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Abstract

We provide a model of custodial interrogations in which the suspect is privately
informed about his guilt and the likely strength of incriminating evidence and law
enforcers are privately informed about the actual evidence. The evidence is directly
informative about the suspect’s guilt and may also disprove his eventual lies. We
study how communication in the interrogation and the accuracy of prosecution deci-
sions vary with the scope of protection of the suspect’s right to silence, the relative
costs of type I and type II errors for law enforcers and the evidence strength standard
for interrogating. We also evaluate the scope for deceptive interrogation tactics when
the suspect is prone to deception. Finally, we describe the optimal mechanism under
full commitment over law enforcers’ decisions and a natural sequential game that
implements it. Our results offer important insights for the design of the legal system.

Keywords: lie, evidence, leniency, questioning, confession, law, prosecution
JEL classifications: D82, D83, C72, K40
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1 Introduction

In legal systems based on the rule of law, interrogation of suspects plays an important

role in the investigation phase that may lead to prosecution.1 Due process standards

hence govern interrogations to ensure both the respect of the suspect’s rights and the

admissibility in court of the information law enforcers eventually obtain. This paper adopts

the perspective of information economics, which studies the sorts of strategic considerations

inherent to interrogations, and has both a positive and a normative objective. On a first

level, it aims to provide a formal framework that describes how interrogations unfold based

on essential features of the legal system. Besides, it aims to determine which institutions

enhance information revelation from the suspect and yield to more accurate prosecution

decisions.

Our model captures the conflict of interests between the suspect, who aims to convince

law enforcers of his innocence and be let go, and law enforcers, who aim to obtain truthful

information from the suspect to minimize type I (prosecuting an innocent) and type II

(letting a guilty go) errors. The suspect is privately informed about his status as guilty

or innocent as well as the likely strength of the incriminating evidence. Law enforcers are

privately informed about the evidence actually gathered in the course of the investigation.

First, the evidence is directly informative about the suspect’s status. Besides, the evidence

may disprove eventual false claims of the suspect during questioning. For his part, the

suspect typically enjoys the right against self-incrimination, i.e. he is not obliged to make

any claim, but also some leniency for confessing relative to when he is reticent, i.e. he denies

and he is caught in a lie or he stays silent and the evidence is unambiguously incriminating.

Initially, we maintain that communication in the interrogation is one-shot and unidirec-

tional from the suspect to law enforcers. The suspect’s message must be interpreted as a

reply to law enforcers’ inquiry about his type, e.g. “what time did you leave that night?”,

and a sufficiently weak claim amounts to a confession. Under a refinement that gives

1For instance, Mueller (1961) refers to the phase of police action against or upon a suspect that precedes
the suspect’s first contact with a judicial officer as “the most important phase of criminal procedure, for
here, much more so than during trial, the case is to be won or lost”. The importance interrogations take
on is not without controversy. For instance, McConville and Baldwin (1982) criticize how “As the police
have become more professionalised, so they have acquired much greater control of the prosecution; and as
this has happened, so the really crucial exchanges in the criminal process have shifted from courts into
police interrogation.”
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prominence to honesty, innocent types and confessors are honest in equilibrium (lemma

1). Conversely, some sufficiently unsuspicious guilty types necessarily lie (lemma 2). The

model then yields clear predictions on the outcome of the interrogation both in terms of

players’ strategies (proposition 1) and payoffs (corollary 1). In particular, it allows to de-

termine how the accuracy of prosecution decisions varies depending on the prior likelihood

of guilt, leniency for confession, the scope of the protection of the suspect’s right to silence

and the relative importance law enforcers attach to type I and type II errors. We use this

baseline model as a workhorse to explore several normative issues.

We first focus on the right to silence and its scope. Some legal systems explicitly allow

an adverse inference, i.e. a negative conclusion, to be drawn from a suspect’s refuse to

answer. Our results agree with this legal doctrine in that, at least under appealing equi-

librium restrictions, only guilty suspects may stay silent. At the same time, our results

also provide a justification for the principle that adverse inferences alone are insufficient

to trigger prosecution without some additional supporting evidence.2 Indeed, even though

having to let a silent, hence guilty, suspect go by law due to insufficiently strong evidence is

clearly suboptimal ex-post, this also reduces the suspect’s need for lying. From an ex-ante

perspective this effect may dominate and overall yield to more accurate prosecution deci-

sions (proposition 2). Thus, this finding also speaks to the merits of the legal requirement

that the suspect is reminded of his right to silence at the start of the interrogation.

We then move to the role of law enforcers in charge of interrogations in the legal system

and their incentives. Our results demonstrate how, given any objective measure of the

relative costs of type I and type II prosecution errors for society, the accuracy of decisions

is always maximized when laws enforcers use a different measure, i.e. when their incentives

are biased (proposition 3).3 The direction of their ideal bias may be towards prosecution,

2For instance, in the United Kingdom, ss 34 of the CJPOA 1994 establishes that adverse inferences
can be drawn from the accused’s failure to mention facts when questioned under caution, i.e. having being
warned about his right to silence. However, ss 38 also states that “A person shall not have the proceedings
against him transferred to the Crown Court for trial, have a case to answer or be convicted of an offence
solely on such a failure or refusal.”

3For a discussion on the determinants of society’s welfare for the entire prosecution process see Gross-
man and Katz (1983), Reinganum (1988) and Siegel and Strulovici (2018). While Siegel and Strulovici
(2018) adopt a mechanism design approach, both Grossman and Katz (1983) and Reinganum (1988)
maintain that the prosecutor’s and society’s objectives coincide. Our results suggest how in the absence
of commitment power over prosecution decisions society may benefit from some misalignment of interests.
Reinganum (1988) shows similar benefits from restricting prosecutorial discretion and hence adopts the
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i.e. a higher weight given to type II errors, but also towards dismissal. We also show

that the accuracy of decisions further increases if the bias can be made contingent on the

strength of the evidence and, in particular, tilted towards prosecution when evidence is

strong and towards dismissal when evidence is weak. All these insights equally apply at a

more micro level, e.g. to the appointment of interrogators within a police department also

based on their intrinsic preferences.

Next, we study the effect of legal standards for interrogating, i.e. the minimum evidence

strength required for law enforcers to be able to question a suspect. The most apparent

effect of standards for search, seizures, arrests and other restraints of the suspect’s lib-

erty is to limit law enforcers’ power and discretion. However, as already pointed out by

Reinganum (1988) in the context of arrests, standards also convey information. Indeed,

if a suspect is taken into custody and interrogated, he knows enforcers must have suffi-

ciently strong evidence to do so. We show how under a more stringent standard a guilty

suspect is less inclined to lie and more inclined to confess. Thus, even abstracting from

legal considerations on restriction of individual freedom or a cost-benefit analysis of law

enforcers’ resources, the choice of increasing the standard entails a trade-off. If on the one

hand the suspect must necessarily be let go when the evidence is too weak, on the other

hand interrogations become more informative. The optimal standard often prescribes to

not interrogate the suspect when evidence is sufficiently weak, i.e. it is more stringent

than in the baseline model (proposition 4). This is always the case if no suspect would

ever confess in the absence of the standard.

Throughout, we maintained that all aspects of the strategic environment other than

the players’ private information are common knowledge and outside law enforcers’ control.

These are determined by institutional features of the legal system, with which the suspect

should be familiar with especially if assisted by an attorney. At the same time, within these

rules, law enforcers may still have some leeway to mislead the suspect. The elements of

arbitrariness in interrogations are in fact a major cause of criticism and an important reason

behind the general movement towards their mandatory recording.4 Even without formally

incorporating asymmetric information about the legal environment, our framework allows

complementary perspective of affecting the choice-set rather than the preferences of the agent.
4See for instance Sullivan (2005).
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to identify the direction of the misleading efforts law enforcers would want to engage in if

these are tolerated by law or go undetected and the suspect is prone to deception. The

predictions we derive agree with the logic behind common interrogations tactics, which may

also be seen as a basic validation test of the model. Law enforcers would always want to

overstate the benefits of confession, exaggerate the strength of the incriminating evidence

and misrepresent their true preferences over type I and type II errors (proposition 5). While

these deceptive tactics are surely undesirable on other grounds, our results suggest that

these improve the elicitation of the suspect’s information. Also, this improvement need

not come at the cost of extorting false confessions.

We also maintained that law enforcers have no commitment power over prosecution

decisions. While the legal system can be designed from an ex-ante perspective to promote

informed decisions, and many of our previous insights speak to this objective, it seems

plausible that some discretion remains for all parties involved in its implementation due to

institutional constraints, incompleteness of the law and other informational frictions. Law

enforcers will then act upon this discretion in their own self-interest and, for example, will

not let go a confessor who they know to be surely guilty. We complement the analysis

with the alternative mechanism design approach, which assumes full commitment on the

outcome of the interrogation based on the suspect’s claim and the evidence.5 The optimal

mechanism has a close link with the equilibrium of our baseline model (proposition 6). The

suspect’s payoff is the same, while the accuracy of prosecution decisions increases thanks

to a reduction in type II errors. We show how the optimal mechanism can be implemented

as equilibrium of a natural sequential game built on our baseline model (proposition 7).

This game combines features of delegation and evidence strength standards, even though

law enforcers’ behavior and the associated information revelation about the evidence to

the suspect is now entirely dictated by equilibrium considerations rather than fixed by

law. The suspect willingly gives away information in the first round of the interrogation

anticipating that if the evidence is weak relative to his claim he will be let go. When this

5Siegel and Strulovici (2018) adopt this approach in a general framework which encompasses the entire
prosecution process. We discuss in some more detail how our results relate to theirs in section 5.2. See also
the discussion about the design of the legal system in Hart et al. (2017), who consider a class of persuasion
games with one-sided asymmetric information in which the outcome with and without commitment on
behalf of the uninformed party is the same.
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is not the case, a maximally tough interrogator, i.e. who only cares about minimizing type

II errors, will continue the interrogation. A guilty suspect will step back on his lie, which

will be forgiven, and an innocent type will stick to his story, which may lead to either

prosecution or dismissal depending on the strength of the evidence.

The paper is structured as follows. After a discussion of some related literature here be-

low, section 2 presents our baseline model and section 3 characterizes its equilibria. Section

4 explores normative implications and section 5 presents the mechanism design approach.

Finally, section 6 discusses additional extensions and policy questions our framework can

address.

Related Literature While the entire prosecution process offers leading applications to

the strategic information revelation literature,6 suspects’ interrogation has received little

explicit attention.7 Similarly, the law and economics literature tends to study prosecution

and litigation assuming these are already undergoing. In order to concentrate on interroga-

tions, essential features of the prosecution process enter in our model only in very reduced

form and we leave aside key considerations on their determination that are the focus of this

literature.8 Conversely, our information structure allows for heterogeneity in the strength

of the incriminating evidence suspects expect. This dimension of asymmetric information

is acknowledged but left aside by both Reinganum (1988) and Siegel and Strulovici (2018)

and is likely to play a particularly important role at the interrogation stage given that the

discovery process has not started. Our insights may still be relevant for later stages of the

prosecution process since, especially if no additional evidence becomes available to either

party, the outcome of the interrogation will be related to the outcome of eventual prosecu-

6See for instance the leading example in Kamenica and Gentzkow (2011), which involves a prosecutor
and a judge, and the policy implications for the design of the legal system in Hart et al. (2017).

7A notable exception is Baliga and Ely (2016), who study the interrogator’s commitment problems
inherent to torture.

8In particular, we take as given that guilt entails some punishment and confession entails some leniency
without considering the complex determinants of plea bargaining (Landes, 1971; Grossman and Katz, 1983;
Reinganum, 1988; Baker and Mezzetti, 2001; Daughety and Reinganum, 2020) and sentencing (Siegel and
Strulovici, 2018, 2019). We ignore considerations on crime deterrence (and chilling of socially desirable
behavior (Kaplow, 2011)), commensurate punishment, endogenous evidence acquisition and deployment
of resources in prosecution. Finally, we abstract from details about the separation of roles between law
enforcement and prosecution, which is fuzzier than traditionally thought (Abel, 2016), and simply assume
law enforcers directly take prosecution decisions even when they do not have formal authority.
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tion and trial.9 The information the different involved parties acquire and present in front

of a judicial officer, including the defendant’s claims, is typically modeled as hard evidence

(Milgrom, 1981), i.e. it can be disclosed or withheld but not misreported.10 To allow for

the possibility of plain lying that is intrinsic to interrogations, in our model the suspect’s

claims are soft information, i.e. the set of his available messages is independent from the

truth. The suspect’s claims are simultaneously not pure cheap talk (Crawford and Sobel,

1982) since these might be contradicted by the evidence of law enforcers, entailing some

costs. Our model is hence related to the theoretical literature on strategic communication

with lying costs (Kartik, 2009), detectable deceit (Dziuda and Salas, 2018; Balbuzanov,

2019) and costly investigation (Ioannidis et al., 2020). Differently from these works, the

detectability of a lie and its costs for the suspect derive explicitly from the private infor-

mation of law enforcers, which in particular naturally implies that the detectability of a lie

increases with its size.11 Moreover, our framework therefore allows studying the effects of

revelation of law enforcers’ private information to the suspect, as it occurs in the case of

evidence strength standards for interrogating and in the game that implements the opti-

mal mechanism. Our model hence also joins the growing theoretical literature on strategic

communication which, departing from seminal works, considers two-sides asymmetric in-

formation between the sender and the receiver.12 It mainly differs in players’ incentives and

the information structure as well as in the main questions of interest. A recurrent theme

in this literature is that the receiver may sometimes be hurt from her information since

as a result the sender may reveal less. In our setting, this is never the case since, absent

the possibility that the suspect may be caught in a lie or proven guilty, the interrogation

would be completely uninformative.

9See for instance Redlich et al. (2018), who document how confessions in the interrogation correlate
with plea bargaining and sentencing outcomes.

10See for instance Shin (1994, 1998), Bhattacharya and Mukherjee (2013) and Hart et al. (2017).
11Kartik (2009) assumes a lie entails a direct cost that increases with its size and he invokes penalties

upon lying detection as a possible interpretation. In both Dziuda and Salas (2018) and Balbuzanov (2019),
instead, any lie has an equal exogenous chance of being detected and the cost is endogenously determined
by the receiver’s response. In Ioannidis et al. (2020) there is no notion of lie size since the sender can only
choose between two messages, each yielding to a different investigation technology for the receiver.

