program generated endogenous migration between districts.

The author therefore uses district of birth instead of district of residence. She then constructs

two �super groups� of treatment and control districts, by regressing the number of schools

constructed on the number of school-age children in each district. Treatment districts are

those with a positive residual in that regression, as they received more schools than what

their population predicts. She also uses the fact that exposure to treatment varied across

cohorts. Children born between 1968 and 1972 entered primary school after the program was

launched, while children born between 1957 and 1962 had �nished primary school by that

time.

However, the INPRES program explains a small fraction of the di�erences in increases in

years of schooling between districts. A district-level regression of the increase in years of

schooling between these two groups of cohorts on the number of primary schools constructed

per school-age children has an R-squared of 0.03 only. The INPRES program was not the only

school construction program taking place at that time: between 1973 and 1983, the number of

primary, middle, and high schools in the country respectively increased by 96, 94, and 139%.

Including the change in the number of middle and high schools in the district-level regression

increases its R-squared to 0.14, but still leaves most of the variation unexplained.

Because of this, the results in Du�o's paper rely on the assumption that returns to education

are homogeneous between districts. The author �rst uses a simple Wald-DID with her two

groups of districts and cohorts to estimate returns to education. Under Assumptions 1-3

and 4O, one can show that this simple Wald-DID is equal to 0.47
0.11ACR1 − 0.36

0.11ACR0, where

ACR1 and ACR0 respectively denote the ACR parameters we introduced in Section 4.3 in the

treatment and in the control group, and where the weights can be computed from Table 3.14

If ACR1 6= ACR0, this simple Wald-DID could lie far from both ACR1 and ACR0. Then,

the author considers richer speci�cations. All of them include cohort and district of birth

�xed e�ects. We show in the supplementary material (see Theorem S2) that such regressions

estimate a weighted sum of switchers returns to education across districts, with potentially

many negative weights. We estimate the weights received by each district in her data, and

�nd that almost half of districts receive a negative weight, with negative weights summing up

to -3.28. Here again, if switchers' returns are heterogeneous across districts with positive and

negative weights, these regression coe�cients could lie very far from returns in any district.

Therefore, these richer speci�cations also rely on the assumption that returns to education

are homogeneous across districts.

This assumption is not warranted in this context. As one can see in Table 3, educational

attainment in the older cohort is substantially higher in control than in treatment districts,

implying that the supply of skilled labor is higher there. Returns to education could be

14Theorem 3.1 can easily be generalized to non-binary, ordered treatments.
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lower in control districts if the two groups face the same demand for skilled labor. On the

other hand, this di�erence in educational attainment might also indicate a higher level of

economic development in control districts, in which case demand for skilled labor and returns

to education could be higher there.

Table 3: Average number of years of education completed

Cohort 0 Cohort 1 Evolution s.e.

Groups in Du�o (2001)

Treatment districts 8.02 8.49 0.47 (0.070)

Control districts 9.40 9.76 0.36 (0.038)

New groups

Treatment districts 8.65 9.64 0.99 (0.082)

Control districts 9.60 9.55 -0.05 (0.097)

Notes. This table reports the evolution of average years of schooling between cohorts 0 and 1 in the treatment

and controls groups used by Du�o (2001) and in our new treatment and control groups. Standard errors are

clustered at the district level.

To avoid relying on the assumption that treatment e�ects are homogeneous between districts,

we use a di�erent statistical procedure from that used by Du�o to classify districts into a

treatment and a control group. This procedure should classify as controls only districts with a

stable distribution of education. Any classi�cation method leads us to make two types of errors:

classify some districts where the distribution of education remained constant as treatments

(type 1 error); and classify some districts where this distribution changed as controls (type 2

error). Type 1 errors are innocuous. For instance, if Assumptions 3 and 4O are satis�ed, all

control districts have the same evolution of their expected outcome. Misclassifying some as

treatment districts leaves the Wald-DID estimator unchanged, up to sampling error. On the

other hand, type 2 errors are a more serious concern. They lead us to include districts where

the true distribution of education was not stable in our super control group, thus violating

one of the requirements of Theorem 4.1.

We therefore choose a method based on chi-squared tests with very liberal level. Speci�cally,

we assign a district to our control group if the p-value of a chi-squared test comparing the

distribution of education between the two cohorts in that district is greater than 0.5. If that

p-value is lower than 0.5 and the average number of years of education increased in that

district, we assign it to our treatment group. We end up with control and treatment groups

respectively made up of 64 and 123 districts. We exclude from the analysis 97 districts with

a p-value lower than 0.5 and where years of education decreased. As shown in Section 4.1,
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we could gather them together to form a third super group, and use results from Theorem

4.1 to estimate returns to education. However, doing this hardly changes our point estimates.

We therefore stick to two super groups, to keep the presentation as simple as possible and to

follow Du�o (2001) who also has two super treatment and control groups.

As shown in Table 3, in treatment districts the younger cohort completed one more year of

education than the older one, while in control districts the two cohorts completed almost the

same number of years of education. In treatment districts, the distribution of education in

the younger cohort almost stochastically dominates that in the older cohort, as one can see

from Table 4. The college completion rate is 2.5 percentage points higher in the older than

in the younger cohort, but that di�erence is fairly small. Moreover, in control districts, the

distribution of education is almost the same between the two cohorts. The primary school and

college completion rate are respectively 2.6 percentage points higher and 3.3 percentage points

lower in the younger cohort, but these di�erences are small too. Overall, the two requirements

of Theorem 4.4 are close to being satis�ed. We argue below that the minor departures from

these two requirements that can be seen in Table 4 are unlikely to drive our results.

Table 4: Evolution of the distribution of education

Cohort 0 Cohort 1 Evolution s.e.

Treatment group

Completed primary school 0.815 0.931 0.116 (0.008)

Completed middle school 0.531 0.676 0.145 (0.011)

Completed high school 0.406 0.491 0.085 (0.013)

Completed undergrad 0.094 0.069 -0.025 (0.006)

N 17471

Control group

Completed primary school 0.877 0.904 0.026 (0.008)

Completed middle school 0.640 0.656 0.016 (0.012)

Completed high school 0.510 0.489 -0.021 (0.013)

Completed undergrad 0.104 0.071 -0.033 (0.006)

N 4868

Notes. This table reports the evolution of schooling between cohorts 0 and 1 by broad categories in our new

treatment and control groups. Standard errors are clustered at the district level.

Finally, we consider two placebo experiments to assess the plausibility of the common trends

assumptions underlying our estimators with our �super groups�. First, following Du�o (2001),
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we compare years of schooling and wages for men born between 1957 and 1962 and those

born between 1951 and 1956 (cohort -1). Then, we compare men born between 1951 and

1956 and those born between 1945 and 1950 (cohort -2). Results lend strong support to our

identi�cation strategy. The di�erence in average years of education between the two groups

of districts is stable in the three older cohorts, but it is much larger for the younger cohort.

Accordingly, the di�erence in average wages between the two groups of districts is also very

stable in the three older cohorts, but it is much larger for the younger cohort. This remains

true when instead of comparing average wages we estimate the numerator of the Wald-TC and

of the Wald-CIC. While the placebo estimators are small and insigni�cant, the true estimators

are large and signi�cant. Theorem 4.1 relies on the assumption that G ⊥⊥ T . This assumption
fails to hold here: the distribution of districts is not perfectly stable between the two cohorts.

However, our placebo tests suggest that our common trend assumptions are satis�ed directly

at the �super group� level, thus implying that deviations from G ⊥⊥ T are not a serious concern

for our results.

Table 5: Placebo tests

Cohort -2 versus -1 Cohort -1 versus 0 Cohort 0 versus 1

DID schooling 0.108 -0.006 1.030

(0.191) (0.160) (0.127)

DID wages 0.050 0.002 0.164

(0.035) (0.026) (0.028)

Numerator Wald-TC 0.024 -0.012 0.103

(0.026) (0.021) (0.028)

Numerator Wald-CIC 0.023 -0.009 0.099

(0.027) (0.021) (0.028)

N 14452 19938 22339

Notes. This table reports placebo and true estimates comparing the evolution of education and wages from

cohort -2 to 1 in our two groups of districts. Standard errors are clustered at the district level. For the

numerator of the Wald-CIC, clustered standard errors are obtained by block bootstrap.

6.2 Results

First, we compare the weighted average of Wald-DIDs in Du�o (2001) to a simple Wald-DID

with our control groups. In Table 6, we estimate the same 2SLS regression as that reported

in the �rst column and third line of Table 7 in Du�o (2001), and we obtain returns of 7.3%
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per year of schooling.15 Then, we estimate the Wald-DID with our groups and �nd returns

of 15.9% per year of schooling. This coe�cient is signi�cantly di�erent from the previous

one (t-stat=-2.15), and it is also more precisely estimated: its standard error is 37% smaller,

presumably because it relies on a much larger �rst stage. While the estimator in Du�o

(2001) is only signi�cant at the 10% level (t-stat=1.68),16 our Wald-DID is signi�cant at any

conventional level. Note that the di�erence between these two estimators does not come from

the fact they are estimated on di�erent samples. Estimating Du�o's regression on our sample

of 22,339 observations actually yields a smaller coe�cient than her original estimate, which is

still signi�cantly di�erent from ours. The di�erence between these two estimates could stem

from the fact that districts where years of schooling increased less also have higher returns

to education. This would bias downward the estimate in Du�o (2001), while our Wald-DID

estimator does not rely on any treatment e�ect homogeneity assumption.

On the other hand, the validity of our Wald-DID still relies on Assumption 4O, which might

not be plausible in this context. For instance, under Assumption 4O the wage gap between

high-school graduates in cohort 0 and 1 should remain the same if they had only completed

primary school. Had they only completed primary school, high school graduates of both

cohorts would have joined the labor market earlier, and would have had more labor market

experience at the time we compare their wages. The wage gap between the two cohorts might

then have been lower, because returns to experience tend to be decreasing (see e.g. Mincer

& Jovanovic, 1979).17 The data lends some support to this hypothesis. In the control group,

while high-school graduates in cohort 1 earn 54% less than their cohort 0 counterpart, the gap

is only 20% for non-graduates, and the di�erence is signi�cant (t-stat=-7.64). This di�erence

could partly arise from selection e�ects: non-graduates di�er from high school graduates, so

the cohort gap among non-graduates might not be equal to the cohort gap we would have

observed among graduates had they not graduated. Still, it seems unlikely that selection can

fully account for this almost threefold di�erence.

Our Wald-TC and Wald-CIC estimators do not rely on Assumption 4O. They lie in-between

the estimate in Du�o (2001) and our Wald-DID. They do not di�er signi�cantly from the

coe�cient in Du�o (2001), but this is partly because this coe�cient is imprecisely estimated.

Using the Wald-TC estimator, one can for instance reject that returns to education are lower

than 6% at the 5% level. On the other hand, the Wald-TC and Wald-CIC signi�cantly di�er

from the Wald-DID, with t-stats respectively equal to -3.52 and -3.66. The Wald-DID and

15Our coe�cient di�ers very slightly from that of the author because we were not able to obtain exactly her

sample of 31,061 observations.
16This point estimate was signi�cant at the 5% level in the original paper. But once clustering standard

errors at the district level, which has become standard practice in DID analysis since Bertrand et al. (2004),

it loses some statistical signi�cance.
17We follow Mincer & Jovanovic (1979) and estimate a mincerian regression of wages on education, education

squared, age, and age squared in our data. We also �nd a signi�cantly negative coe�cient of age squared.
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Wald-TC rely on di�erent �common trends� assumptions between districts (Assumptions 3 and

5O). But challenging one while defending the other seems di�cult as these two assumptions are

substantively very close. On the other hand, the Wald-TC and Wald-CIC do not require that

the wage gap between cohorts be constant across potential levels of education (Assumption

4O). As discussed in the previous paragraph, this assumption is not warranted in this context.

We therefore choose the Wald-TC and Wald-CIC as our preferred estimators.18

Table 6: Returns to education

Du�o (2001) WDID WTC WCIC OLS

Returns to education 0.073 0.159 0.104 0.100 0.077

(0.043) (0.028) (0.027) (0.027) (0.001)

N 30828 22339 22339 22339 30828

Notes. This table reports estimates of returns to schooling. Standard errors are clustered at the district level.

For the Wald-TC and Wald-CIC, clustered standard errors are obtained by block bootstrap.

As shown in Theorem 4.4, the parameter we estimate is a weighted average of the e�ect of

increasing years of education from d − 1 to d, over all possible values of d. The weights wd

can be estimated. They are shown in Figure 1. Our parameter puts the most weight on the

last years of primary school, on middle-school years, and on high-school years. Because in

the treatment group the distribution of education in young cohorts does not dominate that in

old cohorts, some weights are negative. But negative weights are fairly small, and sum up to

−0.14. Therefore, failure of stochastic dominance is unlikely to drive our results.

18To estimate the numerator of the Wald-CIC, we do not estimate Qd for each year of schooling. Instead,

we group schooling into 5 categories (did not complete primary school, completed primary school, completed

middle school, completed high school, completed college). Thus, we avoid estimating quantile-quantile trans-

forms on a very small number of units. To be consistent, we also use this de�nition to estimate the numerator

of the Wald-TC. Using years of schooling hardly changes our Wald-TC estimator.
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Figure 1: Weight received by each year of education.

6.3 Robustness checks

As a �rst robustness check, we investigate whether misclassi�cations of treatment districts as

controls can bias our results. To do so, we construct our groups again using a more liberal

criterion. Speci�cally, we assign a district to the control group if the p-value of the chi-squared

test is greater than 0.6. If that p-value is lower than 0.6 and the average number of years of

education increased in that district, we assign it to the treatment group. The control group

we obtain this way is 30% smaller than the previous one, which increases the variance of our

estimators. It also has a more stable distribution of education: a chi-squared test does not

reject the assumption that this distribution is the same between the two cohorts. On the other

hand, using this new control group leaves our estimates essentially unchanged: the Wald-DID,

Wald-TC, and Wald-CIC are now respectively equal to 15.8, 9.8, and 9.6%. This suggests that

the small changes in the distribution of education in our control group shown in Table 4 do

not drive our results.

As a second robustness check, we investigate whether the statistical procedure we use to form

our groups biases our estimates. Our method uses the same data twice, to form groups and

to estimate returns to education. It therefore shares some similarities with the endogenous

strati�cation methods studied in Abadie et al. (2013), which can produce �nite sample biases.

We conduct a simulation study to investigate the determinants of the bias. We �nd that �nite

sample bias is increasing with the correlation between the treatment and the unobserved

determinants of the outcome,19 decreasing with the size of the groups where the �rst stage

chi-squared tests are conducted, and decreasing with the change of treatment intensity in the

19An important di�erence with the methods studied in Abadie et al. (2013) is that our method does not

use the outcome but the treatment to construct groups. Therefore, our method produces biased estimates

only if the treatment is strongly correlated with the unobserved determinants of the outcome. If treatment is
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population. To detect potential biases, Abadie et al. (2013) suggest comparing the baseline

estimator to a split-sample estimator where half of the sample is used to construct groups, while

the other half is used to compute the estimator. Our simulations also suggest this is a good

way to assess the seriousness of the problem. With DGPs for which our procedure generates

little or no bias, the split-sample and baseline estimators are very close from each other; on

the other hand, with DGPs for which our procedure generates more bias, the split-sample

and baseline estimators are far away. Therefore, we re-estimate 200 times our Wald-DID,

Wald-TC, and Wald-CIC estimators using a split-sample procedure. The average of the split-

sample estimators are respectively 17.7%, 8.5%, and 8.0%. The three split-sample estimators

are not signi�cantly di�erent and less than 20% away from the original estimators. Overall,

endogenous strati�cation does not seem to be a strong concern in this application.

As a last robustness check, we investigate whether accounting for the sampling variance in-

duced by our classi�cation procedure would greatly a�ect our conclusions. Doing so is not

straightforward. A natural idea is to use a two-step bootstrap where in a �rst step we boot-

strap individuals within each cohort of each district and run our procedure to form our control

and treatment groups, while in a second step we bootstrap districts and estimate the Wald-

DID, the Wald-TC, and the Wald-CIC. In practice, this procedure does not work well. Under

the null that the distribution of education did not change over time, one can show that the

bootstrap statistics we use in our chi-squared tests do not have an approximate chi-squared

distribution, but are approximately distributed as sums of squares of N (0, 2) variables.20 We

therefore classify much fewer districts as controls than in the original sample. Dividing the

bootstrap test statistics by two does not solve the problem, because the modi�ed statistic then

has a di�erent distribution from that of the original statistic under the alternative hypothesis.