12See de Barreda (2010), Chen (2012), Lai (2014) and Ishida and Shimizu (2016) for models of soft
information and Ispano (2016) and Frenkel et al. (2020) for models of hard information.
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2 The Model

Information structure There are two players: a suspect, denoted by S and by conven-

tion of masculine gender, and law enforcers, denoted by R and by convention of feminine

gender. At the initial stage, S privately observes his type y, which is drawn uniformly from

[0, 1]. S’s status Y ∈ {0, 1} depends on whether y is above some fixed cutoff t ∈ (0, 1):

Y = 0, i.e. S is guilty, when y < t and Y = 1, i.e. S is innocent, when y ≥ t. Thus, t

also represents the prior probability that S is guilty. R has some private information about

y that depends on an independent uniform draw z from [0, 1]. When y < z, R observes z

and knows that y < z. In this case, we say that R has evidence, which is stronger the

lower the z. We say that evidence is conclusive if it proves with probability one that S is

guilty, i.e. if z ≤ t. Instead, when y ≥ z, R does not observe anything and the game ends.13

Figure 1 displays the three possibilities about R’s evidence based on realizations y and z.

Each point within the unite square is equally likely and the relevant region for our game

is above the 45-degrees line, where z > y. While ensuring tractability, our information

structure respects two important general features inherent to the evidence identified by

Reinganum (1988). First, stronger evidence makes the suspect’s guilt more likely. Second,

a guilty suspect expects on average stronger evidence than an innocent one. Additionally,

in our setting there is heterogeneity both within guilties and innocents in terms of the

strength of the evidence they expect.

A story The following story may serve as an illustration and a reminder of the infor-

mation structure. One night a museum burns down. It is either an accident or arson and

the only suspect is the night shift guard. The guard left the building at time y and the

fire alarm went off at time t. When y < t the guard is guilty as he could have been aware

of the fire only by starting it. Conversely, when y ≥ t the guard is innocent since he left

the building only in reaction to the alarm. At time z a person peeked from his window

overlooking the museum. If y ≥ z the person saw none and the police’s appeal for witnesses

remains unanswered. If y < z, the person reports seeing the guard outside at time z.

13A first interpretation is that in the absence of the evidence R is not even aware of S. Alternatively, as
S’s guilt is even less likely than under the prior, R has no legal ground to go after S. Our framework can
easily accommodate the alternative scenario in which R can still interrogate S in the hope of obtaining an
admission of guilt but must let him go otherwise.
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no evidence

conclusive
evidence

inconclusive
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︸ ︷︷ ︸
innocent
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z

Figure 1 The type space and the evidence

The interrogation After y and z have been drawn and the information structure de-

termined accordingly, provided z > y, R interrogates S. Accordingly, S sends a message

m ∈ M = [0, 1] ∪ {s} to R, who then takes an action a ∈ {0, 1}. S’s message can be

interpreted as a literal claim about his type.14 Message m = s represents the possibility

for S to remain silent. Provided S is not silent, we say that he lies when m 6= y, that he

is honest when m = y, that he confesses when m < t and that he denies when m ≥ t.

Also, we say that he is caught in a lie when R’s evidence contradicts his claim, i.e. when

m ≥ z. R’s action can be interpreted as a decision on whether S should be prosecuted, i.e.

a = 0, or let go freely without charges, i.e. a = 1.

Payoffs R’s loss (i.e. the negative of her payoff) is

e(a,Y) = α a1Y=0 + (1− α) (1− a)1Y=1, (1)

where 1Y=0 and 1Y=1 are indicator functions for S’s status as guilty and innocent, respec-

tively, and α ∈ (0, 1) a commonly known parameter. That is, R aims at prosecuting a

guilty suspect and letting an innocent suspect go and α measure the relative importance of

14See Kartik (2009) for a way to formalize the notion of literal meaning and also to encompass a richer
message space.

8



a type II error, i.e. letting a guilty go, over a type I error, i.e. prosecuting and innocent.15

For simplicity and ease of exposition, we impose R always chooses a = 0 when evidence

is conclusive and/or S confesses and/or S is caught in a lie. Likewise, R always chooses

action a = 0 upon silence if allowed by law.16 Namely, if we let Zs ∈ (t, 1] be the evidence

standard required to prosecute S upon silence,17 then

a(s, z) =

0 if z ≤ Zs

1 if z > Zs.

(2)

As for S, we normalize his payoff from being prosecuted and being let go respectively

to 0 and 1 and we distinguish the following cases

π(y,m, z, a) =



0 S confesses and he is not caught in a lie

−b S is caught in a lie

or he is silent and evidence is conclusive

a(s, z) S is silent and evidence is inconclusive

a(m, z) S denies and he is not caught in a lie.

By confessing (honestly) S saves b > 0 relative to when he lies and he is caught or to

when he stays silent and he is directly proven guilty. Thus, b measures the punishment

for reticence or, equivalently, the leniency that confession entails.18 Instead, if S remains

silent and R has only inconclusive evidence, his payoff depends on the evidence standard

15This objective of law enforcers may derive from a combination of a genuine interest in the truth,
reputational benefits from accurate recommendations to the prosecution, eventual asymmetries in their
compensation schemes and fundamental features of the legal system (e.g. whether it is adversarial or
inquisitorial).

16In all those instances, R will infer that S is guilty, so that choosing a = 0 is indeed sequentially
rational. Our specification highly simplifies the notation and avoids having to keep track of too large of a
set of off the equilibrium path beliefs of R.

17If Zs = t, i.e. if evidence must be conclusive to prosecute S upon silence, the model becomes trivial
in that guilty types always prefer to stay silent than to lie. Section 4.1 demonstrates how such a stringent
standard would always be detrimental to the accuracy of prosecution decisions.

18Leniency may take many different forms. On a first level, for minor crimes many legal systems
explicitly provide suspects with the possibility to avoid prosecution in exchange of an admission of guilt
and face only lighter consequences. Examples of this are police cautions in the UK and admission of
guilt fines in South Africa. Besides, the suspect’s confession may be part of a plea bargaining with the
prosecutor, in which also law enforcers play an active role (Abel, 2016). Finally, even in the absence of an
explicit agreement, juries may consider favorably an early confession in their sentencing.
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for prosecuting as defined at equation (2). Finally, when S denies and there is inconclusive

evidence that does not contradict his claim, his payoff is determined by R’s action. In this

case we say that R has discretion.

Equilibrium concept A pure strategy of the suspectm : [0, 1]→M specifies a message

m(y) for each type y. A pure strategy of law enforcers a : [0, 1] × [0, 1] → {0, 1} specifies

an action a(m, z) for each message m and evidence realization z. Likewise, her belief

system µ : [0, 1] × [0, 1] → [0, 1] specifies a probability µ(m, z) = P(Y = 1|m, z) that S is

innocent.19

The relevant solution concept is weak perfect Bayesian equilibrium in pure strategies.

That is, a triple 〈m,a,µ〉 such that:

(i) the message of each type is optimal given R’s strategy, i.e.

m(y) ∈ argmax
M

∫ 1

y

π
(
y,m, z, a (m, z)

)
dz;

(ii) R’s action upon discretion is optimal given her belief, i.e., from equation (1), after

each message m 6= s and evidence realization z > m

a(m, z) =


0 if µ(m, z) < α

∈ {0, 1} if µ(m, z) = α

1 if µ(m, z) > α;

(3)

(iii) R’s belief system is such that

(B.1) µ(m, z) obtains from Bayes’ rule whenever possible

(B.2) µ(m, z) = 0 if m−1(m) ⊆ [0, t) and µ(m, z) = 1 if m−1(m) ⊆ [t, 1].

In addition to the usual requirements, according to restriction (B.2) R should exclude

that S is guilty(innocent) if message m is only sent by innocent(guilty) types. This con-

dition is meant to provide some minimal rationality requirement for updating at zero

19Defining a belief as an entire distribution over S’s types is unnecessary since R’s loss depends only
on S’s status Y.

10



probability but on the equilibrium path events, which is completely unrestricted by Bayes’

rule. Later, we will strengthen this notion of rational updating further resorting to regular

conditional probabilities.20 We impose no restriction on off the equilibrium path beliefs.

Henceforth, we refer to any strategy pair and beliefs satisfying this definition simply as to

an equilibrium.

3 Equilibrium

Section 3.1 here below demonstrates how under a restriction that gives prominence

to honesty (restriction H) innocent types and (necessarily guilty) confessors are honest in

equilibrium (lemma 1). The uninterested reader can take notice that we focus on equilibria

with this property and go directly to section 3.2.

3.1 Prominence of honesty

Within the entire equilibrium class, we are interested in equilibria in which honesty

is given some prominence. We say that honesty is a weak best response21 for type

y in equilibrium 〈m,a,µ〉 if m(y) 6= y but there exists another equilibrium 〈m,a′,µ′〉

such that uy (m (y))〈m,a,µ〉 = uy (m (y))〈m,a′,µ′〉 = uy(y)〈m,a′,µ′〉, where uy(m)〈·〉 denote the

expected payoff of type y from sending message m in equilibrium 〈·〉. That is, type y is

not honest but there is an equilibrium with the same strategy of S and the same expected

payoff for y in which y could earn as in equilibrium by being honest. We restrict our

attention to equilibria in which this does not occur.

(H) There is no type for which honesty is a weak best response.

The idea behind restriction H is that the truth constitutes a natural focal point and

therefore S should have good reasons to depart from it.22 The restriction has powerful im-

plications in that, henceforth, we can restrict our attention to equilibria in which innocent

types and confessors are honest.

20See also footnote 2 in Crawford and Sobel (1982) and the definition of consistency of beliefs in Ramey
(1996).

21See also Kohlberg and Mertens (1986) and Cho and Kreps (1987). Purely for simplicity, our definition
is slightly different in that we allow a′(m, z) to differ from a(m, z) even for on the equilibrium path messages.

22See also the discussion in Hart et al. (2017) and their related concept of truth-leaning equilibrium.
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Lemma 1. Under restriction H innocent types and confessors are honest in equilibrium.

Proof. See section A.1 in the appendix.

For a (necessarily guilty) confessor this result is obvious since confessing dishonestly is

a weakly dominated action. As for innocent types, if a type y ≥ t is not honest, either

he is already indifferent to sending m = y, or m = y must be an off the equilibrium path

message. Then, one can always find a a(y, ·) such that type y becomes indifferent to m = y

and this message does not represent a strictly profitable deviation for other types.

3.2 Partial separation of innocent types

We now establish some properties that must be true in any equilibrium in which inno-

cent types are honest, as implied by restriction H. We say that a type y separates if no

other type sends m(y).

Lemma 2. Under restriction H, in any given equilibrium:

(i) there must exist some ȳ ∈ (t, 1) such that innocent types y ≥ ȳ23 separate and innocent

types y < ȳ do not;

(ii) each message m ∈ [t, ȳ) must be sent by a non-empty zero measure (or non-measurable)

set of guilty types;

(iii) R’s expected action conditional on discretion A(m) ≡
∫ 1
m a(m,z)dz

1−m must be continuous,

differentiable and strictly increasing in m over [t, ȳ) and such that A(m) = 1 for each

m ≥ ȳ.

Proof. See section A.2 in the appendix.

Point (i) of the lemma holds as no matter how persuasive high claims are, very big lies

are too costly for guilty types due to a very high probability of getting caught. Conversely,

if sufficiently low claims were only sent by innocent types and hence be unambiguously

persuasive of S’s innocence, these would be too tempting for sufficiently high guilty types.

23Without any loss of generality, throughout we adopt the convention that type ȳ, who could equivalently
be mimicked in equilibrium, separates.
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Point (ii) holds as, by definition, the image of the strategy of guilty types must cover the

whole region in which innocent types do not separate. Since the distribution of messages

of innocent types is atomless, so must be the one of guilty types for them to disguise

effectively.24 As for point (iii), R’s expected action must increase with m to compensate

for the higher risk of detection that higher lies entail. Since the expected payoff difference

from any two lies is type independent (see step 3 in the proof of lemma 1), any liar must

be indifferent with respect to any lie sent in equilibrium, which implies continuity and

differentiability.

3.3 Lying and updating

Let Y` and L denote respectively the set of all types who lie and of all lies sent in equi-

librium. By lemma 1 and 2, under restriction H these sets are non-empty and, moreover,

Y` ⊆ [0, t) and L = [t, ȳ) ⊂ [t, 1). The lying function ` : Y` → L associates to each

liar y his lie m = `(y). Likewise, the inverse lying correspondence g = `−1 : L → Y`

associates to each lie m the set of guilty types Y` for which m(y) = m. We allow g to also

take sets as arguments, i.e. g(A) = {y ∈ Y` : `(y) ∈ A} for any set A ⊆ L. We introduce

two additional restrictions.

(C) S’s strategy is such that λ ◦ g and λ are mutually absolutely continuous, where λ is

the Lebesgue measure and λ ◦ g its pushforward.

(R) R’s beliefs upon messages in the support of S’s strategy that have zero pushforward

measure must form a regular conditional probability.

Restriction C ensures that R’s beliefs upon on the equilibrium path but zero probability

messages can be tractably computed as per restriction R.25 Thus, restriction R jointly with

(B.1) and (B.2) provide a complete notion of rational updating on the equilibrium path in

this setting.

24Similar strategic considerations arise in the completely different context of electoral competition of
Kartik and McAfee (2007), where candidates driven by holding office want to pass for ones with intrinsic
preferences for their campaign platform.

25While absolute continuity may seem restrictive, point (ii) of lemma 2 already rules out many somehow
pathological lying strategies that would violate restriction C, such as functions that map zero measure to
positive measure sets.
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Lemma 3. Under restriction H, C and R, in equilibrium R’s belief when she has discretion

is

µ(m) =
1

1 + d(λ◦g)
dλ

(m)
, (4)

where d(λ◦g)
dλ

denotes the Radon-Nikodym derivative.26

Proof. See section A.3 in the appendix.

In particular, R’s equilibrium belief when she has discretion is independent of her

evidence. For the interested reader, we provide detailed intuitions behind equation (4) in

appendix B.

3.4 Characterization

The expected payoff27 of type y who lies by sending a message m > y in the pooling

region [t, ȳ) as per lemma 2 is

π`(m; y) = (1−m)A(m)︸ ︷︷ ︸
lie not detected

− (m− y)b︸ ︷︷ ︸
lie detected

, (5)

where A(m) ≡
∫ 1
m a(m,z)dz

1−m is R’s expected action conditional on discretion. As pointed out

in section 3.2, each liar must be indifferent to any m in the pooling region which, given the

differentiability of A(m), implies that for each m ∈ [t, ȳ)

(1−m)A′(m)︸ ︷︷ ︸
benefit of increase in action if lie undetected

= b+ A(m)︸ ︷︷ ︸
cost of higher chance of lie being detected

. (6)

This condition trades off the higher reward from a bigger lie when it goes undetected and

its higher risk of detection, which increases at rate 1 given that the evidence is uniformly

26When ` is differentiable and invertible, the Radon-Nikodym derivative at any m ∈ L is simply
|g′(m)| = |1/`′(g(m))|. For the sake of precision, the Radon-Nikodym derivative is uniquely defined up to
zero measure sets, so that beliefs can differ on a zero measure set of messages. However, in our setting
beliefs will be uniquely pinned down in equilibrium.