Instead, we opt for a modi�ed version of the two-step bootstrap: as in the original sample

we classify 23% of districts as controls, in each bootstrap replication we classify the 23% of

districts with the lowest chi-squared statistic as controls. The standard errors of our three

estimators are now respectively equal to 0.044, 0.045, and 0.045. Thus, accounting for the

sampling variance in our �rst step procedure seems to increase notably the standard errors

of our estimators, but also leaves our main conclusions unchanged. For instance, our Wald-

DID estimator would still be signi�cantly di�erent from the Wald-TC and Wald-CIC with

these larger standard errors. However, proving that this procedure indeed reproduces well the

distribution of our estimators goes beyond the scope of this paper and is left for future work.

This application di�ers from other applications of the fuzzy DID method in two important

ways. First, it makes use of individual-level data. Many applications of the fuzzy DID method

we found in our literature review directly use aggregate data at the county × year or state ×
year level. Second, the set of districts where education did not change between the two cohorts

exogenous or only weakly endogenous, it does not produce biases.
20Because districts are of �nite size, the distribution of the test statistic is not exactly equal to its asymptotic

distribution.
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is not known to the analyst and needs to be estimated. In many applications of the fuzzy DID

method the set of groups where treatment is stable is known to the analyst (examples include

Draca et al., 2011, Field, 2007, or Gentzkow et al., 2011). In our supplementary material,

we revisit Gentzkow et al. (2011) who use aggregate data and where the set of groups where

treatment is stable is known. We show that the methods we propose in this paper can also

be applied to this type of data, and that they can lead to substantially di�erent conclusions

from those reached by the authors using existing methods.

7 Conclusion

This paper studies treatment e�ects estimation in fuzzy DID designs. It makes the following

contributions. First, we show that the Wald-DID is equal to a local average treatment e�ect

(LATE) only if two strong assumptions are satis�ed: treatment e�ects should be constant

over time, and when treatment increases both in the treatment and in the control group treat-

ment e�ects should be homogeneous in the two groups. Second, we propose two alternative

estimators for the same LATE when the distribution of treatment is stable over time in the

control group. Our �rst estimator is a natural generalization of DID to the fuzzy case. Our

second estimator generalizes the changes-in-changes estimator introduced by Athey & Imbens

(2006). Our estimators do not require that treatment e�ects be stable over time. Third, we

show that under the same assumptions as those underlying our estimators, the same LATE

can be bounded when the distribution of treatment changes over time in the control group.

When using the DID method with fuzzy groups, it is crucial to �nd a control group where

treatment is stable over time to achieve point identi�cation without imposing treatment e�ect

homogeneity assumptions. In such instances, three estimators are available: the Wald-DID

and our two alternative estimators. Using one or the other estimator can make a substantial

di�erence, as we show in our application.
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A Main proofs

The lemmas pre�xed by S are stated and proven in our supplementary material (see de Chaise-

martin & D'Haultf÷uille, 2015). For any Θ ⊂ Rk, let
◦
Θ denote its interior and let C0(Θ) and

C1(Θ) denote respectively the set of continuous functions and the set of continuously di�eren-

tiable functions with strictly positive derivative on Θ. We most often use these notations with

Θ = S(Y ), in which cases we simply denote these sets by C0 and C1 respectively. Finally, for
any (d, g, t) ∈ S(D)×S(G)×S(T ), let pgt = P (G = g, T = t), pdgt = P (D = d,G = g, T = t),

pd|gt = P (Dgt = d), and Fdgt = FYdgt .

Theorem 3.1

Proof when p1|01 ≥ p1|00

Assume p1|01 ≥ p1|00. By Assumption 2, p1|11 > p1|10. Therefore, the threshold model on D

and Assumption 1 imply that

vg1 ≤ v00, for g ∈ {0, 1}. (12)

Then, it follows from Model (1) and Assumption 1 that

p1|g1 − p1|g0 = P (V ≥ vg1|T = 1, G = g)− P (V ≥ v00|T = 0, G = g)

= P (V ∈ [vg1, v00)|G = g). (13)

For any g ∈ {0, 1},

E(Yg1)− E(Yg0)

= E(hD(UD, 1)|G = g, T = 1)− E(hD(UD, 0)|G = g, T = 0)

= E(h1(U1, 1)|G = g, V ≥ vg1)P (V ≥ vg1|G = g) + E(h0(U0, 1)|G = g, V < vg1)P (V < vg1|G = g)

− E(h1(U1, 0)|G = g, V ≥ v00)P (V ≥ v00|G = g)− E(h0(U0, 0)|G = g, V < v00)P (V < v00|G = g)

= E(h1(U1, 1)− h0(U0, 1)|G = g, V ∈ [vg1, v00))P (V ∈ [vg1, v00)|G = g)

+ E(h1(U1, 1)− h1(U1, 0)|G = g, V ≥ v00)P (V ≥ v00|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g, V < v00)P (V < v00|G = g)

= E(Yg1(1)− Yg1(0)|V ∈ [vg1, v00))P (V ∈ [vg1, v00)|G = g)

+ E(h1(U1, 1)− h1(U1, 0)|G = g, V ≥ v00)P (V ≥ v00|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g, V < v00)P (V < v00|G = g)

= E(Yg1(1)− Yg1(0)|V ∈ [vg1, v00))P (V ∈ [vg1, v00)|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g). (14)

The �rst, second, third, fourth, and �fth equalities respectively follow from Model (1), Model

(1) and Assumption 1, Equation (12), Model (1) and Assumption 1, and Assumption 4.
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Combining Equation (14) and Assumption 3 imply that

DIDY =E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

−E(Y01(1)− Y01(0)|S0)P (S0|G = 0).

Dividing each side by DIDD and using Equation (13) yields the result.

Proof when p1|01 < p1|00

Assume p1|01 < p1|00. Equation (14) still holds for g = 1, but not for g = 0 because v00 < v01.

On the other hand, a reasoning similar to that we used to derive Equations (13) yields

p1|00 − p1|01 = P (S0|G = 0). (15)

Moreover,

E(Y01)− E(Y00)

= E(h1(U1, 1)|G = 0, V ≥ v01)P (V ≥ v01|G = 0) + E(h0(U0, 1)|G = 0, V < v01)P (V < v01|G = 0)

− E(h1(U1, 0)|G = 0, V ≥ v00)P (V ≥ v00|G = 0)− E(h0(U0, 0)|G = 0, V < v00)P (V < v00|G = 0)

= −E(h1(U1, 1)− h0(U0, 1)|G = 0, V ∈ [v00, v01))P (V ∈ [v00, v01)|G = 0)

+ E(h1(U1, 1)− h1(U1, 0)|G = 0, V ≥ v00)P (V ≥ v00|G = 0)

+ E(h0(U0, 1)− h0(U0, 0)|G = 0, V < v00)P (V < v00|G = 0)

= −E(Y01(1)− Y01(0)|V ∈ [v00, v01))P (V ∈ [v00, v01)|G = 0)

+ E(h0(U0, 1)− h0(U0, 0)|G = 0). (16)

The �rst, second, and third equalities respectively follow from Model (1) and Assumption 1,

v00 < v01, Model (1) and Assumption 1 and 4. Taking the di�erence between Equation (14)

with g = 1 and Equation (16) yields

DIDY =E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

+E(Y01(1)− Y01(0)|S0)P (S0|G = 0).

Dividing each side of the previous display by DIDD and using Equations (13) and (15) yields

the result. �

Theorem 3.2

Proof of 1

Following the same steps as those used to reach the last but one equality in Equation (14),

we obtain

E(Y11)− E(Y10)

= E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

+ E(h1(U1, 1)− h1(U1, 0)|G = 1, V ≥ v00)P (V ≥ v00|G = 1)

+ E(h0(U0, 1)− h0(U0, 0)|G = 1, V < v00)P (V < v00|G = 1). (17)
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Then,

δ1 = E(Y101)− E(Y100)

= E(h1(U1, 1)|G = 0, V ≥ v00)− E(h1(U1, 0)|G = 0, V ≥ v01)

= E(h1(U1, 1)− h1(U1, 0)|G = 0, V ≥ v00). (18)

The second equality follows from Model (1) and Assumption 1. The third one follows from

the fact that p1|01 = p1|00 combined with Assumption 1 implies that {G = 0, V ≤ v01} =

{G = 0, V ≤ v00}.

Similarly,

δ0 = E(h0(U0, 1)− h0(U0, 0)|G = 0, V < v00). (19)

Finally, the result follows combining Equations (17), (18), (19), and Assumption 5, once noted

that p1|10 = P (V ≥ v00|G = 1) and P (S1|G = 1) = p1|11 − p1|10.

Proof of 2

We only prove that W TC is a lower bound when λ00 > 1. The proofs for the upper bound

and when λ00 < 1 are symmetric.

We have

E(Y11(1)− Y11(0)|S1)P (S1|G = 1)

= E(Y11)− E(Y10)

− E(h1(U1, 1)− h1(U1, 0)|G = 1, V ≥ v00)P (V ≥ v00|G = 1)

− E(h0(U0, 1)− h0(U0, 0)|G = 1, V < v00)P (V < v00|G = 1)

= E(Y11)− E(Y10)

− E(h1(U1, 1)− h1(U1, 0)|G = 0, V ≥ v00)P (V ≥ v00|G = 1)

− E(h0(U0, 1)− h0(U0, 0)|G = 0, V < v00)P (V < v00|G = 1)

= E(Y11)− E(Y10)

− (E(Y01(1)|V ≥ v00)− E(Y100))p1|10

− (E(Y01(0)|V < v00)− E(Y000))p0|10.

The �rst, second, and third equalities respectively follow from Equation (17), Assumption 5,

and Model (1) combined with Assumption 1.

It follows from the last display that the proof will be complete if we can show that δ1 and δ0 are

respectively upper bounds for E(Y01(1)|V ≥ v00)−E(Y100) and E(Y01(0)|V < v00)−E(Y000).
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When λ00 > 1, it follows from Model (1) and Assumption 1 that v00 < v01. Then, we have

P (V ≥ v01|G = 0, T = 1, V ≥ v00) =
P (V ≥ v01|G = 0, T = 1)

P (V ≥ v00|G = 0, T = 1)

=
P (V ≥ v01|G = 0, T = 1)

P (V ≥ v00|G = 0, T = 0)

=
p1|01

p1|00

= λ01, (20)

where the second equality follows from Assumption 1. Therefore,

E(Y01(1)|V ≥ v00) = λ01E(Y01(1)|V ≥ v01) + (1− λ01)E(Y01(1)|V ∈ S0)

≤ λ01E(Y101) + (1− λ01)y =

∫
ydF 101(y). (21)

This proves that δ1 is an upper bound for E(Y01(1)|V ≥ v00)− E(Y100).

Similarly,

P (V < v00|G = 0, T = 1, V < v01) = 1/λ00,

and

E(Y001) = 1/λ00E(Y01(0)|V < v00) + (1− 1/λ00)E(Y01(0)|V ∈ S0).

Following Horowitz & Manski (1995), the last display implies that

E(Y01(0)|V < v00) ≤
∫
ydF 001(y).

This proves that δ0 is an upper bound for E(Y01(0)|V < v00)− E(Y000). �

Lemma 3.1

We only prove the formula for d = 0, the reasoning being similar for d = 1.

Using the same steps as those used to prove Equations (20) and (21) , one can show that

P (S1|G = 1, T = 1, V < v00) =
p0|10 − p0|11

p0|10

and

FY11(0)|V <v00(y) =
p0|10 − p0|11

p0|10
FY11(0)|S1

(y) +
p0|11

p0|10
F011(y).

Therefore,

FY11(0)|S1
(y) =

p0|10FY11(0)|V <v00(y)− p0|11F011(y)

p0|10 − p0|11
. (22)
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Then, we show that for all y ∈ S(Y11(0)|V < v00),

FY11(0)|V <v00 = F010 ◦ F−1000 ◦ FY01(0)|V <v00 . (23)

Assumption 1 implies that U0 ⊥⊥ T |G,V < v00. As a result, for all (g, t) ∈ {0, 1}2,

FYgt(0)|V <v00(y) = P (h0(U0, t) ≤ y|G = g, T = t, V < v00)

= P (U0 ≤ h−10 (y, t)|G = g, V < v00)

= FU0|G=g,V <v00(h−10 (y, t)).

The second point of Assumption 7 combined with Assumptions 1 and 6 implies that FU0|G=g,V <v00

is strictly increasing. Hence, its inverse exists and for all q ∈ (0, 1),

F−1Ygt(0)|V <v00(q) = h0

(
F−1U0|G=g,V <v00

(q), t
)
.

This implies that for all y ∈ S(Yg1(0)|V < v00),

F−1Yg0(0)|V <v00 ◦ FYg1(0)|V <v00(y) = h0(h
−1
0 (y, 1), 0). (24)

By Assumption 7, we have

S(Y010) = S(Y000)

⇒ S(Y10(0)|V < v00) = S(Y00(0)|V < v00)

⇒ S(h0(U0, 0)|V < v00, G = 1, T = 0) = S(h0(U0, 0)|V < v00, G = 0, T = 0)

⇒ S(U0|V < v00, G = 1) = S(U0|V < v00, G = 0)

⇒ S(h0(U0, 1)|V < v00, G = 1, T = 1) = S(h0(U0, 1)|V < v00, G = 0, T = 1)

⇒ S(Y11(0)|V < v00) = S(Y01(0)|V < v00),

where the third and fourth implications are obtained combining Assumptions 1 and 6. Once

combined with Equation (24), the previous display implies that for all y ∈ S(Y11(0)|V < v00),

F−1Y10(0)|V <v00 ◦ FY11(0)|V <v00(y) = F−1Y00(0)|V <v00 ◦ FY01(0)|V <v00(y).

This proves Equation (23), because {V < v00, G = g, T = 0} = {D = 0, G = g, T = 0}.

Finally, we show that

FY01(0)|V <v00(y) = λ00F001(y) + (1− λ00)FY01(0)|S0
(y). (25)

Suppose �rst that λ00 ≤ 1. Then, v01 ≤ v00 and S0 = {V ∈ [v01, v00), G = 0}. Moreover,

reasoning as for P (S1|G = 1, V < v00), we get

λ00 =
P (V < v01|G = 0)

P (V < v00|G = 0)
= P (V < v01|G = 0, V < v00)

FY01(0)|V <v00(y) = λ00F001(y) + (1− λ00)FY01(0)|S0
(y).
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If λ00 > 1, v01 > v00 and S0 = {V ∈ [v00, v01), G = 0}. We then have

1/λ00 = P (V < v00|G = 0, V < v01)

F001(y) = 1/λ00FY01(0)|V <v00(y) + (1− 1/λ00)FY01(0)|S0
(y),

so Equation (25) is also satis�ed.

The lemma follows by combining (22), (23) and (25). �

Theorem 3.3

Proof of 1

The proof follows from Lemma 3.1: λ00 = λ01 = 1 when pd|00 = pd|01 > 0.

Proof of 2

Construction of the bounds.

We only establish the validity of the bounds for FY11(0)|S1
(y). The reasoning is similar for

FY11(1)|S1
(y). Bounds for ∆ and τq directly follow from those for the cdfs.

We start considering the case where λ00 < 1. We �rst show that in such instances, 0 ≤
T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (26)

G0(T0) is included between 0 and 1 if and only if

−λ00F001

1− λ00
≤ T0 ≤

1− λ00F001

1− λ00
,

while C0(T0) is included between 0 and 1 if and only if

H−10 (λ10F011)− λ00F001

1− λ00
≤ T0 ≤

H−10 (λ10F011 + (1− λ10))− λ00F001

1− λ00
.

Since −λ00F001/(1− λ00) ≤ 0 and (1− λ00F001)/(1− λ00) ≥ 1, T0, G0(T0) and C0(T0) are all

included between 0 and 1 if and only if

M0

(
H−10 (λ10F011)− λ00F001

1− λ00

)
≤ T0 ≤ m1

(
H−10 (λ10F011 + (1− λ10))− λ00F001

1− λ00

)
. (27)

Composing each term of these inequalities by M0(.) and then by m1(.) yields Equation (26),

since M0(T0) = m1(T0) = T0 and M0 ◦m1 = m1 ◦M0.