27Formally, the expected payoff of each type y is defined conditional on R having evidence, i.e. z >
y. From the perspective of type y, this conditioning amount to a payoff normalization (a division by
1 − y), which we can hence ignore. Throughout, with a slight abuse of terminology, we simply refer to∫ 1

y
π
(
y,m, z, a (m, z)

)
dz as to the expected payoff of type y.
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distributed. In case of detection, S not only faces penalty b but also forgoes A(m). Solving

differential equation (6) with terminal condition A(ȳ) = 1, as per lemma 2, yields

A(m) =
1− ȳ − b (ȳ −m)

1−m
. (7)

Naturally, in equilibrium each action a(m, z) entering A(m) should be optimal from R’s

viewpoint. By equation (3), for A(m) to be strictly between 0 and 1 it must be that R is

indifferent between choosing a = 0 and a = 1, i.e. her belief must be µ(m, z) = α. Thus,

by equation (4), for any m ∈ [t, ȳ)28

1

1 + d(λ◦g)
dλ

(m)
= α.29 (8)

Since R’s belief upon discretion is independent from z, there is then some optimal pure

strategy that implements any value of A(m) ∈ [0, 1]. Henceforth, without loss of generality

we adopt the rather natural convention that R uses a cutoff strategy, i.e. R takes action

a(m, z) = 0 if z < z̄(m) and a(m, z) = 1 if z ≥ z̄(m), where

z̄(m) ≡ ȳ + b(ȳ −m).30 (9)

Using now an ex-ante perspective, condition (8) can only hold on posterior beliefs for

an appropriate composition of the set of pooling types. In particular, the ratio of liars

to innocents must be lower for R’s indifference condition to hold when she attaches more

28For the sake of precision, this need not be the case for m = t if A(t) = 0, which however will never
happen in equilibrium.

29Our framework can easily accommodate the alternative specification in which R’s optimal action
varies continuously with her belief, e.g. a ∈ [0, 1] and e(a,Y) = (a − Y)2. Then, upon discretion a(m, z)
is the same for each z and equation (8) becomes

1

1 + d(λ◦g)
dλ (m)

= a(m).

In both models higher undetected lies are more rewarding in that they induce a higher (expected) action.
In this alternative specification they are also more credible in that R becomes more convinced of S’s
innocence.

30As z̄(m) varies from 1 to m, A(m) spans the interval [0, 1], so that equation (9) is the unique solution
of

1− ȳ − b (ȳ −m) = 1− z̄(m).

15



weight to a type II error.

Lemma 4. Under restriction H, C and R, in equilibrium it must be that λ(Y`)
λ(L)

= (1−α)/α,

i.e. that the ratio between the measures of guilty types who lie and innocent types who pool

is equal to the ratio between the weight R attaches to a type I and a type II error.

Proof. This follows from the necessity of equation (8), which implies d(λ◦g)
dλ

(m) = 1−α
α

, and

the definition of Radon-Nikodym derivative, i.e. λ (Y`) =
∫
L

d(λ◦g)
dλ

(m)dλ = λ (L) 1−α
α

.

Once S’s incentives to confess or stay silent are also taken into account, these obser-

vations pin down the equilibrium fraction of guilty types who confess, are silent and lie as

well as the lies sent and R’s action when she has discretion. If some guilty types confess,

they are necessarily the lowest, due to a higher chance of getting caught. Besides, provided

silence is used in equilibrium, it should yield to each guilty type who does not confess the

same expected payoff as lying, as otherwise either strategy would be preferable. Equilibria

may only differ in the exact identity of silent types and liars and the exact shape of their

lying function.

Proposition 1 (Equilibrium). Under restriction H, C and R in any equilibrium:

(i) innocent types and confessors are honest;

(ii) the set of confessors [0, yc] is the same and it is non-empty, i.e. yc ≥ 0, if and only

if b ≥ 1−t
t

max
{

1−Zs

1−t ,
(1−α)b
b+α

}
(which if 1−Zs

1−t ≤
(1−α)b
b+α

simplifies to b ≥ 1−t−α
t

);

(iii) the measure of the set of silent types is the same and it is positive if and only if

1−Zs

1−t > max
{

(1−α)b
b+α

, 1−t−(1+bt)α
(1−t)(1−α)

}
;

(iv) the measure of the set of liars is the same and it is positive;

(v) ȳ, i.e. the set of lies sent, is the same;

(vi) A(m), i.e. R’s expected action conditional on discretion, is the same.

Moreover, any strategy pair satisfying these properties and equation (8) is indeed an equi-

librium and an equilibrium always exists.

Proof. See section A.4 in the appendix.
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The model generates some intuitive comparative statics that are common to all equi-

libria. In particular, weakly more types confess when the cost of being proven guilty or

caught in a lie increases (or, equivalently, when confession entails higher leniency), when R

is tougher as measured by a higher weight she attaches to a type II error, when the prior

likelihood of innocence is lower and when protection of silence is weaker as measured by a

less stringent prosecution standard (i.e. a higher Zs). Likewise, a guilty type may resort

to his right to silence only if doing so entails enough protection. A higher cost of being

caught in a lie also weakly reduces the lying region (i.e. ȳ decreases), so that a smaller

claim suffices to convince R of S’s innocence. Conversely, the lying region is larger with

a tougher R, which can be intuitively understood as that she requires more convincing to

let S go.

Moreover, the model yields unique welfare predictions in that players’ expected payoffs

are the same in every equilibrium. In particular, R’s ex-ante expected loss is

E ≡ (1− α)

∫ ȳ

t

∫ 1

y

(1− a (y, z)) dzdλ︸ ︷︷ ︸
type I errors

+α

∫
Y`

∫ 1

`(y)

a (` (y) , z) dzdλ︸ ︷︷ ︸
type II errors on liars

+α

∫
Ys

∫ 1

Zs

dzdλ︸ ︷︷ ︸
type II errors on silents

,

(10)

where Ys is the set of silent types. It turns out that the expression only depends on the

measures of liars and silent types, which are identical across equilibria. Also, for both S

and R, payoffs equivalence not only holds from an ex-ante perspective, i.e. before S has

observed y and R has observed z, but also ex-post.

Corollary 1 (Payoff equivalence). Under restriction H, C and R, every equilibrium is

payoff equivalent for S and R both from an ex-ante and an ex-post perspective.

Proof. See section A.5 in the appendix.

Figure 2 displays the equilibrium payoff of S and the associated type I and type II errors

R makes based on the realization of y and z, where no type is silent given the parameter

configuration chosen and without loss of generality the lying function has been drawn as

increasing.31 Separating guilty types get 0 and separating innocent types get a = 1, so that

31While this is for simplicity, the attentive reader may note that type yc must confess due to restriction
H and hence cannot send m = t. This inconsistency is unproblematic and can be solved with a more
articulated lying function (see equation (34) in section A.4.4 in the appendix).
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Figure 2 Equilibrium payoffs

(t = 1/2, b = 1, α = 1/2, Zs ≥ 5/6)

R makes no errors. As for pooling types, R’s action upon discretion is a = 0 if z < z̄(m)

and a = 1 otherwise. A guilty type above yc is caught in a lie when z ≤ `(y) and is such

a case he gets −b. Provided he is not caught, he gets a = 1 when z is above z̄ (`(y)), so

that R makes a type II error, and a = 0 otherwise. Likewise, an innocent type below ȳ

gets a = 1 when z is above z̄ (y) and a = 0 otherwise, and in such a case R makes a type

I error.

4 Implications

4.1 Adverse inferences and the protection of the right to silence

In our framework, R’s action upon silence is fully determined by its level of protection

that the legal system grants (see equation (2)). Also, no type will resort to his right

to silence if this level of protection is sufficiently low, i.e. if Zs is sufficiently high (see

proposition 1). Thus, let us say that the level of protection of silence is effective when

it induces a positive measure of types to remain silent. In this case, as a silent type is

necessarily guilty, R is sometimes forced to take a suboptimal action, i.e. letting S go

due to insufficiently strong evidence. However, R may still welcome an effective level of
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protection once the aggregate effects on S’s strategy are considered.

Proposition 2 (Optimal protection of silence).

• If the set of confessors is empty even without any protection of silence, or equiva-

lently if leniency for confession is sufficiently small (b < 1−t−α
t

), an effective level of

protection is optimal for R.

• Otherwise (b ≥ 1−t−α
t

):

– an effective level of protection is suboptimal for R provided t, α and b are large;32

– an effective level of protection is sometimes optimal for R, but then necessarily

large enough so that the set of confessors is empty.

Proof. See section A.6 in the appendix.

An effective level of protection of silence may be optimal for R because, if on the one

hand it entails a type II error upon silence when evidence is weak, it reduces the fraction of

liars and hence the pooling of innocents and guilties. In other words, it incentivizes some

guilty types to separate. When all guilty types would lie even without any protection,

an effective level is always optimal since the loss introduced on silent types is initially

negligible relative to the benefits of increased separation. Instead, higher protection has

less clear benefits for R when it also discourages some guilty types from confessing. As

shown in the proof of the proposition, this negative effect always dominates at the margin.

If the extent of voluntary confession absent any protection is large and type II errors are

rather costly for R , i.e. if t, α and b are large, R’s expected loss is always increasing in

the level of protection of silence. Otherwise, R’s expected loss is non-monotone and an

effective level of protection can be optimal if it is large enough so that only liars and silent

types, but no confessors, remain.

The proposition is expressed in terms of R’s welfare as the accuracy of decisions on

whether to prosecute is our main object of interest. However, it also implies that an

increase from an ineffective to an effective level of protection of silence is sometimes Pareto

32That is, there exists a known cutoff t̂ (b, α) > 0 such that R’s optimal level is not effective provided
t > t̂ (b, α), where t̂ (b, α) is decreasing in b and α.

19



improving since S always favors higher protection. Indeed, the expected payoff from not

confessing for guilty types and from being honest for innocent types who pool increase and,

as the pooling region decreases, more innocent types separate.

From now on, we prevent the possibility that S might be silent by restricting his message

space to M = [0, 1], which is equivalent to assume that the level of protection of silence

is sufficiently low not to be effective. This assumption allows ignoring the rather subtle

effects of changes in the fraction of silent types on R’s welfare described above. Besides,

it ensures that R always weakly benefits from interrogating before taking a prosecution

decision, which may not necessarily be the case if the level of protection of silence is

disproportionately high.

Assumption 1. Henceforth, M = [0, 1], i.e. S is never silent.

4.2 Delegation and the role of law enforcers

Suppose now R can choose to delegate the interrogation to an interrogator with a

different preference over type I and type II errors, i.e. whose loss is still given by equation

(1) but with an arbitrary, possibly different weight in [0, 1].33 The interrogator’s preference

is observable to S and the interrogation then plays out as in the baseline model, except

that it is now the interrogator who takes prosecution decisions instead of R. A natural

interpretation is that R’s preference represents some objective measure of the costs of type

I and type II errors for society. Instead, the interrogator’s preference summarizes the role

and the incentives that the legal system assign to law enforcers. The next proposition

describes R’s optimal delegation choice.

Proposition 3 (Optimal delegation). Let α? denote R’s optimal delegation choice.

• It is always the case that α? 6= α.

33When the interrogator has extreme preferences, i.e. she only cares about type I or type II errors,
we suppose the limit respectively for α → 0 and α → 1 of any given equilibrium at section 3.4 obtains.
The limit of these equilibria is indeed an equilibrium, even though there may be others that are not payoff
equivalent for R. Accordingly, for α = 0 the distribution of lies is all concentrated at t and, upon observing
m = t and having discretion, the interrogator sometimes lets S go even though she is sure he is guilty.
Instead, for α = 1, the measure of liars is zero and upon observing a message in the pooling region, the
interrogator sometimes prosecutes S even though she is sure he is innocent.
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• When the set of confessors is non-empty absent delegation, α? > α and, in particular,

α? < 1 if and only if α < 2/3.

• When the set of confessors is empty absent delegation then α? ∈ (0, α) if α is suffi-

ciently small.

Proof. See section A.7 in the appendix.

To understand the intuition behind the proposition, notice R’s choice to delegate to a

tougher interrogator affects R’s expected loss in three ways. First, it yields to suboptimal

decisions biased towards prosecution. Second, it disciplines S to favor confession over lying.

Third, it induces types who still elect not to confess to use bigger lies, i.e. the lying region

increases. Starting from a situation in which the set of confessors would be non-empty

even in the absence of delegation, the informational benefit of increased confession at least

initially dominates the two other negative effects. Indeed, the set of confessors increases at a

faster rate than the size of the lying region. Moreover, R would agree with the interrogator

and take the same optimal action both upon confession and upon the detection of a lie.

Thus, in this case R always finds it optimal to delegate to a tougher interrogator. In

particular, the interrogator should be maximally biased towards minimizing type II errors

if letting a guilty S go is already rather costly for R. Instead, when given R’s preference the

set of confessors would be empty without delegation, the minimal interrogator’s toughness

required to benefit from increased confession may be too far off. In this case, R prefers a less

tough interrogator because, in spite of the suboptimal decisions biased towards dismissal,

the lying region decreases, enhancing separation of innocents and guilties.

4.2.1 Conditional delegation

Suppose R can further condition the interrogator’s preferences on the strength of the

evidence. That is, R chooses a delegation policy α : [0, 1]→ [0, 1] which associates to each

evidence realization z the interrogator’s preference parameter α(z). S observes the delega-

tion policy but not the actual preferences of the interrogator, which may otherwise convey

information about the evidence, and the interrogation unfolds as before. For concreteness

and brevity, we address the issue of how R can benefit from conditional delegation by
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means of an example in appendix C. Still, the insights we develop there are completely

general and may be summarized as follows:

• for any unconditional delegation policy that is not extreme, i.e. α ≡ αconst ∈ (0, 1),

there always exists a strictly loss-reducing conditional policy that prescribes delegat-

ing to a nicer interrogator, i.e. with αnice < αconst, when the evidence is sufficiently

weak and to a tougher interrogator, i.e. with αtough > αconst, otherwise;

• this policy can be chosen so as to reduce type II errors while leaving type I errors

unaffected and is hence independent from R’s actual preference;

• the loss reduction from this policy is maximal when the preferences of the nicer and

the tougher interrogator are as extreme as possible, i.e. αnice = 0 and αtough = 1.

4.3 Evidence strength standards for interrogating

In our baseline model, R always interrogates S as long has she has some evidence, no

matter her belief about S’s status as guilty or innocent. Suppose instead R now interrogates

S only if his guilt is sufficiently likely based on the available evidence, as figure 3 illustrates.

Figure 3a displays the posterior probability of innocence P(Y = 1 |z ) given R’s evidence,

namely 0 if z ≤ t and z−t
z

if z > t. In the baseline model, the interrogation occurs at any

point on this curve. Instead, a rule such as “reasonable suspicion” or “probable cause”

requiring this probability to be sufficiently low (i.e. below the horizontal red line in figure

3b) maps into an evidence strength standard Z such that R interrogates only if z ≤ Z.

Since Z is observable by law, when S is interrogated he knows R must have sufficiently

strong evidence to do so, i.e. that indeed z ≤ Z.