Now, when λ00 < 1, G0(T0) is increasing in T0, so C0(T0) as well is increasing in T0. Combining

this with (26) implies that for every y′,

C0(T0)(y
′) ≤ C0(T0)(y

′) ≤ C0(T0)(y
′). (28)
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Because C0(T0)(y) is a cdf,

C0(T0)(y) = inf
y′≥y

C0(T0)(y
′) ≤ inf

y′≥y
C0(T0)(y

′) = FCIC,0(y).

This proves the result for the upper bound. The result for the lower bound follows similarly.

Let us now turn to the case where λ00 > 1. Using the same reasoning as above, we get that

G0(T0) and C0(T0) are included between 0 and 1 if and only if

λ00F001 − 1

λ00 − 1
≤ T0 ≤

λ00F001

λ00 − 1
,

λ00F001 −H−10 (λ10F011 + (1− λ10))
λ00 − 1

≤ T0 ≤
λ00F001 −H−10 (λ10F011)

λ00 − 1
.

The inequalities in the �rst line are not binding since they are implied by those on the second

line. Thus, we also get (27). Hence, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (29)

Besides, when λ00 > 1, G0(T0) is decreasing in T0, so C0(T0) is also decreasing in T0. Combin-

ing this with Equation (29) implies that for every y, Equation (28) holds as well. This proves

the result.

Sketch of the proof of sharpness.

The full proof is in the supplementary material (see de Chaisemartin & D'Haultf÷uille, 2015).

We only consider the sharpness of FCIC,0, the reasoning being similar for the upper bound.

The proof is also similar and actually simpler for d = 1. The corresponding bounds are proper

cdf, so we do not have to consider converging sequences of cdf as we do in case b) below.

a. λ00 > 1. We show that if Assumptions 7-9 hold, then FCIC,0 is sharp. For that purpose,

we construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vGT };

(ii) (Ũ0, Ṽ ) ⊥⊥ T |G;

(iii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iv) F
h̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v00,v01) = T 0.

(i) ensures that Model (1) is satis�ed on the observed data. Because we can always de�ne

Ỹ (0) as h̃0(Ũ0, T ) when D = 1 without contradicting the data and the model, (i) is actually

su�cient for Model (1) to hold globally, not only on the observed data. (ii) and (iii) ensure that

Assumptions 1 and 6 hold. Finally, (iv) ensures that the DGP corresponding to (h̃0, Ũ0, Ṽ )

rationalizes the bound.
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The construction of h̃0, Ũ0, and Ṽ is long, so its presentation is deferred to the supplementary

material.

b. λ00 < 1. The idea is similar as in the previous case. A di�erence, however, is that when

λ00 < 1, T 0 is not a proper cdf, but a defective one, since limy→y T 0(y) < 1. As a result, we

cannot de�ne a DGP such that T̃0 = T 0, However, by Lemma S2, there exists a sequence (T k0)k

of cdf such that T k0 → T 0, G0(T
k
0) is an increasing bijection from S(Y ) to (0, 1) and C0(T

k
0) is

increasing and onto (0, 1). We can then construct a sequence of DGP (h̃k0(., 0), h̃k0(., 1), Ũk0 , Ṽ
k)

such that Points (i) to (iii) listed above hold for every k, and such that T̃ k0 = T k0. Since T
k
0(y)

converges to T 0(y) for every y in
◦
S(Y ), we thus de�ne a sequence of DGP such that T̃ k0 can be

arbitrarily close to T 0 on
◦
S(Y ) for su�ciently large k. Since C0(.) is continuous, this proves

that FCIC,0 is sharp on
◦
S(Y ). This construction is long, so its exposition is deferred to the

supplementary material. �

Theorem 3.4

Proof of 1

p1|00 = p1|10 implies that WDID = WTC . Therefore, the proof will be complete if we can show

that WDID = E(Y11(1)− Y11(0)|D = 1). On that purpose, notice that the outcome Equation

of Model (1), U0 ⊥⊥ T |G, and Assumption 3 imply that

E(Y11(0))− E(Y10(0))− (E(Y01(0))− E(Y00(0))) = 0. (30)

Then,

DIDY = E(Y11)− E(Y10)− (E(Y01)− E(Y00))

= p1|11E(Y11(1)− Y11(0)|D = 1) + E(Y11(0))− E(Y10(0))− (E(Y01(0))− E(Y00(0)))

= p1|11E(Y11(1)− Y11(0)|D = 1).

The second equality follows from p1|00 = p1|01 = p1|10 = 0, the third from Equation (30). This

completes the proof once noted that DIDD = p1|11.

Proof of 2

As p1|10 = 0, the numerator of WCIC is E(Y11)−E(Q0(Y10)). It is easy to see that the proof

will be complete if we can show that E(Q0(Y10)) = E(Y11(0)). As p1|00 = p1|01 = 0, Q0 is the

quantile-quantile transform of the outcome in the entire control group, so E(Q0(Y10)) is the

same estimand as that considered in Equation (16) in Athey & Imbens (2006). The outcome

equation of Model (1), U0 ⊥⊥ T |G, and Assumptions 6 and 7 ensure that the assumptions of

their Theorem 3.1 hold. Therefore, E(Q0(Y10)) = E(Y11(0)) �
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Theorem 3.5

Assume that p1|00 = p1|01 = 1 (the proof is symmetric when p1|00 = p1|01 = 0). For

FY11(1)|S1
(y), the proof directly follows from Lemma 3.1. For FY11(0)|S1

(y), one can follow

similar steps as those used to establish Equation (24) and show that for all y ∈ S(Y ),

F−1Y00(1)|V≥v00 ◦ FY01(1)|V≥v00(y) = h1(h
−1
1 (y, 1), 0). (31)

Equations (24) and (31), Assumption 10, and p1|00 = p1|01 = 1 imply that for all y ∈ S(Y ),

FY11(0)|V <v00(y) = F010 ◦ F−1100 ◦ F101(y). (32)

Combining Equations (22) and (32) yields the result �

Theorem 4.1

We start proving the �rst statement. Under the assumptions of the theorem, Assumptions

1-4 are satis�ed for the treatment and control groups G∗t = 1 and G∗t = 0 between dates t− 1

and t. For instance, the fact that (Ud, V ) ⊥⊥ T |G∗t = 0 follows from the fact that G ⊥⊥ T

and (Ud, V ) ⊥⊥ T |G = g for every g ∈ Gst. Moreover, for every t ≥ 1 and for every g ∈ Gst,
E(Dgt) = E(Dgt−1), thus implying that E(D|G∗t = 0, T = t) = E(D|G∗t = 0, T = t − 1).

Therefore, it follows from Theorem 3.1 that

W ∗DID(1, 0, t) = E(Y (1)− Y (0)|St, G∗t = 1, T = t). (33)

Similarly, one can show that

W ∗DID(−1, 0, t) = E(Y (1)− Y (0)|St, G∗t = −1, T = t). (34)

Then, G ⊥⊥ T implies that

DID∗D(1, 0, t)P (G∗t = 1) = (E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1))P (G∗t = 1)

= P (St|G∗t = 1)P (G∗t = 1)

= P (St, G
∗
t = 1).

Similarly, one can show that

DID∗D(0,−1, t)P (G∗t = −1) = P (St, G
∗
t = −1).

Therefore, it follows from the two previous displays that

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1) = P (St) (35)

and

DID∗D(1, 0, t)P (G∗t = 1)

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)

= P (G∗t = 1|St). (36)
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The result follows combining Equations (33), (34), (35), and (36), once noted that Assumption

1 and G ⊥⊥ T imply that P (G∗t = 1|St) = P (G∗t = 1|St, T = t) and P (G∗t = −1|St) = P (G∗t =

−1|St, T = t).

The proofs of the second and third statements follow from similar arguments. To prove the

fourth statement, it su�ces to notice that the �rst point of Assumption 11 implies that for

every g ∈ {0, 1, ..., g} the sequence vgt is monotonic in t. Therefore, for every g ∈ S(G) and

t 6= t′ ∈ {1, ..., t}2, Sgt ∩ Sgt′ = ∅. This in turn implies that St ∩ St′ = ∅. Combining this with
the third point of Assumption 11 yields the result �

Theorem 4.2

The two results are straightforward extensions of the second point of Theorems 3.2 and 3.3,

so their proof is omitted.

Theorem 4.3

We only prove the �rst result, the second and third results follow from similar arguments.

WDID(X) = ∆(X) follows from the same steps as those used to prove Theorem 3.1. Then,

WX
DID = ∆ follows after some algebra, once noted that

fX11|S1
(x) =

E(D11|X = x)− E(D10|X = x)

E(D11)− E(E(D10|X)|G = 1, T = 1)
fX11(x)

=
DIDD(x)

E[DIDD(X)|G = 1, T = 1]
fX11(x).

The �rst equality follows from Model (10), Assumption 1X, and Bayes's law. The second

follows from the fact that E(D01|X)− E(D00|X) = 0 almost surely. �

Proof of Theorem 4.4

We only prove the �rst statement, the second and third statements follow from similar argu-

ments.

D01 ∼ D00 and D11 & D10 combined with Model (11) and Assumption 1 imply that

vd01 = vd00, for every d ∈ {1, d} (37)

vd11 ≤ vd10, for every d ∈ {1, d}. (38)

Then, it follows from Model (11), Assumption 1 and Equation (38) that for every d ∈
{1, 2, ..., d},

P (D11 ≥ d)− P (D10 ≥ d) = P (V ≥ vdg1|T = 1, G = g)− P (V ≥ vdg0|T = 0, G = g)

= P (V ∈ [vdg1, v
d
g0)|G = g). (39)
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Then, for every g ∈ {0, 1},

E(Yg1)− E(Yg0)

= E(hD(UD, 1)|G = g, T = 1)− E(hD(UD, 0)|G = g, T = 0)

=
d∑
d=0

E(hd(Ud, 1)|G = g, V ∈ [vdg1, v
d+1
g1 ))P (V ∈ [vdg1, v

d+1
g1 )|G = g)

−
d∑
d=0

E(hd(Ud, 0)|G = g, V ∈ [vdg0, v
d+1
g0 ))P (V ∈ [vdg0, v

d+1
g0 )|G = g)

=

d∑
d=1

E(hd(Ud, 1)− hd−1(Ud−1, 1)|G = g, V ∈ [vdg1, v
d
g0))P (V ∈ [vdg1, v

d
g0)|G = g)

+
d∑
d=0

E(hd(Ud, 1)− E(hd(Ud, 0)|G = g, V ∈ [vdg0, v
d+1
g0 ))P (V ∈ [vdg0, v

d+1
g0 )|G = g)

=

d∑
d=1

E(Yg1(d)− Yg1(d− 1)|V ∈ [vdg1, v
d
g0))P (V ∈ [vdg1, v

d
g0)|G = g)

+ E(h0(U0, 1)− h0(U0, 0)|G = g). (40)

The �rst, second, third, and fourth, equalities respectively follow from Model (11), Model (11)

and Assumption 1, Equations (37) and (38), and Model (11) combined with Assumptions 1

and 4O.

Combining Equation (40) with Equation (37) and Assumption 3 imply that

DIDY =

d∑
d=1

E(Y11(d)− Y11(d− 1)|V ∈ [vd11, v
d
10))P (V ∈ [vd11, v

d
10)|G = 1).

The result follows from Equation (39), after dividing each side of the previous display by

DIDD �

Theorem 5.1

Proof of 1 and 2

Asymptotic normality is obvious by the central limit theorem and the delta method. Con-

sistency of the bootstrap follows by consistency of the bootstrap for sample means (see, e.g.,

van der Vaart, 2000, Theorem 23.4) and the delta method for bootstrap (van der Vaart, 2000,

Theorem 23.5). A convenient way to obtain the asymptotic variance is to use repeatedly the

following argument. If

√
n
(
Â−A

)
=

1√
n

n∑
i=1

ai + oP (1) and
√
n
(
B̂ −B

)
=

1√
n

n∑
i=1

bi + oP (1),
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then Lemma S3 ensures that

√
n

(
Â

B̂
− A

B

)
=

1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1). (41)

This implies for instance that

√
n
(
Ê(Y11)− E(Y11)

)
=

1√
n

n∑
i=1

GiTi(Yi − E(Y11))

p11
+ oP (1),

and similarly for Ê(D11). Applying repeatedly this argument, we obtain, after some algebra,

√
n
(
ŴDID −∆

)
=

1√
n

n∑
i=1

ψDID,i + oP (1),

where, omitting the index i, ψDID is de�ned by

ψDID =
1

DIDD

[
GT (ε− E(ε11))

p11
− G(1− T )(ε− E(ε10))

p10
− (1−G)T (ε− E(ε01))

p01

+
(1−G)(1− T )(ε− E(ε00))

p00

]
(42)

and ε = Y −∆D. Similarly,

√
n
(
ŴTC −∆

)
=

1√
n

n∑
i=1

ψTC,i + oP (1),

where ψTC is de�ned by

ψTC =
1

E(D11)− E(D10)

{
GT (ε− E(ε11))

p11
− G(1− T )(ε+ (δ1 − δ0)D − E(ε10 + (δ1 − δ0)D10))

p10

− E(D10)D(1−G)

[
T (Y − E(Y101))

p101
− (1− T )(Y − E(Y100))

p100

]
− (1− E(D10))(1−D)(1−G)

[
T (Y − E(Y001))

p001
− (1− T )(Y − E(Y000))

p000

]}
. (43)

Proof of 3

We �rst show that (F̂Y11(0)|S1
, F̂Y11(1)|S1

) tends to a continuous gaussian process. Let θ̃ =

(F000, F001, ..., F111, λ10, λ11). By Lemma S4,
̂̃
θ = (F̂000, F̂001, ..., F̂111, λ̂10, λ̂11) converges to a

continuous gaussian process. Let

πd : (F000, F001, ..., F111, λ10, λ11) 7→ (Fd10, Fd00, Fd01, Fd11, 1, λ1d) , d ∈ {0, 1},

so that (F̂Y11(0)|S1
, F̂Y11(1)|S1

) =
(
R1 ◦ π0(θ̃), R1 ◦ π1(θ̃)

)
, where R1 is de�ned as in Lemma

S5. πd is Hadamard di�erentiable as a linear continuous map. Because Fd10, Fd00, Fd01, Fd11

are continuously di�erentiable with strictly positive derivative by Assumption 13, λ1d > 0, and
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λ1d 6= 1 under Assumption 7, R1 is also Hadamard di�erentiable at (Fd10, Fd00, Fd01, Fd11, 1, λ1d)

tangentially to (C0)4×R2. By the functional delta method (see, e.g., van der Vaart & Wellner,

1996, Lemma 3.9.4), (F̂Y11(0)|S1
, F̂Y11(1)|S1

) tends to a continuous gaussian process.

Now, by integration by parts for Lebesgue-Stieljes integrals,

∆ =

∫ y

y
FY11(0)|S1

(y)− FY11(1)|S1
(y)dy.

Moreover, the map ϕ1 : (F1, F2) 7→
∫
S(Y )(F2(y)−F1(y))dy, de�ned on the domain of bounded

càdlàg functions, is linear. Because S(Y ) is bounded by Assumption 13, ϕ1 is also con-

tinuous with respect to the supremum norm. It is thus Hadamard di�erentiable. Because

∆̂ = ϕ1

(
F̂Y11(1)|S1

, F̂Y11(0)|S1

)
, ∆̂ is asymptotically normal by the functional delta method.

The asymptotic normality of τ̂q follows along similar lines. By Assumption 13, FY11(d)|S1

is di�erentiable with strictly positive derivative on its support. Thus, the map (F1, F2) 7→
F−12 (q) − F−11 (q) is Hadamard di�erentiable at (FY11(0)|S1

, FY11(1)|S1
) tangentially to the set

of functions that are continuous at (F−1Y11(0)|S1
(q), F−1Y11(1)|S1

(q)) (see Lemma 21.3 in van der

Vaart, 2000). By the functional delta method, τ̂q is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma S4, the bootstrap is

consistent for
̂̃
θ. Because both the LATE and LQTE are Hadamard di�erentiable functions of̂̃

θ, as shown above, the result simply follows by the functional delta method for the bootstrap

(see, e.g., van der Vaart, 2000, Theorem 23.9).

Finally, we compute the asymptotic variance of both estimators. The functional delta method

also implies that both estimators are asymptotically linear. To compute their asymptotic vari-

ance, it su�ces to provide their asymptotic linear approximation. For that purpose, let us �rst

linearize FY11(d)|S1
(y), for all y. It follows from the proof of the �rst point of Lemma S5 that

the mapping φ1 : (F1, F2, F3) 7→ F1 ◦F−12 ◦F3 is Hadamard di�erentiable at (Fd10, Fd00, Fd01),

tangentially to (C0)3. Moreover applying the chain rule, we obtain

dφ1(h1, h2, h3) = h1 ◦Q−1d +H ′d ◦ Fd01 ×
[
−h2 ◦Q−1d + h3

]
.