The equilibrium analysis of our baseline model, which corresponds to Z = 1, easily

generalizes to describe the outcome of the interrogation under any standard Z ∈ (t, 1].34

Rather intuitively, a more stringent standard has the effect to incentivize confession and

discourage lying due to S’s increased pessimism about R’s evidence. Thus, the introduction

of the standard entails a trade-off for R. On the negative side, R gives up the chance to

34If Z ≤ t, when the interrogation occurs R knows S is surely guilty and all types will confess. Our
analysis for Z > t encompasses Z = t as limit case and demonstrates that, rather intuitively, choosing
such a stringent standard is always suboptimal for R.
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Figure 3 An evidence strength standard for interrogating

interrogate S upon weak evidence, which may entail a loss of information transmission and

introduce a type II error for types that would still confess absent the standard. On the

positive side, R can conduct more informative interrogations upon strong evidence.

Proposition 4 (Optimal interrogation standard). Let Z? denote R’s optimal interrogation

standard. It is always the case that Z? > t and

• if for Z = 1 the set of confessors is empty, then Z? < 1;

• if for Z = 1 the set of confessors is non-empty, then:

– Z? < 1 if and only if t, b and α are small;35

– in particular, Z? = 1 if the set of confessors is non-empty for any b.

Proof. See section A.8 in the appendix.

The general message of the proposition is that a more stringent interrogation standard

is optimal when the extent of voluntary confession is otherwise low. A rough intuition

behind this result is that confession has a major informational benefit that is always worth

reaping. However, the result is also driven by the variation in the cost of not interrogating

that the standard introduces. When the extent of voluntary confession is low this cost is

low because interrogations would be rather uninformative anyway. It is also low because

of the conditions that explain low confession in the first place, namely a low weight R

35That is, there exists a known cutoff t̄ (b, α) > 0 such that Z? < 1 if and only if t < t̄ (b, α), where
t̄ (b, α) is decreasing in b and α.
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attaches to a type II error (i.e. a low α) and a high prior likelihood that S is innocent

(i.e. a low t). As shown in the proof, starting from a situation in which no type confesses,

a more stringent standard entails no cost whatsoever if it leaves the set of confessors still

empty. Then, making the standard sufficiently stringent to induce some types to confess

is always beneficial for R.

4.4 Deceptive interrogation tactics

We now investigate the scope for deceptive interrogations tactics when S is prone to

deception about features of the legal environment. Formally, departing from the full ra-

tionality benchmark, we suppose S plays according to what he considers as equilibrium

behavior given his perception while R best responds given the true environment. We ask

how R would want to mislead S about several parameters of interest. Minimization and

maximization tactics that consist respectively, but ultimately equivalently, in downplaying

the severity of legal consequences upon confession and overstating the legal consequences

upon no confession36 can both be thought of as increasing S’s perception of b. The exag-

geration of the strength of incriminating evidence, which is another dimension on which

maximization operates, can be captured by a more stringent perceived interrogation stan-

dard (i.e. a lower Z as defined in section 4.3). Finally, in the same vein of the well-known

“Good Cop Bad Cop” tactic,37 R may deceive S about her preference parameter α, e.g.

pretend that she simply aims to prosecute S no matter his guilty status. As the next

proposition shows, R would always want to engage in such tactics.

Proposition 5 (Deceptive tactics). R’s expected loss is weakly decreasing in S’s perception

of the leniency b and of the strength of the evidence as measured by a more stringent

interrogation standard (i.e. a lower Z). Besides, R’s expected loss is concave in S’s

perception of her toughness α, minimal when S’s perception is extreme (i.e. α = 0 or

α = 1) and maximal when S’s perception is correct.

Proof. See section A.9 in the appendix.

36See for instance Kassin and McNall (1991).
37See for instance Brodt and Tuchinsky (2000).
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Rather intuitively, under higher perceived (or true) leniency38 S is simultaneously more

inclined to confess and less inclined to lie. A stronger perceived interrogation standard has

similar effects. The benefits of S’s misperception of α are related to those of delegation,

except that there is no real downside for R as she retains decision rights. Looking tougher

or nicer are two effective ways to achieve the same objective. When S perceives R as

tougher, he confesses more, even though R will in fact always let S go upon discretion. At

the extreme belief α = 1, R eliminates errors completely since the measure of liars shrinks

to zero. When S perceives R as nicer, instead, he uses smaller lies anticipating these will

suffice to be let go, even though R will in fact always prosecute S upon a pooling message.

At the extreme belief α = 0, R again eliminates errors completely since the lying region

shrinks to zero.

Overall, when effective, these deceptive tactics increase the accuracy of prosecution

decisions. A recurrent source of criticism against discretion in interrogations is the possi-

bility that law enforcers may extort false confessions.39 No matter how persuasive these

deceptive tactics may be, in our setting the only possibility for these to induce innocent

types to depart from honesty is if they generate a shift away from equilibrium restriction

H.

5 Mechanism design

5.1 Optimal direct mechanism

Differently from before, we now suppose R can commit to which action a(m, z) to take

based on the message m received from S and her evidence z. We are interested in R’s

lowest attainable ex ante expected loss in a deterministic direct mechanism in which S

only receives payoffs a(m, z) ∈ {0, 1} but, as before, detected lies are punished at a level of

−b. We further restrict our attention to cutoff mechanisms ẑ : [0, 1]→ [0, 1] which specify

for each message y a cutoff level ẑ(y) ∈ [y, 1] such that a(y, z) = 1 if and only if z ≥ ẑ(y).40

38Since b enters R’s expected loss only through S’s communication strategy, it is irrelevant if it is only
S’s perception or the true b that changes.

39See for instance Kassin et al. (2005).
40We are not considering the informed principal problem (Myerson, 1983) as we are minimizing R’s

ex ante expected loss. Also, while we cannot directly refer to the revelation principle, when looking for
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Accordingly, the optimal direct mechanism minimizes

α

∫ t

0

(1− ẑ(y))dy + (1− α)

∫ 1

t

(ẑ(y)− y) dy. (11)

subject to the constraint that each type finds it weakly optimal to be honest, i.e. for every

y, y′ ∈ [0, 1] such that y < y′

1− ẑ(y) ≥ 1− ẑ(y′)− b (y′ − y) . (12)

This constraint can be rewritten as ẑ(y) − ẑ(y′) ≤ b (y′ − y), which clarifies that if y

pretends to be y′ > y then he can get an additional measure ẑ(y)− ẑ(y′) of a = 1 if z > y′

but he will be caught in a lie when z ∈ (y, y′] and receive punishment −b.41

Technically, this is an optimal control problem with a jump in the state variable Y

at t. However, its solution is extremely simple. Candidate solutions can be indexed by

ẑ(t) ∈ [t, 1] and the constraint must bind for types sufficiently close to t. Thus, in that

region ẑ(y) is linear with slope −b. This is demonstrated in figure 4, where we distinguished

two possible cases depending on whether only sufficiently high types obtain a positive

expected payoff (figure 4a) or all types do so (figure 4b).

Interestingly, the optimal mechanism has a close relation with the equilibrium of the

baseline model (section A.10.1 in the proof of proposition 6 here below provides detailed

intuitions for the interested reader). Let us use the notation introduced at section 3.4 and

the optimal mechanism the imposed restrictions on the class of mechanisms are without loss of generality.
Indeed, let us consider some arbitrary, possibly non-direct, mechanism in which S can receive payoffs of
−b, 0 and 1 but his expected payoff must be weakly larger than 0. We assume, as before, that when
−b is given to a guilty suspect R makes no error. However, when −b is given to an innocent suspect R
makes an error of size 1 + b. After calculating the expected payoffs for each type from sending his optimal
message, one can always construct a deterministic (cutoff) direct mechanism using only 0s and 1s which
gives each type the same expected payoff as in the non-direct mechanism. It should be clear that type I
errors are the same while type II errors may only decrease (see also our next proposition which connects
the baseline model with the optimal mechanism). It is also clear that upward deviations can be deterred
by implementing −b when a lie is detected. It is not necessarily true though that this direct mechanism
is immune to downward deviations. However, it turns out from our proof that our optimal mechanism is
also optimal in the environment where downward deviations are not possible (see also footnote 41). This
shows that our restrictions are without loss of generality.

41We could introduce further constraints. First, we could require that the mechanism is immune to
downward lies. Second, we could require that a participation constraint also holds assuming the possibility
of silence. As we will see, however, downward lies will be clearly suboptimal in our mechanism. Also,
provided that the level of protection of silence is sufficiently low, the participation constraint will also be
satisfied.
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Figure 4 Determination of the optimal mechanism

take yc, ȳ and z̄(m) ≡ ȳ+b(ȳ−m) at their equilibrium levels, as well any given equilibrium

strategy of S. For types y ∈ (yc, ȳ), i.e. types who pool in the equilibrium of the baseline

model, let ẑ?(y) be such that

1− ẑ?(y) = 1− z̄(m(y))− (m (y)− y) b = 1− z̄(y).

That is, R still uses the same cutoff strategy as in equilibrium and extends it to honest

confessions of types who lied. Besides, define ẑ?(y) = 1 for y ≤ yc and ẑ?(y) = y for y ≥ ȳ,

i.e. guilty types and innocent types who separate in the equilibrium of the baseline model

still get always 0 and 1, respectively.

Proposition 6 (Optimal mechanism). Mechanism ẑ?, described above, is the optimal one.

Accordingly:

• the expected payoff of each type of S is the same as in equilibrium;

• R’s expected loss is strictly lower than in equilibrium due to the decreased amount of

type II errors, while type I errors are the same.

Proof. See section A.10 in the appendix.
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As already implied indirectly by proposition 2, 3 and 4, R suffers from her lack of

commitment power over actions. In the next section, we show how R’s expected loss under

the optimal mechanism can be replicated in equilibrium of a natural game built on the

baseline model that entails a combination of information revelation about the evidence

and delegation. The game does not exhibit the rather unnatural property of the optimal

mechanism that some guilty confessors are sometimes let go.

5.2 Implementation of the optimal mechanism

Consider the following game with three players, S, R and D, where D is a maximally

tough interrogator (i.e. whose loss is given by equation (1) with α = 1):

• Stage 0 S and R observe their private information y and z as in the baseline model.

Additionally, D also observes z;

• Stage 1 R and D interrogate S, i.e., S sends them a public message m ∈M;

• Stage 2 based on S’s message m and the evidence z, R can either take a prosecution

decision a ∈ {0, 1}, in which case the game ends and payoffs realize as in the baseline

model, or choose to delegate the continuation of the interrogation to D, so that stage

3 is reached;

• Stage 3 D interrogates S again by specifying a set of messages MD ⊆ M from

which S can send a new message m2;42

• Stage 4 based on S’s new message m2 as well as on z and m, D takes a prosecution

decision a2 ∈ {0, 1}, the game ends and payoffs realize as in the baseline model.

Proposition 7 (Implementation without commitment). There are equilibria of this game

which respect restriction H, R and C and in which R’s and S’s expected payoffs are as

in the optimal mechanism.43 Among these equilibria, there is a unique one in which the

delegation policy of R is continuous in m.
42This modeling choice is just for simplicity. S could equivalently send any arbitrary message. Then S

would get −b if caught in a lie as in the baseline model. Additionally, D could just impose a punishment
−b in case she does not get an answer to her question.

43While we have not rigorously defined how restriction H extends to this game, in these equilibria each
type is either already honest from stage 1 or will be so in stage 4.
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Proof. See section A.11 in the appendix.

Here we give an informal description of the unique equilibrium in which R’s delegation

policy is continuous, whose structure is rather intuitive.44 S’s strategy in stage 1 is as in

the equilibrium of the baseline model, where he is interrogated only by R. Continuity of the

delegation policy pins down the lying function to be strictly increasing.45 R immediately

takes the correct action for separating types. Instead, for pooling types, her delegation

policy prescribes to let S go if the evidence is weak relative to the received message, i.e. if

z ≥ Z(m), and delegate the continuation of the interrogation to the tough interrogator if

the evidence is strong, i.e. if z < Z(m).46 In particular, a liar is never let go when caught,

so that he is always further interrogated by D. If the interrogation continues, D chooses

MD = {g(m),m}, i.e. asks S the question: “Are you m or g(m)?”. Guilty type g(m),

who sent the pooling message m, hence gets a second chance to confess. The appropriate

choice of Z(m) now induces type g(m) to do so, given that he learns that the evidence

is strong from the fact that the interrogation continued. In order not to leave to S any

unnecessary surplus and to reach payoffs as in the optimal mechanism, Z(m) must be

chosen to make type g(m) exactly indifferent between confessing and sticking to his stage

1 story m. Equilibrium lies in stage 1 are hence forgiven. Instead, innocent type m sticks

to his stage 1 story, i.e. he sends m2 = m, and D may either prosecute him or let him go

depending on the evidence.47

44While we do not formalize the strategy spaces of the players, their actions can obviously depend on
the information available to them. We provide more formal details in the proof.

45The sole difference to the baseline model is that now the highest confessor, if any, lies up to t in stage
1. However, in stage 4, when interrogated by D, which happens with probability 1, he confesses honestly
as well.

46The delegation policy can be thought of as a norm for the interrogation to continue which varies with
m. When Z(m) is continuous it must be decreasing, which, coupled with a strictly increasing equilibrium
lying function, implies that both within guilties and innocents the norm is more stringent for higher types.
It is the increasing chance of being let go that allows screening among guilty types unwilling to confess
in stage 1. We must stress though that, differently from the case of a legal standard for interrogating
(section 4.3), with which R has to comply by law, R is not obliged to follow the norm and now finds it
strictly optimal to do so. This is ensured by D’s off the equilibrium path behavior, which disciplines R by
prosecuting S with probability one in case R delegates the interrogation to D when she should not, i.e.
when z > Z(m). To have that this decision is sequentially rational for D when she is not maximally tough
(see also footnote 47), she is free to form the belief that S is sufficiently guilty.

47Notice that on the equilibrium path D will know that an S who is sticking to his story is surely
innocent. Nonetheless, as D is maximally tough she is indifferent between prosecuting S or letting him
go. If there is no access to a maximally tough interrogator, the equilibrium above obtains in the limit as
D gets tougher and tougher. The difference is that, to make D indifferent, guilty types must now confess
randomly with a probability approaching 1 as D’s toughness becomes maximal.
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If one reinterprets S’s choice when interrogated by D as between accepting a plea

and going to trial, the equilibrium at this stage is reminiscent of properties of screening

outcomes in plea bargaining (Grossman and Katz, 1983; Reinganum, 1988) and the optimal

judicial mechanism of Siegel and Strulovici (2018), where only innocents go to trial. In

particular, similar to Siegel and Strulovici (2018), when S goes to trial, D’s decision rule

takes a cutoff form based on the strength of the evidence not because of its informational

content but purely for screening purposes. At the same time, as already apparent from

R’s decision rule in the optimal mechanism and the presence of stage 1 in the game, in

our setting more screening takes place both within and across innocents and guilties due

to additional heterogeneity in the expected evidence strength.

6 Discussion

We provided a theoretical framework to analyze interrogations and derived several

implications for the design of the legal system. Many additional questions can be addressed

within our framework, also considering its tractability.

As already hinted at in the context of deceptive interrogation tactics, incomplete infor-

mation about the legal system can be easily incorporated in our model,48 yielding a rich

new set of strategic considerations and normative implications. For a start, it would be

interesting to determine whether the deceptive tactics we considered would remain effective

when the suspect is fully rational but has only partial knowledge of the legal environment.

More generally, it would be important to understand the effects of laws aimed at reduc-

ing eventual informational asymmetries between the suspect and law enforcers. As a case

in point, the legal system typically requires that the suspect is explicitly notified of his

48It is easy to see that parameters b and Zs can be thought of as expectations of S about random
variables whose realizations are private information of R. Without fully describing the equilibrium, we
now show how also the parameter α can be made R’s private information. In the equilibrium of the baseline
model, when R had discretion she had to be indifferent between actions upon each pooling message and
there was a cutoff z̄(m) for each message m above which R chose a = 1 and below which R chose a = 0,
resulting in the appropriate A(m). Now the role of these cutoffs will be played by cutoffs ᾱ(m) such that
nicer types of R choose a = 1 and tougher types of R choose a = 0 and the measures of nicer and tougher
types induce the appropriate A(m). The indifference between actions for type ᾱ(m) can be ensured by
choosing a lying function for which 1

1+
d(λ◦g)
dλ (m)

= ᾱ(m). It is now this differential equation rather than

lemma 4 that pins down the pooling region and the set of liars.
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right to silence for the interrogation to be admissible in court. By officially marking the

start of a custodial interrogation, this notification may also implicitly convey additional

information.49

Relatedly, we did not consider explicitly and comprehensively laws that govern com-

munication about the evidence to the suspect.50 Full disclosure of law enforcers’ private

information seems clearly detrimental to the informativeness of interrogations in our frame-

work. Indeed, provided the evidence is not conclusive, the suspect would then know how to

tailor his lies and be less inclined to confess. Still, from a Bayesian persuasion perspective

(Kamenica and Gentzkow, 2011), the optimal evidence revelation policy may take a dif-

ferent form than an evidence strength cutoff as we considered in the case of interrogation

standards. If law enforcements’ claims about the evidence are soft information, instead,

new interesting strategic considerations arise due to the possibility that the suspect may

in turn catch law enforcers in a lie, e.g. know that they are exaggerating the strength of

the evidence. If the cost of doing so is sufficiently large for law enforcers due to the risk of

legal action or of an invalidation of the interrogation, then evidence revelation becomes at

least partially credible.

We also considered inter-temporal screening of suspects only in the context of the game

that implements the optimal mechanism. On more practical grounds, it would be interest-

ing to determine if law enforcers alone can improve upon the baseline model by gradually

giving away the strength of their evidence in a dynamic interrogation. We conjecture the

answer highly depends on the extent of law enforcers’ commitment power over the stop-

ping of the interrogation, which the law can affect.51 Likewise, in the spirit of Glazer and

49This notification is referred to as Miranda warning in the United States and cautioning in the United
Kingdom, where code C of the CJPOA 1994 states that “A person whom there are grounds to suspect of an
offence, see Note 10A, must be cautioned before any questions about an offence, or further questions if the
answers provide the grounds for suspicion, are put to them if either the suspect’s answers or silence, (i.e.
failure or refusal to answer or answer satisfactorily) may be given in evidence to a court in a prosecution”.
Thus, a suspect being cautioned should infer that circumstances at Note 10A apply i.e. “There must
be some reasonable, objective grounds for the suspicion, based on known facts or information which are
relevant to the likelihood the offence has been committed and the person to be questioned committed it.”

50Such laws are typically in place further down the prosecution process. For instance, in Brady v.
Maryland (1963), the Supreme Court of the United States established that the prosecution must disclose
evidence that is favorable to the accused. Daughety and Reinganum (2018, 2020) explore the prosecutor’s
incentives to comply with this requirement also depending on the exact timing of the disclosure.

51For example, if the maximum period of detention increases with the strength of incriminating evi-
dence, continuing the interrogation credibly signals to the suspect that the evidence is sufficiently strong.
Conversely, if the suspect must be formally charged with an offense as soon as there is sufficiently strong
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Rubinstein (2004, 2006), one may investigate whether law enforcers could benefit from

formulating different questions to the suspect other than “what is your type?”.
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Appendix

A Proofs

A.1 Proof of lemma 1

In any equilibrium, the expected payoff of any type52 from confessing with a message

m ≤ y is πc = 0, while confessing with a message m > y yields 0 − b(m − y) < πc. The

expected payoff of type y from denying by lying upward, i.e. from sending a message such

that m > y and m ≥ t is

π`(m; y) =

∫ 1

m

a(m, z)dz︸ ︷︷ ︸
lie not detected

− (m− y)b︸ ︷︷ ︸
lie detected

. (13)

The expected payoff of type y from remaining silent when he is guilty is

πs,g(y) =

∫ 1

t

a(s, z)dz︸ ︷︷ ︸
inconclusive evidence

− (t− y)b︸ ︷︷ ︸
conclusive evidence

(14)

and when he is innocent is

πs,i(y) =

∫ 1

y

a(s, z)dz (15)

The expected payoff of innocent type y from denying by lying downward, i.e. form sending

a message m ∈ [t, y) is

πd`,i(m; y) =

∫ 1

y

a(m, z)dz. (16)

Finally, the expected payoff of innocent type y from being honest is simply equation (13),

or equivalently equation (16), evaluated in m = y

πh,i(y) =

∫ 1

y

a(y, z)dz. (17)

We divide the proof is several steps.

52See footnote 27.
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step 1 Confessors are honest Since πh,i(y) ≥ πc = 0, an innocent type cannot confess as

otherwise honesty would clearly be a best response. Likewise, as a guilty confessor y

gets πc = 0 no matter the m ≤ y and strictly less if m > y, it must be that m(y) ≤ y

and if m(y) 6= y honesty is a weak best response for him.

step 2 No type lies downward. Suppose innocent type y sends m ∈ [t, y). Comparing

equation (16) and (17), it follows that
∫ 1

y
a(m, z)dz >

∫ 1

y
a(y, z)dz, where the in-

equality must be strict otherwise honesty would be a weak best response for him.

Since ∫ 1

m

a(m, z)dz ≥
∫ 1

y

a(m, z)dz >

∫ 1

y

a(y, z)dz,

it is clear that all types y′ < y strictly prefer m to y too. Thus, either y is an off

the equilibrium path message or it is sent only by some type/s y′ > y. In the former

case, one can set a(y, z) = 0 for z < y and a(y, z) = a(m, z) for each z ≥ y. No

type can profitably deviate to sending y and type y is indifferent between m and y,

so that honesty is a weak best response for him. In the latter case, it must be that

a(y, z) = 1 for any z > y by restriction (B.2). It cannot then be the case that y

strictly prefers m to y, yielding a contradiction.

step 3 Each upward lie sent must give the same payoff. From equation (13) it is ap-

parent that the expected payoff difference π`(m; y)−π`(m′; y) from any two messages

m and m′ such that m > m′ ≥ y is independent from y. Therefore, if in equilibrium

m and m′ are sent by two distinct types y ≤ m′ and y′ ≤ m′, any type y′′ ≤ m′ is

indifferent between the two messages.

step 4 No innocent type lies. By step 2, we can restrict our attention to equilibria in

which only upward lies are sent. Suppose innocent type y sends m > y. Suppose

first that y is sent by some other type y′, which is then necessarily lower than y. By

step 3, type y must be indifferent between y and m, i.e. it must be that

∫ 1

y

a(y, z)dz =

∫ 1

m

a(m, z)dz − (m− y)b, (18)

so that m = y is a weak best response for type y. Suppose instead that m = y is
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an off the equilibrium path message, and set a(y, z) according to equation (18) (by

continuity this can always be done, since if a(y, z) = 1 for each z the LHS is strictly

higher than the RHS and if a(y, z) = 0 for each z the LHS must be weakly lower,

given that the RHS must be non-negative for type y to choose m in the first place).

Type y is indifferent between m and y and, by step 3, so are types y′ < y. Instead,

types y′′ > y strictly prefer m to y. For a type y′′ ≥ m this follows directly from

combining equation (16) and (18). As for a type y′′ ∈ (y,m),

πd`,i(y; y′′) =

∫ 1

y′′
a(y, z)dz (19)

≤
∫ 1

y

a(y, z)dz (20)

=

∫ 1

m

a(m, z)dz − (m− y)b (21)

<

∫ 1

m

a(m, z)dz − (m− y′′)b = π`(m; y′′), (22)

where equation (19) follows from evaluating equation (16) at message y, equation (20)

from the fact that a(y, z) ≥ 0 and y′′ > y, equation (21) from equation (18), equation

(22) from the fact that y′′ > y, and the last equality from evaluating equation (13)

at message m. Thus, no type can profitably deviate to sending y and honesty is a

weak best response for type y.

step 5 No innocent type is silent. Suppose there is a type y > t who sends m = s.

Suppose first that m = y is an off the equilibrium path message and choose a(y, z)

such that a(y, z) = a(s, z), so that y is indifferent between s and y. It is clear that

both guilty and innocent types y′ < y strictly prefer s to y, as it is cheaper. Instead,

types y′ > y are indifferent between s and y. Since no type can profitably deviate

to m = y, it is a weak best response for type y. Suppose instead that m = y is sent

by another type y′. Provided y is not indifferent to m = y, i.e. that m = y is not a

weak best response for type y, from equation (15) and (17) it must be that

∫ 1

y

a(s, z) >

∫ 1

y

a(y, z)dz. (23)
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If type y′ is guilty, subtracting equation (14) from (13), it must be that

∫ 1

y

a(y, z)dz ≥
∫ 1

t

a(s, z) + (y − t)b,

yielding a contradiction with equation (23). If type y′ is innocent, by step 2, y′ < y

so that subtracting equation (15) from (13) it must be that

∫ 1

y

a(y, z)dz ≥
∫ 1

y′
a(y, z) + (y − y′)b.

This again yields a contradiction with equation (23) since
∫ 1

y′
a(y, z) ≥

∫ 1

y
a(y, z)

A.2 Proof of lemma 2

A.2.1 Proof of (i)

step 1 A sufficiently high innocent type separates. Consider message mε = 1− ε > t,

where ε > 0 is arbitrarily small. By lemma 1 this message is sent by innocent

type y = mε. Suppose there is a guilty type yε who also sends this message. Using

equation (13), yε earns
∫ 1

1−ε a(mε, z)dz−(1−ε−yε)b, which letting ε go to 0 converges

to −(1−yε)b. There is therefore an arbitrary small ε such that type yε could profitably

deviate to confess.

step 2 If an innocent type separates, so do higher types. Suppose by contradiction

that innocent type y separates but innocent type y′ > y does not. As a(y, z) = 1 for

each z > y by restriction (B.2), from equation (13) it is apparent that guilty types

strictly prefer m = y to m = y′ and hence also type y′ must separate.

step 3 A sufficiently low innocent type does not separate. Suppose innocent type t

separates so that, by restriction (B.2), a(t, z) = 1 for each z > t and consider type

t−ε = t − ε, where ε > 0 is arbitrarily small. From equation (13) it is apparent that

the expected payoff of type t−ε from lying to m ≥ t is decreasing in m. As he is

not sending t, he must then earn the maximum between the expected payoff from

confessing honestly, i.e. 0, and staying silent, i.e. πs,g(t
−
ε ) =

∫ 1

t
a(s, z)dz − bε by

equation (14). The expected payoff of type t−ε from deviating to m = t is 1− t− bε,
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which for ε arbitrarily small is arbitrarily close to 1 − t so that the deviation is

profitable.

A.2.2 Proof of (ii)

By lemma 1, each message m ∈ [t, ȳ) is sent by innocent type y = m, a set that has

zero measure. By point (i), each message m ∈ [t, ȳ) is also sent by at least a guilty type.

If the set of guilty types who send m has positive measure, by restriction (B.1), i.e. Bayes’

rule, R’s action when she has discretion must be a(m, z) = 0. Then, comparing equation

(13) and (14) clarifies that each guilty type sending m could profitably deviate to staying

silent or confessing.

A.2.3 Proof of (iii)

By step 3 in the proof of lemma 1, each guilty type who lies must be indifferent to any

m ∈ [t, ȳ). That is, π`(m; y), which is defined in equation (13), must be constant in m over

this interval. Solving π`(m; y) = k with respect to A(m), where k is a constant, yields

A(m) =
k + b(m− y)

1−m
,

from which it is apparent that A(m) is continuous, increasing and differentiable in m. Also,

A(m) must converge to 1 at m = ȳ since, by point (i) and restriction (B.2), A(m) = 1 for

each m ≥ ȳ.

A.3 Proof of lemma 3

Given the strategy of liars ` and evidence z such that R has discretion, the total

pushforward measure of the Lebesgue measure λ (i.e. both by the liars and the innocents)

on the messages [t, z) is λ ◦ g + λ, since innocent types are honest and no liar is excluded

by z. Then, for every m ∈ [t, z), by definition µ(m, z) is a regular conditional probability

if for every measurable A ⊆ [t, z) we have that:

∫
A

µ(m, z)d(λ ◦ g + λ) = λ(A)
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Using the definition of Radon-Nikodym derivative, which exists since λ ◦ g + λ and λ are

mutually absolute continuous by restriction C, λ(A) =
∫
A

dλ
d(λ◦g+λ)

d(λ ◦ g + λ). It follows

that µ(m, z) = dλ
d(λ◦g+λ)

.

A.4 Proof of proposition 1

The proof is organized as follows. We begin by identifying some general observations

that must be true in any equilibrium satisfying restrictions H, C and R (section A.4.1).

Then, we distinguish three possible cases (all guilty types lie, some guilty types lie and the

rest confess, some guilty types are silent) and show that in each case the measure of liars

and silent types and the set of confessors are necessarily uniquely pinned down (section

A.4.2). Next, we show that the three cases do not overlap and span the whole parameter

space (section A.4.3). Finally, we show that in each case an equilibrium indeed exists

(section A.4.4).

A.4.1 Preliminary observations

Evaluating equation (7) in t shows that there must be a one to one relationship between

A(t) and ȳ, i.e.