Applied to (F1, F2, F3) = (Fd10, Fd00, Fd01), this and the functional delta method once more

imply that
√
n
(
Ĥd ◦ F̂d01 −Hd ◦ Fd01

)
= dφ1(h1n, h2n, h3n) + oP (1),

where the oP (1) is uniform over y and h1n =
√
n(F̂d10 − Fd10). h2n and h3n are de�ned

similarly. Furthermore, applying Lemma S3 yields, uniformly over y,

h1n(y) =
1√
n

n∑
i=1

1{Di = d}Gi(1− Ti)(1{Yi ≤ y} − Fd10(y))

pd10
+ oP (1).
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A similar expression holds for h2n and h3n. Hence, by continuity of dφ1, we obtain, after some

algebra,

√
n
(
Ĥd ◦ F̂d01(y)−Hd ◦ Fd01(y)

)
=

1√
n

n∑
i=1

1{Di = d}
{
Gi(1− Ti)(1{Qd(Yi) ≤ y} −Hd ◦ Fd01(y))

pd10
+ (1−Gi)H ′d ◦ Fd01(y)

×
[
−(1− Ti)(1{Qd(Yi) ≤ y} − Fd01(y))

pd00
+
Ti(1{Yi ≤ y} − Fd01(y))

pd01

]}
+ oP (1),

which holds uniformly over y. Applying repeatedly Lemma S3, we then obtain, after some

algebra,
√
n
(
F̂Y11(d)|S1

(y)− FY11(d)|S1
(y)
)

=
1√
n

n∑
i=1

Ψdi(y) + oP (1),

where, omitting the index i,

Ψd(y) =
1

pd|11 − pd|10

{
GT

p11

[
1{D = d}1{Y ≤ y} − pd|11Fd11(y)− FY11(d)|S1

(y)
(
1{D = d} − pd|11

)]
+
G(1− T )

p10

[
−1{D = d} (1{Qd(Y ) ≤ y} −Hd ◦ Fd01(y)) +

(
1{D = d} − pd|10

) (
FY11(d)|S1

(y)−Hd ◦ Fd01(y)
)]

+pd|10(1−G)1{D = d}H ′d ◦ Fd01(y)

[
(1− T )(1{Qd(Y ) ≤ y} − Fd01(y))

pd00
− T (1{Y ≤ y} − Fd01(y))

pd01

]}
.

By the functional delta method, this implies that we can also linearize ŴCIC and τ̂q. Moreover,

we obtain by the chain rule the following in�uence functions:

ψCIC =

∫
Ψ0(y)−Ψ1(y)dy, (44)

ψq,CIC =

[
Ψ1

fY11(1)|S1

]
◦ F−1Y11(1)|S1

(q)−
[

Ψ0

fY11(0)|S1

]
◦ F−1Y11(0)|S1

(q). (45)

Theorem 5.2

Proof of 1

For any random variable R, let mR
gt(x) = E(Rgt|X = x). The estimator ŴX

DID can be written

as ŴX
DID = N̂X

DID/D̂
X
DID, with

N̂X
DID = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

01(X11)
]

+ Ê
[
m̂Y

00(X11)
]

D̂X
DID = Ê [D11]− Ê

[
m̂D

10(X11)
]
− Ê

[
m̂D

01(X11)
]

+ Ê
[
m̂D

00(X11)
]
.

The true parameter ∆ = NX
DID/D

X
DID can be decomposed similarly. We show below that the

eight terms in the numerator N̂X
DID and in the denominator D̂X

DID can be linearized. We can

then use, as in the previous proof, the formula for linearizing ratios.
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Let us �rst consider Ê
[
Ê(Y10|X)|G = 1, T = 1

]
. Assumption 14 ensures that we can apply

Lemma S8 to I = G× T , J = G× (1− T ), U = Y and V = 1. As a result,

√
n
(
Ê
[
Ê(Y10|X)|G = 1, T = 1

]
− E

[
mY

10(X)|G = 1, T = 1
])

=
1√
np11

n∑
i=1

Gi

[
Ti
(
mY

10(Xi)− E
[
mY

10(X)|G = 1, T = 1
])

+
(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Yi −mY

10(Xi)
)]

+ oP (1).

Applying the same reasoning as above to the two other terms of N̂X
DID, we obtain

√
n
(
N̂X
DID −NX

DID

)
=

1√
np11

n∑
i=1

GiTi(Yi −mY
10(Xi)−mY

01(Xi) +mY
00(Xi)−NX

DID)− Gi(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Yi −mY

10(Xi)
)

+
(1−Gi)TiE(GT |Xi)

E((1−G)T |Xi)

(
Yi −mY

01(Xi)
)
− (1−Gi)(1− Ti)E(GT |Xi)

E(1−G)(1− T )|Xi)

(
Yi −mY

00(Xi)
)

+ oP (1).

Similarly, the denominator satis�es

√
n
(
D̂X
DID −DX

DID

)
=

1√
np11

n∑
i=1

{
GiTi(Di −mD

10(Xi)−mD
01(Xi) +mD

00(Xi)−DX
DID)− Gi(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Di −mD

10(Xi)
)

+
(1−Gi)TiE(GT |Xi)

E((1−G)T |Xi)

(
Di −mD

01(Xi)
)
− (1−Gi)(1− Ti)E(GT |Xi)

E((1−G)(1− T )|Xi)

(
Di −mD

00(Xi)
)

+ oP (1).

Combining these two results and (41), we �nally obtain

√
n
(
ŴX
DID −∆

)
=

1√
n

n∑
i=1

ψXDID,i + oP (1),

where, omitting the index i, ψXDID is de�ned by

ψXDID =
1

p11DX
DID

{
GT (ε−mε

10(X)−mε
01(X) +mε

00(X))−
[
G(1− T )E(GT |X)

E(G(1− T )|X)
(ε−mε

10(X))

+
(1−G)TE(GT |X)

E((1−G)T |X)
(ε−mε

01(X))− (1−G)(1− T )E(GT |X)

E((1−G)(1− T )|X)
(ε−mε

00(X))

]}
,

(46)

and ε = Y −∆D. The result follows by the central limit theorem.

Proof of 2

The proof is very similar as above. For any random variable R, Let mR
dgt(x) = E(Rdgt|X = x).

The estimator satis�es ŴX
TC = N̂X

TC/D̂
X
TC , with

N̂X
TC = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

001(X11)
]

+ Ê
[
m̂Y

000(X11)
]
− Ê

[
m̂D

10(X11)m̂
Y
101(X11)

]
+ Ê

[
m̂D

10(X11)m̂
Y
100(X11)

]
+ Ê

[
m̂D

10(X11)m̂
Y
001(X11)

]
− Ê

[
m̂D

10(X11)m̂
Y
000(X11)

]
D̂X
TC = Ê [D11]− Ê

[
m̂D

10(X11)
]
.
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The two terms of the denominator and the �rst four terms of the numerator can be linearized

exactly as above. Regarding the other four terms, remark that for instance

Ê
[
m̂D

10(X11)m̂
Y
101(X11)

]
− Ê

[
mD

10(X11)m
Y
101(X11)

]
=Ê

[
mD

10(X11)
(
m̂Y

101(X11)−mY
101(X11)

)]
+ Ê

[
mY

101(X11)
(
m̂D

10(X11)−mD
10(X11)

)]
+ Ê

[(
m̂D

10(X11)−mD
10(X11)

) (
m̂Y

101(X11)−mY
101(X11)

)]
.

Lemma S7 implies that the last term is an oP (1/
√
n). As a result,

N̂X
TC = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

001(X11)
]

+ Ê
[
m̂Y

000(X11)
]
− Ê

[
mD

10(X11)m̂
Y
101(X11)

]
− Ê

[
m̂D

10(X11)m
Y
101(X11)

]
+ Ê

[
mD

10(X11)m
Y
101(X11)

]
+ Ê

[
mD

10(X11)m̂
Y
100(X11)

]
+ Ê

[
m̂D

10(X11)m
Y
100(X11)

]
− Ê

[
mD

10(X11)m
Y
100(X11)

]
+ Ê

[
mD

10(X11)m̂
Y
001(X11)

]
+ Ê

[
m̂D

10(X11)m
Y
001(X11)

]
− Ê

[
mD

10(X11)m
Y
001(X11)

]
− Ê

[
mD

10(X11)m̂
Y
000(X11)

]
− Ê

[
m̂D

10(X11)m
Y
000(X11)

]
+ Ê

[
mD

10(X11)m
Y
000(X11)

]
+ oP (1/

√
n).