A(t) =
1− ȳ − b (ȳ − t)

1− t
or, equivalently, (24)

ȳ =
1− (1− t)A(t) + bt

1 + b
. (25)

Also, as at least some guilty type y must send t by lemma 2 and y must be indifferent to

any pooling lie by step 3 in the proof of lemma 1, evaluating equation (5) in t yields the

expected payoff from lying for type y

π`(t; y) = (1− t)A(t)− (t− y)b. (26)
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Let us denote by v the expected payoff for a guilty type from remaining silent conditional

on evidence being inconclusive, i.e., from equation (2),

v ≡
∫ 1

t
a(s, z)dz

1− t
= P (z > Zs | inconclusive evidence,Y = 0) =

1− Zs
1− t

. (27)

Comparing it to equation (14) clarifies that it must be that A(t) ≥ v, otherwise y would

rather stay silent. Moreover, if the set of silent types is non-empty, it must be that A(t) = v,

otherwise a silent type would rather lie. Thus, equation (26) also represents the equilibrium

expected payoff for a guilty type from not confessing. This expected payoff is increasing in

y and positive for y = t, while confessing always yields 0. Therefore, since by restriction

H a guilty type must confess (honestly) if indifferent, it follows that the set of confessors

must be Yc = [0, yc] where yc is the unique solution to π`(t; y) = 0

yc ≡
bt− (1− t)A(t)

b
. (28)

Also, yc ≥ 0, i.e. the set of confessors is not empty, if and only if the expected payoff from

not confessing for type zero

π`(t; 0) = (1− t)A(t)− tb (29)

is not strictly positive, i.e. if

b ≥ 1− t
t

A(t). (30)

A.4.2 Possible cases

Case I: some guilty types lie and the rest confess Suppose the set of silent types Y I
s

- throughout, the superscript indexes the respective case - is empty but the set of confessors

Y I
c is not. It must then be that yIc is as in equation (28) and yIc ≥ 0. The measure of liars

is then λ
(
Y I
`

)
= t − yc so that, by lemma 4 and equation (24), ȳI = α+bt

α+b
, AI(t) = (1−α)b

b+α

and yIc = (1+b)t−(1−α)
b+α

. This case can only occur if b ≥ 1−t−α
t

(which is always satisfied if

t ≥ 1− α), so that equation (30) holds, i.e. yIc ≥ 0.

Case II: all guilty types lie If the sets of confessors Y II
c and of silent types Y II

s are both

empty, the measure of the set of liars Y II
` is then λ

(
Y II
`

)
= t. By lemma 4 and equation
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(24), it then follows that ȳII = t
1−α and that AII(t) = 1−t−(1+bt)α

(1−t)(1−α)
. This case can only occur

if b < 1−t−α
t

, so that π`(t; 0), which is defined in equation (29), is strictly positive, i.e. even

the lowest type strictly prefers to lie than to confess (this then automatically implies that

ȳII < 1 and AII(t) > 0).

Case III: some guilty types are silent If the set of silent types Y III
s is non-empty in

equilibrium, it must then be that AIII(t) = v, so that, by equation (25), ȳIII = 1−(1−t)v+bt
1+b

.

By lemma 4, the measure of liars is then λ
(
Y III
`

)
= (1−α)(1−t)(1−v)

α(b+1)
. To determine the

measure of silent types λ
(
Y III
s

)
, we must then distinguish two subcases depending on

whether the set of confessors is non-empty. From equation (28), yIIIc = bt−(1−t)v
b

and

yIIIc ≥ 0, i.e. the set of confessors is non-empty if and only if

v ≤ vIIIa ≡
tb

(1− t)
(31)

• Case IIIa: the set of confessors is non-empty. When yIIIc ≥ 0, i.e. when

v ≤ vIIIa, λ
(
Y III
c

)
= yIIIc and λ

(
Y III
s

)
= t−λ

(
Y III
`

)
−λ

(
Y III
c

)
= (1−t)(vα−b(1−v−α))

b(1+b)α
.

• Case IIIb: the set of confessors is empty. When yIIIc < 0, i.e. when v > vIIIa,

λ
(
Y III
s

)
= t− λ

(
Y III
`

)
= t− (1−α)(1−t)(1−v)

α(b+1)
.

A.4.3 Equilibrium regions

Case I and case II do not overlap since case I requires b ≥ 1−t−α
t

and case II the

reverse strict inequality. However, also case III cannot overlap with case I and II. Consider

for instance case I (the argument for case II is analogous). If AIII(t) = v > AI(t), the

candidate equilibrium at case I cannot exist since liars could profitably deviate to silence.

Suppose instead AIII(t) = v ≤ AI(t) and both equilibria exist. From equation (28), it must

then be that yIc ≤ yIIIc (with strict inequality unless v = AI(t)) so that λ
(
Y I
c

)
≥ λ

(
Y III
c

)
(with strict inequality unless v = AI(t) or yIc = 0, i.e. λ

(
Y I
c

)
= 0). Moreover, λ

(
Y I
`

)
=

t− λ
(
Y I
c

)
≥ λ

(
Y III
`

)
= t− λ

(
Y III
c

)
− λ

(
Y III
s

)
(with strict inequality unless v = AI(t) or

both λ
(
Y I
c

)
= 0 and λ

(
Y III
s

)
= 0). Since in equilibrium ȳ is strictly increasing in λ (Y`)

by lemma 4, it follows that ȳI ≥ ȳIII and, from equation (24), that AI(t) ≤ AIII(t). Thus,
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in order to not reach a contradiction, it must be that AIII(t) = v = AI(t) and the two

equilibria only differ in the behavior of a zero measure of types.

From these observations, it follows that the prevalence of case I, II or III is uniquely

determined by t, b, v and α so that A(t) can be written as

A(t) =

max
{
v, 1−t−(1+bt)α

(1−t)(1−α)

}
if b < 1−t−α

t

max
{
v, (1−α)b

b+α

}
if b ≥ 1−t−α

t
.

(32)

Point (ii) of the proposition obtains from evaluating equation (30) using equation (32)

and (27) and noting that the set of confessors is empty by construction whenever case II

occurs. Using again equation (27), point (iii) of the proposition is simply the condition for

the prevailing of case III after noting that AII(t) > AI(t) if and only if b < 1−t−α
t

.

A.4.4 Existence

The previous observations clarify that the strategy of confessors is optimal and that

no other type prefers to confess, not even weakly. The strategy of a guilty type who does

not confess is also optimal. Indeed, he is indifferent between sending any lie m ∈ [t, ȳ],

he prefers doing so than staying silent whenever no type is silent in equilibrium and he

is indifferent to remain silent otherwise. Conversely, any m > ȳ is strictly dominated for

him since, as A(ȳ, z) = 1, it is apparent from equation (5) that his expected payoff is

strictly decreasing in m in that region. For the same reasons, an innocent type y ∈ [t, ȳ) is

indifferent between being honest and sending any lie m ∈ [y, ȳ) and he strictly prefers to

be honest than sending any lie m > ȳ. From a comparison of equation (16) and (17) and

the fact that A(m) is increasing, he also strictly prefers to be honest than to deny with a

message m < y. From a comparison of equation (15) and (17) and the fact that A(t) ≥ v

and A(m) is increasing, he also strictly prefers to be honest than to be silent (except type

t, who might be indifferent). Finally, as by restriction (B.2) and lemma 2, a(m, z) = 1 for

each m ≥ ȳ and z > m, an innocent type y ≥ ȳ earns 1 by being honest, which is the

maximum attainable payoff.

To conclude, notice that in any of the three cases described above, one can always

take the set of liars to be an interval with higher endpoint ȳ` = t and lower endpoint
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¯
y` = t−(1−α)ȳ

α
, so that the condition of lemma 4 is satisfied, and such that λ(Y`) + λ(Yc) +

λ(Ys) = t. One can then always construct a lying function with image L = [t, ȳ) that

satisfies restriction R and such that equation (8) holds, i.e. such that d(λ◦g)
dλ

(m) = 1−α
α

. If

¯
y` > yc (i.e. in case I or III), one can simply take Y` =

[
¯
y`, t

)
and

`(y) =
α

1− α
y + t− α

1− α¯
y`, (33)

which indeed satisfies equation (8) since d(λ◦g)
dλ

(m) = 1
`′(y)

. If instead
¯
y` = yc (i.e. in case II),

it must then be that Y` =
(
¯
y`, t

)
given that restriction H implies that type

¯
y` is necessarily

honest. One can then take

`(y) =



t+α
¯
y`

1−α − 2 α
1−αy if y < ¯

y`+t

2

t if y = ¯
y`+t

2

2 α
1−αy −

α(2t+
¯
y`)−t

1−α if y > ¯
y`+t

2
.

(34)

This function has image L = [t, ȳ) and satisfies equation (8) since, other than at the zero

measure point y = ¯
y`+t

2
,

d(λ ◦ g)

dλ
(m) =

∑
y∈g(m)

1

|`′(y)|
=

1− α
α

.

A.5 Proof of corollary 1

For S, the result follows directly from the fact that equilibria can only differ in the

identity of liars and silent types, if any, which are by construction indifferent between

the two strategies, and in the exact shape of the lying function, which is irrelevant since

R’s expected action conditional on discretion is the same and liars are by construction

indifferent to any pooling lie. As for R, her ex-ante expected loss (equation (10)) can be
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rewritten as

E = (1− α)

∫ ȳ

t

∫ 1

y
(1− a (y, z)) dzdλ+ α

1− α
α

∫ ȳ

t

∫ 1

y
a (y, z) dzdλ+ α

∫
Ys

∫ 1

Zs

dzdλ (35)

= (1− α)

∫ ȳ

t

∫ 1

y
dzdλ+ αλ (Ys) (1− Zs) (36)

= αλ (Y`)

(
1− t− αλ (Y`)

2(1− α)

)
+ αλ (Ys) (1− Zs). (37)

Equation (35) obtains from a change of variables under pushforward integrability and the

fact that dλ1−α
α

= d (λ ◦ g). Equation (36) obtains from the fact that the first term of

equation (35) is zero whenever the second term is one. Intuitively, this can be understood

as R being indifferent between always taking action a = 1 upon discretion, which only

generates type II errors, and always taking action a = 0, which only generates type I

errors. Since ȳ and λ (Ys) are the same in every equilibrium, so is E. Equation (37) is for

future use and, after some rearranging, obtains from substituting back the length of the

pooling interval as a function of the measure of liars using lemma 4.

Ex-post, i.e. once z has realized, if z ≤ t, R’s loss is zero. Otherwise, using analogous

simplifications as above,

E(z) = (1− α)

∫ min{z,ȳ}

t

(1− a (y, z)) dλ+ α

∫
Y`:`(y)<z

a (` (y) , z) dλ+ αλ (Ys)1z∈(Zs,1)

= (1− α)

∫ min{z,ȳ}

t

(1− a (y, z)) dλ+ α
1− α
α

∫ min{z,ȳ}

t

a (y, z) dλ+ αλ (Ys)1z∈(Zs,1)

= (1− α)

∫ min{z,ȳ}

t

dλ+ αλ (Ys)1z∈(Zs,1),

which is again identical across equilibria.

A.6 Proof of proposition 2

Throughout, let the level of protection of silence be defined in terms of v = 1−Zs

1−t rather

than Zs (see equation (27)). We first prove the first point of the proposition. Note first of

all that requiring the set of confessors to be empty even without any protection of silence,

i.e. for v = 0, is equivalent to condition b < 1−t−α
t

. Indeed, the inequality at point (ii) of

proposition 1 for the set of confessors to be non-empty is violated at v = 0 (and hence for
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any v), if and only if this condition holds. Thus, suppose that indeed b < 1−t−α
t

. Using the

results of sections A.4.2 and A.4.3,

• if v ≤ AII(t), case II of section A.4.2 obtains, i.e. all guilty types lie;

• if v > AII(t) case IIIb of section A.4.2 obtains, i.e. some guilty types lie and the rest

are silent.

Assume case IIIb obtains (case II then obtains by continuity for v = AII(t) andR’s expected

loss is independent from v for any v ≤ AII(t) since no type will be silent). Replacing the

equilibrium measures of λ (Y`) and λ(Ys) in equation (37), R’s expected loss is

E = (1− α)
(1− t)

(
1− t− (1−t)(1−v)

2(1+b)

)
(1− v)

1 + b
+ α(1− t)v

(
t− (1− t)(1− v)(1− α)

(1 + b)α

)
. (38)

As E ′(v)|v=AII(t) = −αb(1−t)t
b+1

< 0, E ′(v)|v=1 = α(1− t)t > 0 and E ′′(v) = (1+2b)(1−t)2(1−α)
(1+b)2

>

0, the FOC gives a unique minimum

ṽ =
1− t− α− b2tα + 2b(1− t− α)

(1 + 2b)(1− t)(1− α)
∈
(
AII(t), 1

)
. (39)

Thus, R’s optimal protection level is effective and given by ṽ, which concludes the proof

of the first part of the proposition.

Suppose now that b ≥ 1−t−α
t

, instead, so that the value of v can affect whether the set

of confessors is empty. By the results of sections A.4.2 and A.4.3, case II of section A.4.2

cannot occur since some guilty types will necessarily confess or be silent. Thus,

• if v ≤ AI(t), case I of section A.4.2 obtains, i.e. some guilty types lie and the rest

confess;

• otherwise, recalling that vIIIa > AI(t) as defined in equation (31) represents the level

of protection above which the set of confessors becomes empty,

– if v ∈
(
AI(t), vIIIa

]
case IIIa of section A.4.2 obtains, i.e. some guilty types lie,

some are silent and some confess;

– if v > vIIIa, case IIIb obtains, i.e. some guilty types lie and the rest are silent.
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Consider first the region of case IIIa (case I then obtains by continuity for v = AI(t) and

R’s expected loss is independent from v for any v ≤ AI(t) since no type will be silent).

Replacing the equilibrium measures of λ (Y`) and λ(Ys) in equation (37), R’s expected loss

is

E = (1−α)

(
(1− t)

(
1− t− (1−t)(1−v)

2(1+b)

)
(1− v)

)
1 + b

+α(1− t)v
(
t− bt− (1− t)v

b
− (1− t)(1− v)(1− α)

(1 + b)α

)
.

(40)

Since E(v) is convex53 and E ′(v)|v=AI(t) = (1−t)2(1−α)α
(1+b)(b+α)

> 0, in this region R’s expected loss

is minimized at v = AI(t), i.e. for a level of protection that is not effective, yielding

E(v) |v=AI(t) =
(1− t)2(1− α)α(2b+ α)

2(b+ α)2
. (41)

Consider now the region v ≥ vIIIa. R’s expected loss in this region is again given by

equation (38) which, as seen above, is convex and, absent the constraint v ≥ vIIIa, it is

uniquely minimized in ṽ as defined in equation (39). Thus, if ṽ ≤ vIIIa, i.e. if

t ≥ t̂(α, b) ≡ (1 + 2b)(1− α)

(1 + b)(1 + b(2− α))
,

where t̂(α, b) is strictly decreasing in its arguments,54 E ′(v) |v=vIIIa
≥ 0 and R’s global

optimal level of protection is v = AI(t), i.e. it is not effective. Indeed, R’s expected loss

is always continuous in v (i.e. equation (38) and (40) coincide when v = vIIIa) and it is

then increasing in v for any v ≥ AI(t). If instead ṽ > vIIIa, so that E ′(v) |v=vIIIa
< 0,

R’s optimal level of protection is either v = AI(t), i.e. it is not effective, or it is effective

and equal to ṽ, depending on whether equation (38) evaluated at ṽ is greater or lower

than expression (41) (and there exist parameter combinations for which the optimal level

53

E′′(v) =
(1− t)2

(
b+ 2b2 + 2α+ 3bα

)
b(1 + b)2

> 0.

54

∂t̂ (b, α)

∂b
= − (1− α)((1− α) + 2b(1 + b)(2− α))

(1 + b)2(1− b(α− 2))2
< 0

∂t̂ (b, α)

∂α
= − 1 + 2b

(1 + b(2− α))2
< 0.
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is effective, as for instance t = 17/64, α = 1/2 and b = 1).

A.7 Proof of proposition 3

Throughout, let α0 and α denote the preference of R and of the interrogator, respec-

tively. For any α ∈ (0, 1) (our analysis allows for α = 0 and α = 1 as limit cases given that

R’s expected loss varies continuously with the choice of α) the equilibrium of the interro-

gation is as at proposition 1 and, by assumption 1, no type is silent. The only difference

with respect to the baseline model is R’s expected loss, which is now

E(α) = (1− α0)

∫ ȳ(α)

t

∫ 1

y

(1− a (y, z)) dzdλ+ α0
1− α
α

∫ ȳ(α)

t

∫ 1

y

a (y, z) dzdλ (42)

= (1− α0)

∫ ȳ(α)

t

∫ z̄(y)

y

dzdλ+ α0
1− α
α

∫ ȳ(α)

t

∫ 1

z̄(y)

dzdλ (43)

= (1− α0)
1

2
(1 + b)(ȳ (α)− t)2 + α0

1− α
α

1

2
(2− b(ȳ (α)− t)− 2ȳ (α))(ȳ (α)− t).

(44)

Equation (42) differs from equation (35) since α may now differ from R’s preference α0.

Equation (43) obtains using the interrogator’s cutoff policy (equation (9)). Equation (44)

obtains by replacing the definition of z̄ and integrating. Since ȳ(α) differs depending on

whether α ≥ ᾱ ≡ max {1− (1 + b)t, 0}, i.e. on whether the set of confessor is non-empty

as per point (ii) of proposition 1 (we simply rewrote the cutoff in terms of α rather than

b), we consider R’s optimal choice separately in the two cases (keeping in mind the second

case can only occur if ᾱ > 0). Letting the subscripts c and nc indicate respectively the

region with and without confessors throughout, we solve for the optimal choices in the two

regions, denoted respectively α?c and α?nc, and then compare E(α?c) and E(α?nc).

The set of confessors is non-empty When α ≥ ᾱ, replacing ȳ (α) = α+bt
α+b

(see case I

at section A.4.2) in equation (44) yields

Ec(α) =
(1− t)2 (α2 (1 + b− α0) + 2bα0 − 3bαα0)

2(b+ α)2
(45)
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The FOC gives a unique solution

α̃c =
α0(3b+ 4)

α0 + 2b+ 2
> α0

and the SOC is verified.55 If α0 ≥ 2/3, α̃c ≥ 1 and, since E ′(α) < 0 for all α ∈ (0, 1], R’s

expected loss is minimized for α?c = 1 (as ᾱ < 1, the constraint α ≥ ᾱ is then non-binding).

When instead α0 < 2/3, R’s expected loss is minimized for α?c = α̃c provided α̃c ≥ ᾱ, i.e.

if α0 >
2−(b+1)2t

t+3
= 2

3+t
ᾱ, and for α?c = ᾱ otherwise.

The set of confessors is empty When α < ᾱ, replacing ȳ (α) = t
1−α (see case II at

section A.4.2) in equation (44) yields

Enc(α) =
t (2α0 (1− α) 2 + (1 + b)tα2 − tα0 (2− (2− b− α)α))

2 (1− α) 2
(46)

The FOC gives a unique solution

α̃nc =
(2 + b)α0

2 + 2b− bα0

∈ (0, α0)

and the SOC is verified.56 Hence, Enc(α) is minimized for α?nc = α̃nc if α̃nc < ᾱ, i.e. if

α0 <
2−(b+1)2t

2−bt = 2
2−bt ᾱ and for α?nc = ᾱ otherwise (as the set of confessors is then non-empty

but has zero measure, Enc(ᾱ) = Ec(ᾱ)).

These observations imply first of all that it always the case that α∗ 6= α, which proves

the first statement of the proposition. If ᾱ = 0, the first case always describes R’s optimum.

Suppose instead that ᾱ > 0. The previous considerations and the fact that R’s expected

loss is continuous in α imply that whenever the minimum of a given case obtains at the

boundary α = ᾱ, the minimum of the other case is strictly lower. Indeed, if α0 ≤ 2
3+t
ᾱ,

Ec(α) is increasing in the whole α ≥ ᾱ region and hence R’s global optimum is α? = α̃nc,

55

E
′′

c (α)
∣∣
α=α̃c

=
b(1− t)2(α0 + 2b+ 2)4

16(b+ 1)3(2α0 + b)3
> 0.

56

E
′′

nc(α)
∣∣
α=α̃nc

=
t2(2 + b(2− α0))4

16(1 + b)3(1− α0)3
> 0.
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which proves the third statement of the proposition. Likewise, if α0 ≥ 2
2−bt ᾱ, Enc(α) is

increasing in the whole no confession region and hence R’s global optimum is α? = α∗c .

Conversely, in the region α0 ∈
(

2
3+t
ᾱ, 2

2−bt ᾱ
)

the global optimum may obtain in either case.

Still, we now show that the global optimum always obtains in the case with confessors

whenever α0 ≥ ᾱ, i.e. the second point of the proposition.

Consider the case α0 ∈
[
ᾱ, 2

2−bt ᾱ
)
, or equivalently, t ∈ [

¯
t, t̄), where

¯
t ≡ 1−α0

b+1
and

t̄ ≡ 2(1−α0)
2+2b−bα0

. Also, let ∆ ≡ Enc(α
?
nc) − Ec(α

?
c) be the difference in R’s expected loss in

the case without and with confessors given R’s respective locally optimal choices, where

α?nc = α̂nc necessarily since α0 <
2

2−bt ᾱ. When α0 < 2/3, using that α?c = α̃c,

∆ =
α0

8(1 + b)

(
t(8(1 + b)(1− t)− (8− 4t+ b(8− (4− b)t))α0)

1− α0
− (1− t)2(8 + 8b− 8α0 − 9bα0)

b+ 2α0

)
.

The expression is strictly positive since it is strictly concave in t and strictly positive in

the two extrema (the symbol ∝ means “has the same sign as”)

∆
∣∣
t=

¯
t ∝ α2

0b (4b+ 4− 2α0 − 3α0b)
2 > 0

∆ |t=t̄ ∝ (2− α0) 2 + α0b
2 + 2 (2− (2− α0)α0) b > 0.

When α0 ≥ 2/3, instead, using that α?c = 1,

∆ =
8t(1− α0)(1 + bα0)− (t2(4 + bα0(8− (4− b)α0)) + 4(1− α0)2)

8(1 + b)(1− α0)
.

Again, the expression is strictly positive as it is concave in t and strictly positive at the

two extrema. Indeed, ∆
∣∣
t=

¯
t ∝ 4α2

0 − bα2
0 + 8bα0 − 4b which is increasing in α0 and equal

to 16+8b
9

> 0 in α0 = 2/3. Likewise, ∆ |t=t̄ ∝ 2α2
0 + b (3 (2− α0)α0 − 2) which is increasing

in α0 and equal to 2b
3

+ 8
9
> 0 in α0 = 2/3.

A.8 Proof of proposition 4

For any given standard Z ∈ (t, 1], when S is interrogated lemma 1, 2 (with ȳ < Z

replacing ȳ < 1), 3 and 4 still hold (proofs are omitted since these follow identical steps as

in the case of Z = 1.) The analysis at section 3.4 easily generalizes. Since S knows R has
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evidence that z ≤ Z, equation (5) becomes

π`(m; y) = (Z −m)A(m)︸ ︷︷ ︸
lie not detected

− (m− y)b︸ ︷︷ ︸
lie detected

, (47)

where ȳ(Z), hence the pooling region [t, ȳ (Z)), may now depend on Z. Thus, equation (7)

becomes

A(m) =
Z − ȳ(Z)− b (ȳ(Z)−m)

Z −m
, (48)

so that equation (24) and (25) become respectively

A(t) =
Z − ȳ(Z)− b (ȳ(Z)− t)

Z − t
and (49)

ȳ(Z) =
Z − (Z − t)A(t) + bt

1 + b
. (50)

Also, equation (51), i.e. the expected payoff from lying in the pooling region for a guilty

type, is

π`(t; y) = (Z − t)A(t)− (t− y)b, (51)

while the payoff from confessing is unaffected at zero. Thus, equation (28), i.e. the highest

confessor, becomes

yc(Z) ≡ bt− (Z − t)A(t)

b
(52)

and yc(Z) ≥ 0, i.e. the set of confessors is not empty, if and only if

b ≥ Z − t
t

A(t). (53)

By assumption 1, no type is ever silent. Similar to section A.4.2 in the proof of propo-

sition 1, we distinguish two possible cases.

Case I: some guilty types lie and the rest confess If the set of confessors is not

empty, the measure of liars is then λ
(
Y I
`

)
= t− yc(Z), where yc(Z) is defined in equation

(52). Using lemma 4 and equation (49), ȳI(Z) = bt+Zα
b+α

, AI(t) = (1−α)b
b+α

and yIc (Z) =

t+bt−(1−α)Z
b+α

. This case can only occur if b ≥ (1−α)Z−t
t

, i.e. if Z ≤ (1+b)t
1−α (which is satisfied

for any b and Z if t ≥ 1− α), so that condition (53) holds, i.e. yIc (Z) ≥ 0.
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Case II: all guilty types lie If the set of confessors is empty the measure of liars Y II
`

is then λ
(
Y II
`

)
= t. By lemma 4 and equation (49), it then follows that ȳII = t

1−α and

AII(t) = (1−α)Z−t(1+bα)
(Z−t)(1−α)

. This case can only occur if b < (1−α)Z−t
t

, so that yc(Z), which is

defined in equation (52), is negative, i.e. even the lowest type strictly prefers to lie than

to confess (this then automatically implies that ȳII < Z and AII(t) > 0).

For any Z ∈ (t, Z], the two cases do not overlap and span the whole parameter space.

The proof of equilibrium existence and payoff irrelevance of multiplicity is omitted as it

follows analogous steps as the ones at section A.4.4 and A.5. R’s expected loss is then

E(Z) = (1− α)

∫ ȳ(Z)

t

∫ Z

y
dzdλ+ α

∫ 1

Z

∫ t

0
dλdz (54)

= αλ (Y` (Z))

(
Z − t− αλ (Y` (Z))

2(1− α)

)
+ t(1− Z)α (55)

The first term in equation (54) obtains from analogous simplifications as at equation (36),

while the second term is due to the fact that when z > Z now R takes action a = 1 and

hence makes a type II error when facing a guilty type.

Assume for the moment that Z is such that case I above obtains, i.e. the measure of

confessors is non-empty. Then, using that λ (Y` (Z)) = (1−α)(Z−t)
α+b

, equation (55) becomes

E(Z) =
(t− Z)2(1− α)α(2b+ α)

2(b+ α)2
+ t(1− Z)α. (56)

As E ′′(Z) = (1−α)α(2b+α)
(b+α)2

> 0, E ′(Z)|Z=t = −tα < 0 and E ′(Z)|Z=1 = −tα+ (1−t)(1−α)α(2b+α)
(b+α)2

,

the optimal Z, denoted by Z?, is interior if and only if E ′(Z)|Z=1 > 0, i.e. if and only if

t < t̄ (b, α) ≡ (1− α)(2b+ α)

2b+ α + b2
, (57)
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where t̄ (b, α) is strictly decreasing in its arguments.57 In such a case, the FOC gives

Z̃ =
t(b(2 + b) + α)

(1− α)(2b+ α)
. (58)

Now, if case I above obtains even at Z = 1, condition (57) is necessary and sufficient for an

interior standard to be optimal. In particular, it is never satisfied if t > 1−α. If the set of

confessors for Z = 1 is empty, instead, equation (56) on which the minimization was taken

over represents R’s expected loss only in the region Z ≤ Ẑ ≡ (1+b)t
1−α . For Z > Ẑ, instead,

all guilty types lie and hence, replacing λ (Y`) = t in equation (55), R’s expected loss is

t(2− t(2− α)− 2α)α

2(1− α)
,

which is independent of Z. As E ′(Z)|Z=Ẑ = αbt
α+b

> 0, the optimal standard is always

interior, i.e. condition (57) always holds, and it is given by equation (58).

A.9 Proof of proposition 5

By the results of section A.5, R’s expected expected loss can be written as

E = (1− α)

∫ ȳ(b)

t

∫ 1

y

dzdλ.

Besides, using the results of section A.4.2 and A.4.3, ȳ(b) = t
1−α if b < 1−α−t

t
, i.e. if the set

of confessors is empty, and ȳ(b) = bt+α
b+α

otherwise. Since ȳ(b) is continuous and respectively

constant (if b < 1−α−t
t

) and decreasing (if b ≥ 1−α−t
t

) in b, the result on the effect of S’s

perceived b follows directly.

Consider now the effect of S’s perceived α, possibly different from R’s true preference

α0. As seen at section A.5 (in particular the step from equation (35) to equation (36)), R’s

57

∂t̄ (b, α)

∂b
= −2b(1− α)(b+ α)

(b(2 + b) + α)2
< 0

∂t̄ (b, α)

∂α
= − (b+ α)(b(3 + 2b) + α)

(b(2 + b) + α)2
< 0.
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expected loss when α = α0 can be written as

E(α0) = (1− α0)

∫ ȳ(α)

t

∫ 1

y

dzdλ︸ ︷︷ ︸
type I error

= α0
1− α
α

∫ ȳ(α)

t

∫ 1

y

dzdλ︸ ︷︷ ︸
type II error

,

i.e. upon discretion R is indifferent between always doing only type I errors and always

doing only type II errors. If α < α0, R now instead finds it strictly optimal to choose

a(m, z) = 0 and makes only type I errors, so that her expected loss is

Eα<α0(α) = (1− α0)

∫ ȳ(α)

t

∫ 1

y

dzdλ.

As ȳ(α) is increasing and continuous in α, it follows that E(α)α<α0 is increasing, and

minimized and equal to zero in α = 0 where ȳ converges to t. If α > α0, instead, upon

discretion R now finds it strictly optimal to choose a(m, z) = 1 and makes only type II

errors, so that her expected loss is

Eα>α0(α) = α0
1− α
α

∫ ȳ(α)

t

∫ 1

y

dzdλ.

When ȳ(α) = t
1−α

E ′α>α0
(α) = −α0

t2

2(1− α)2
< 0

and when ȳ(α) = bt+α
b+α

E ′α>α0
(α) = −α0

(1− t)2(b(3 + 2b) + α)

2(b+ α)3
< 0.