We then apply Lemma S8 to each of these terms. After some tedious algebra, we obtain

√
n
(
ŴX
TC −WX

TC

)
=

1√
n

n∑
i=1

ψXTC,i + oP (1),

where ψXTC satis�es

ψXTC =
1

p11DX
TC

{
GT

(
U −∆(D −mD

10(X))− E
[
U11 −∆(D11 −mD

10(X11))
])

+E(GT |X)

[
V −∆

G(1− T )

E(G(1− T )|X)
(D −mD

10(X))

]}
. (47)

and

U = Y −mY
10(X)−mY

001(X) +mY
000(X)−mD

10(X)
(
mY

101(X)−mY
100(X)−mY

001(X) +mY
000(X)

)
,

V =
G(1− T )

E(G(1− T )|X)

{
−(Y −mY

10(X)) +
[
mY

100(X)−mY
101(X)−mY

000(X) +mY
001(X)

]
(D −mD

10(X))
}

+ (1−G)

{
mD

10(X)D

[
−T (Y −mY

101(X))

E(D(1−G)T )|X)
+

(1− T )
(
Y −mY

100(X)
)

E(D(1−G)(1− T )|X)

]

+(1−D)(1−mD
10(X))

[
T (Y −mY

001(X))

E((1−D)(1−G)T |X)
− (1− T )(Y −mY

000(X))

E((1−D)(1−G)(1− T )|X)

]}
.

The result follows by the central limit theorem.

Proof of 3

The estimand is the same as WX
TC , except for the second term of the numerator. Therefore,

it su�ces to prove that we can linearize this speci�c term, which is the plug-in estimator of

E [E(DQ1X(Y ) + (1−D)Q0X(Y )|X,G = 1, T = 0)|G = 1, T = 1] .
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This expectation comprises two terms. As the reasoning is similar for both, let us focus

on the �rst, θ1 = E [E(DQ1X(Y )|X,G = 1, T = 0)|G = 1, T = 1]. Let us de�ne mQ1

dgt(x) =

E(Q1X(Y )|X = x,D = d,G = g, T = t). First, the estimator θ̂1 of θ1 satis�es

θ̂1 − θ1 = Ê
[
m̂D

10(X)m̂Q1
110(X)|G = 1, T = 1

]
− θ1

= Ê
[
m̂D

10(X)mQ1
110(X)|G = T = 1

]
− Ê

[
mD

10(X)mQ1
110(X)|G = 1, T = 1

]
+ θ̃1 − θ1 + Ê

[(
m̂D

10(X)−mD
10(X)

) (
m̂Q1

110(X)−mQ1
110(X)

)
|G = 1, T = 1

]
, (48)

where θ̃1 = Ê
[
mD

10(X)m̂Q1
110(X)|G = T = 1

]
. As in parts 1 and 2 above, the �rst two terms

on the right-hand side can be linearized using Lemma S8. We linearize below θ̃1 − θ1 and

prove that the last term is an oP (1/
√
n). As in Lemma S5, let us de�ne

R4(FX , Q1|X , Q2|X , Q3|X) =

∫
mD

10(x)×
∫ 1

0
Q1|X{Q−12|X [Q3|X(u|x)|x]|x}dudFX(x).

Let us de�ne hereafter Fdgt|X = FYdgt|X and Fdgt|x = FYdgt|X=x. Because

E [Q1X(Y )|X = x,D = G = 1, T = 0] =

∫ 1

0
F−1101|x ◦ F100|x ◦ F−1110|x(u)du,

we have

θ1 = R4(FX11 , F
−1
101|X , F

−1
100|X , F

−1
110|X), θ̃1 = R4(F̂X11 , F̂

−1
101|X , F̂

−1
100|X , F̂

−1
110|X),

where F̂X11 is the empirical cdf of X11. By Lemma S9, the process

(x, τ) 7→ (F̂X11(x), F̂−1101|x(τ), F̂−1100|x(τ), F̂−1110|x(τ)),

de�ned on S(X)× (0, 1) and suitably normalized, converges to a continuous gaussian process

G. Moreover,
√
n
[
F̂−1dgt|x(τ)− F−1dgt|x(τ)

]
=

1√
n

n∑
i=1

ψidgtx(τ) + oP (1),

where the oP (1) is uniform over (x, τ) and

ψidgtx(τ) =
1{Di = d}1{Gi = g}1{Ti = t}x′JτXi

pdgt

(
τ − 1{Yi −X ′iβdgt(τ) ≤ 0}

)
.

Besides, R4 is Hadamard di�erentiable at (FX11 , F
−1
101|X , F

−1
100|X , F

−1
110|X) tangentially to C0(S(X))×

C0((0, 1)× S(X))3. Therefore, by the functional delta method and because G is continuous,

√
n(θ̃1 − θ1) =

1√
n

n∑
i=1

Ψ1i + oP (1),
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where

Ψ1i =
GiTi
p11

[
mD

10(Xi)m
Q1
110(Xi)− θ1

]
+

∫
mD

10(x)

{∫ 1

0
ψi101x

(
F100|x ◦ F−1110|x(u)

)
+
F−1101|x

′ ◦ F100|x ◦ F−1110|x(u)

F−1100|x
′ ◦ F100|x ◦ F−1110|x(u)

[
− ψi100x

(
F100|x ◦ F−1110|x(u)

)
+ ψi110x(u)

]
du

}
dFX11(x).

We now prove that the third term in (48) is an oP (1/
√
n). We have∣∣∣Ê [(m̂D

10(X)−mD
10(X)

) (
m̂Q1

110(X)−mQ1
110(X)

)
|G = 1, T = 1

]∣∣∣
≤
∥∥m̂D

10 −mD
10

∥∥
∞ ×

∥∥∥m̂Q1
110 −m

Q1
110

∥∥∥
∞
.

By Lemma S7,
∥∥m̂D

10 −mD
10

∥∥
∞ = oP (n−1/4). Besides, m̂Q1

110 = R5(F̂
−1
101|X , F̂

−1
100|X , F̂

−1
110|X),

whereR5(Q1|X , Q2|X , Q3|X) =
∫ 1
0 Q1|X{Q−12|X [Q3|X(u|x)|x]|x}du. Part 3 of the proof of Lemma

S5 implies that R5 is Hadamard di�erentiable at (F−1101|X , F
−1
100|X , F

−1
110|X). Then, by Lemma

S9 and the functional delta method,
∥∥∥m̂Q1

110 −m
Q1
110

∥∥∥
∞

= OP (n−1/2). Thus, the third term in

(48) is an oP (1/
√
n).

To conclude, we provide the linearization of WX
CIC . Let us de�ne for that purpose

Ψ0i =
GiTi
p11

[
(1−mD

10(Xi))m
Q0
010(Xi)− θ0

]
+

∫
(1−mD

10(x))

{∫ 1

0
ψi001x

(
F000|x ◦ F−1010|x(u)

)
+
F−1001|x

′ ◦ F000|x ◦ F−1010|x(u)

F−1000|x
′ ◦ F000|x ◦ F−1010|x(u)

[
− ψi000x

(
F000|x ◦ F−1010|x(u)

)
+ ψi010x(u)

]
du

}
dFX11(x),

where θ0 = E [E((1−D)Q0X(Y )|X,G = 1, T = 0)|G = 1, T = 1]. Using what precedes and

Lemma S8 on the remaining terms, we obtain after some tedious algebra

√
n
(
ŴX
CIC −WX

CIC

)
=

1√
n

n∑
i=1

ψXCIC,i + oP (1),

where ψXCIC satis�es

ψXCIC =
1

p11DX
CIC

{
GT

(
Y −∆(D −mD

10(X))− E
[
Y11 −∆(D11 −mD

10(X11))
])
− p11(Ψ1 + Ψ0)

+
E(GT |X)G(1− T )

E(G(1− T )|X)
(D −mD

10(X))
[
mQ0

010(X)−mQ1
110(X)−∆

]}
. (49)
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