Thus, Eα>α0(α) is continuous and decreasing and minimized in α = 1, where it is equal to

zero since while ȳ(α) converges to 1+bt
1+b

the measure of liars converges to zero.

Finally, consider the effect of S’s perceived Z, possibly different from the true standard

Z0. Using the results of section A.8, and adjusting equation (54) given that the evidence

must necessarily be stronger than the true standard for the interrogation to happen yields

E(Z) = (1− α)

∫ min{ȳ(Z),Z0}

t

∫ Z0

y

dzdλ.
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The expression min {ȳ(Z), Z0} is due to the fact that if ȳ(Z) > Z0 then R catches liars

with probability one when m ∈ (Z0, ȳ (Z)] . As shown at section A.8, ȳ(Z) < Z and it is

continuous and weakly decreasing in Z (and strictly so whenever Z < (1+b)
1−α ), so that the

result follows.

A.10 Proof of proposition 6

As the actual proof (section A.10.2) is merely computational and hence rather uninfor-

mative, we first provide some intuition for the result in section A.10.1 here below.

A.10.1 Intuition

As pointed out in the main body, in the optimal mechanism the truth-telling constraint

must be binding for types sufficiently close to t. Clearly, for any given value of ẑ(t), for

types to the right of t one minimizes type I errors by having the constraint binding till

ẑ reaches the diagonal z = y. Likewise, for types to the left of t one minimizes type II

errors by having the constraint binding till the line z = 1 (the case of figure 4a) or the

vertical axis (the case of figure 4b). The exact counterpart of the truth-telling constraint

in the equilibrium of the baseline model is that pooling types are indifferent between any

lie. The optimal choice of ẑ(t) is then determined by the fact that R is trading off type

I and type II errors. Suppose one increases ẑ(t). In the (interior) optimum the marginal

increment of type I errors weighted by (1−α) must be equal to the marginal decrement of

type II errors weighted by α. These are measured by the appropriately weighted lengths

of the ẑ line from ẑ(t) respectively to the right of t (till the diagonal z = y) and to the left

of t (till the line z = 1 or till the vertical axis). The exact equilibrium counterpart of this

constraint is the required indifference of R conditional on discretion, i.e. the condition at

lemma 4 relating the measure of liars with the measure of the pooling region. Hence, when

projecting the optimal ẑ? onto the horizontal axis, given linearity, one obtains exactly the

pooling region and the set of liars with the equilibrium measures of the baseline model as

required by lemma 4. It follows that each type obtains the same payoff as in equilibrium

and only type II errors become smaller in the optimal mechanism.
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A.10.2 Proof

Let yc (ẑ (t)) and ȳ (ẑ (t)) denote respectively the smallest guilty type and the largest

innocent type for which constraint (12) binds. The line with slope −b passing through the

point (t, ẑ(t)) has equation −by + ẑ(t) + bt, so that ȳ (ẑ(t)) = ẑ(t)+bt
1+b

. Also,

yc (ẑ(t)) = max

{
ẑ(t) + bt− 1

b
, 0

}

and yc(t) > 0, i.e the case of figure 4a, obtains if and only if (1 + b)t > 1. Suppose first

this is indeed the case. Then R’s expected loss, i.e. equation (11), becomes

Eyc>0(ẑ(t)) = α

∫ t

ẑ(t)+bt−1
b

(1− (−by + ẑ(t) + bt))dy + (1− α)

∫ ẑ(t)+bt
1+b

t

(−by + ẑ(t) + bt− y) dy

= α
(1− ẑ(t))2

2
+ (1− α)

(ẑ(t)− t)2

2(1 + b)
.

As E
′′
yc>0(ẑ(t)) = b+α

b(1+b)
> 0, i.e. Eyc>0(ẑ(t)) is convex, with E ′yc>0(t) = − (1−t)α

b
< 0 and

E ′yc>0(1) = (1−α)(1−t)
b+1

> 0, the FOC identifies the unique minimizer

ẑ?yc>0(t) =
α + b(t+ α− tα)

b+ α
. (59)

Suppose now that (1 + b)t ≤ 1, instead, so that yc(t) = 0, i.e the case of figure 4b

obtains. Then, R’s expected loss is as before if ẑ(t) > 1− bt, while if ẑ(t) < 1− bt, it is

Eyc=0(ẑ(t)) = α

∫ t

0

(1− (−by + ẑ(t) + bt))dy + (1− α)

∫ ẑ(t)+bt
1+b

t

(−by + ẑ(t) + bt− y) dy

= α
t(2− 2ẑ(t)− bt)

2
+ (1− α)

(ẑ(t)− t)2

2(1 + b)
.

As E
′′
yc=0(ẑ(t)) = 1−α

1+b
, Eyc=0 is again convex and, moreover, E

′
yc=0(t) = −tα. It follows that

the minimizer differs from the one at equation (59) if and only if E ′yc=0(ẑ(t)) |ẑ(t)=(1−bt) =

1−t−bt−α
1+b

≥ 0, i.e. if and only if b ≤ 1−t−α
t

. In such a case, it is uniquely identified by the

FOC, which gives

ẑ?yc=0(t) =
t+ btα

1− α
. (60)
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Thus, to summarize, the optimum is

ẑ?(t) =

ẑ
?
yc=0(t) if b ≤ 1−t−α

t

ẑ?yc>0(t) otherwise.

It follows that conditions for the optimal mechanism to yield that yc (ẑ?(t)) > 0 are identical

to the equilibrium conditions for which the measure of confessors is positive. One can also

easily verify that yc (ẑ?(t)) = yc and ȳ (ẑ?(t)) = ȳ as in the equilibrium, so that guilty types

for which the constraint does not bind get respectively 0 and 1 in both cases. Finally,

define ẑ?(y) = ẑ(y)|ẑ(t)=ẑ?(t). Using the equilibrium value of z̄(m), guilty types for which

the constraint binds get

1− ẑ?(y) = 1− z̄(t)− (t− y)b

as in equilibrium. Likewise, innocent types for which the constraint binds get

1− ẑ?(y) = 1− z̄(y)

as in equilibrium.

A.11 Proof of proposition 7

We first describe players’ equilibrium strategies and then verify sequential rationality

along the equilibrium path (since beliefs are free off the path, we can always make sure

that decisions specified there are sequentially rational). Throughout, all specified beliefs

are consistent with restriction R.

Candidate equilibrium strategies Here we describe the unique equilibrium in which

the delegation policy is continuous. Let yc, ȳ, z̄(m) and S’s strategy in stage 1 be as in

the equilibrium of the baseline model, with in particular a lying function that is strictly

increasing (i.e. as at equation (33), so that the highest confessor, if any, is now lying up

to t).58 R always chooses a = 0 if m < t and a = 1 if m ≥ ȳ (provided S is not caught in

58Any piecewise monotonic bijection between [yc, t) and [t, ȳ) would do, but as we will see in equation
(61) below the corresponding delegation policy Z(m) is continuous only if this bijection is the strictly
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a lie, otherwise off the equilibrium path R again chooses a = 0 and in both cases S gets

−b). Instead, for m ∈ [t, ȳ), R chooses a = 1 if m ≥ Z(m) and delegate to D if m < Z(m)

where

Z(m) = z̄(m) + b(m− g(m)) = z̄ (g (m)) ∈ (z̄(m), 1) (61)

= ȳ − b(t− ȳ + yc) +
bt

α
− b(1− α)

α
m.

Consider now stage 3 after message m was sent and R delegated in accordance with the

strategy above. Then, D chooses MD = {g(m),m} and S sends m2 = g(m) if guilty and

m2 = m if innocent. D chooses a2 = 0 if m2 = g(m) (and off the equilibrium path if S

is caught in a lie, in which case S gets −b as in the baseline model). If m2 = m then

D follows z̄(m). Finally, assume that if R delegates when she should not given Z(m), D

always chooses a2 = 0.

Sequential rationality R’s strategy upon a pooling message is sequentially rational:

• if S is caught in a lie, R believes that S is surely guilty and anticipates he will confess

honestly to D who will choose a2 = 0;

• if S is not caught in a lie, R believes S is innocent with probability α.

– If z ≥ Z(m), she is hence indifferent to any action or delegate to D, who will

choose a2 = 0.

– When z̄(m) ≤ z < Z(m), she strictly prefers to delegate since she will make no

error at all since D will choose a2 = 0 if S is guilty and a2 = 1 if S is innocent.

– When z < z̄(m) < Z(m), R knows that D will choose a2 = 0, no matter if S is

guilty or innocent. Given that R believes S is innocent with probability α she

is again just indifferent between delegating and choosing a = 1.

D’s strategy is also sequentially rational together with the belief that S is surely innocent

in the only instance in which she does not choose a2 = 0.

increasing one.
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Finally, consider S’s strategy. When interrogated by D, the strategy of innocent type

m is clearly optimal. As for a guilty type g(m), given his belief that z < Z(m), by

construction he is now indifferent between confessing honestly, which yields 0, and sending

m2 = m, since his expected payoff from doing so is

−b (m− g (m)) + Z(m)− z̄ (m) = 0.

Consider now stage 1 and notice that for each type y the joint on the equilibrium path

behavior of R and D is in expectation equivalent to the optimal mechanism ẑ?. In par-

ticular, for pooling innocent types z̄(y) = ẑ?(y) and for pooling guilty types z̄(g(m)) =

z̄(y) = ẑ?(y). It follows that no type y can benefit from playing as if he was y′′ throughout

the game otherwise she would do so in the optimal mechanism as well. Finally, no type

can profit from deviating at stage 1 to some pooling message m′ and then send m2 = m′

in stage 2. Indeed the choice of Z(m) is such that it is as if this type was deviating in

the equilibrium of the baseline model, where it is also the case that a(m, z) = 1 whenever

z ≥ Z(m). In short, S can either behave as if he was another type or lie and stick to his

stage 1 story. In the first case, it is as if he was playing in the optimal mechanism, hence

this type of deviation is not profitable. In the second case, it is exactly as he was playing in

the equilibrium of the baseline model, so that again this type of deviation is not profitable.

B Intuition for the updating rule

Equation (4) becomes more intuitive when ` is differentiable and invertible, so that

d(λ ◦ g)dλ(m) |g′(m)| = |1/`′(g(m))|. As shown in figure 5, upon observing a m ∈ [t, z)

such that m ∈ L, R knows m must have been sent either by innocent type yi = m or by

guilty type yg = g(m). Thus, the informational content of the evidence, i.e. that y < z,

is superfluous. The probability that S is innocent then only depends on the slope of the

strategy of guilty types relative to the one of innocent types at m, respectively `′(yg) and

1. For an intuition, suppose R does not observe exactly m but she knows S’s message is

arbitrarily close to it, i.e., that it is in the horizontal stripe around the line y(m) = m in

figure 5. Then, a flatter lying function is more likely to lie in the horizontal stripe and
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hence increases the likelihood that S’s message is sent by a guilty type. The two thick

lines on the horizontal axis around yg and yi are the pushforward measures respectively of

guilty and innocent types.

1

1

yg t yi z

t

m

ȳ
y`(y)

y

m(y)

Figure 5 R’s updating upon a pooling message

C The benefits of conditional delegation

Fix t = 1/2, b = 1 and αconst = 1/2. Using the results of section 3.4, in equilibrium

yc = 1/3 and ȳ = 2/3, so that the measure of liars and of lies sent are both equal to 1/6.

Upon discretion the interrogator is indifferent and chooses a = 1 when m ≥ z̄(m) = 4/3−m

and a = 0 otherwise. The equilibrium and the resulting type I and type II errors were

displayed in figure 2. Suppose instead R delegates to an interrogator with preference

αnice = 1/4 when z ≥ z̃ = 19/24 and to an interrogator with preferences αtough = 3/4 when

z < z̃. Suppose also (we will ensure that this is indeed sequentially rational) that in her

respective region of competence each interrogator still follows the same cutoff strategy z̄(m)

as in the equilibrium under unconditional delegation. Then, S’s incentives are completly

unaffected, so that yc is the same and, in particular, liars are still indifferent to any lie

in [t, ȳ). It is then possible to construct a lying function with image [t, ȳ) such that each

interrogator finds it optimal to follow z̄(m).
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yc ỹ t m̃ ȳ

t
m̃

ȳ

z̃

z̄(t)

m=y

z̄(m)

m=`(y)

nice

tough

a=1

a=0a=0

a=1

−b

y

z,m

Reduction in
type II errors

Lie caught with
inconclusive evidence

Figure 6 The benefits of conditional delegation

To see this, let us denote by m̃ = 13/24 the message such that z̃ = z̄(m̃), as represented

in figure 6. Looking from the perspective of the horizontal axis after projecting m̃ onto it,

when m ∈ [t, m̃] upon discretion the nice interrogator takes both action a = 0 and a = 1

based on z. This is only possible if she is indifferent, i.e. if equation (8) holds for α = αnice.

In turn, this implies that the tough interrogator indeed finds it strictly optimal to always

choose a = 0. Likewise, when m ∈ (m̃, ȳ), the tough interrogator takes both action a = 0

and a = 1, which again is only possible if she is indifferent, i.e. if equation (8) holds for

α = αtough. The nice interrogator then indeed finds it strictly optimal to always choose

a = 1. Easy calculations show that these two indifference conditions hold for the following

lying function

`(y) =

7/18 + 1/3y if y ∈ [yc, ỹ)

17/18− 3y if y ∈ [ỹ, t) ,

where ỹ = 11/24 is the guilty type who sends message m̃.

Such lying function is depicted in red in figure 6. A comparison with figure 2 illustrates

how type I errors, as well as type II errors for z ≥ z̄(t) = 5/6, remain unaffected relative

to unconditional delegation. Instead, type II errors for z ∈ (t, z̄(t)) decrease of the green

region, whose area has size 1/144. For an intuition, notice that, in order to maintain
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incentive compatibility for liars as dictated by equilibrium, by construction those errors

are also equal to the utility loss of liars caught when evidence is inconclusive (the area

represented in yellow in the figure, given that b = 1). The change in the lying function

induced by conditional delegation shifts the distribution of lies towards lower messages. As

a result, S is caught in a lie and hence punished less often, so that upon discretion R also

chooses a = 1 less often. From these arguments, one can first of all see that the chosen

delegation policy is actually the optimal one among the ones α(z) : [0, 1]→ [1/4, 3/4] that

leave yc unaffected. Indeed, R aims to make the lying function as flat as possible before

the kink and as steep as possible after the kink - this is in fact how we computed z̃ in

the first place. Besides, as the preferences of the nicer and tougher interrogator gets more

extreme, lies get more and more concentrated around t. In the limit, these type II errors

entirely disappear since lies are never caught by inconclusive evidence. Upon observing

m = t, the nice interrogator is now sure to face a guilty type but, as type II errors yield

her no disutility, her indifference condition is preserved.
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