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Abstract
In a new environment where liquidity providers as well as liquidity consumers act

strategically, understanding how liquidity flows and dries-up is key. In this paper, we
propose a dynamic extension of the seminal model of Tauchen and Pitts (1983)’ Mixture
of Distributions Hypothesis (MDH), that specifies the impact of information arrival on
market characteristics in the context of liquidity frictions. In our model, the daily price
change and volume processes are represented by a bivariate mixture of distributions,
conditioned by two latent time-persistent variables It and Lt. Since the price change
and volume equations are nonlinear functions of the first latent variable It, we use an
Extended Kalman Filter (EKF) to filter the two latent variables and estimate the model
parameters, simultaneously. This procedure enables us to: (i) capture the impact of
long-lasting liquidity frictions on the daily price change and volatility dynamics; (ii)
separate out the impact of both long and short-lasting liquidity frictions, on the serial
correlation of the daily volume. Our results show that, 48% (44/92) of the stocks of the
FTSE100 are actually facing liquidity problems. Amongst these stocks, 28% (26/92)
of them are also facing a slow-down in the information propagation in prices due to
long-term investors’ strategic behavior.
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1 Introduction

Financial markets liquidity is a latent characteristic. For decades now, market participants as

well as academics have been trying to filter liquidity from market summaries such as prices,

volatility and volume. The vast literature on that topic [see e.g. Aitken and Comerton-

Forde (2003), and Goyenko et al. (2009)] shows that there was no consensus at that time

on how liquidity should be measured. Moreover, are these summaries still able to reflect

market liquidity with the significant changes that occurred in the recent years? In fact,

while automation was taking over the trading world and spreads were falling, the historical

market maker1 tends to disappear to the benefit of strategic liquidity providers. This new

category of investors has accompanied and even favored the decrease in transaction costs by

competing against each other and providing more liquidity as in the past [See for example,

Chaboud et al. (2014), Hendershott et al. (2011), and Menkveld (2013)]. However, they also

have been accused to provide only illusory liquidity, to weaken financial markets, and even

to be responsible for crashes and illiquidity spirals by massively taking liquidity out of the

market during periods of turmoil [Kirilenko et al. (2014)]. Jarrow and Protter (2013) show

that their profits are at the expense of the other market participants, i.e. the medium to

long-term investors who must act strategically by splitting their orders in response.2 As a

consequence, the link between market characteristics and liquidity is even more ambiguous

now that liquidity providers as well as liquidity consumers are both acting strategically.

In this paper, we propose a dynamic extension of the seminal model of Tauchen and Pitts

(1983)’ Mixture of Distributions Hypothesis (MDH), that specifies the impact of information

arrival on market characteristics in the context of liquidity frictions. We distinguish between

two types of liquidity frictions. On the one hand, the liquidity frictions can be short-lasting

and are represented by the intra-day order imbalances that are resorbed within the trading
1A market maker stands ready to buy and sell stocks listed on a stock exchange. He quotes bid and ask

prices continuously and provide a required amount of liquidity to the security’s market. He is supposed to
take the other side of trades when there are short-term imbalances in customer orders.

2For Jarrow and Protter (2013), these other traders are ordinary traders who submit market orders and
sophisticated traders who submit limit orders or trade large quantity splitting up their orders.

2



day: they correspond to the liquidity provision - or arbitrage, provided by the "new market

makers" à la Menkveld (2013), who end the trading day flat. They impact the daily and

intra-daily traded volume but only the intra-day price volatility. These liquidity frictions

are a source of trade for the market makers who liquidate their positions once prices are

back to the equilibrium level in order to cash the liquidity premium. On the other hand,

the liquidity frictions can be long lasting, when information is not completely incorporated

into prices within the day. Such a situation can arise when investors are strategically timing

their trades, and trade at prices that do not fully reflect the information they possess [see

Anderson et al. (2013)]. This strategic behavior could explain the increase in the number

of daily transactions that comes with the decrease of the average trade size observed in all

financial markets in the past 10 years [See for example Lehalle and Laruelle (2013), Fig. 5 p.

17 for the components of the FTSE]. It is also responsible for the autocorrelation of prices

that we observe on financial markets [See Anderson et al. (2013), and Toth et al. (2014)].

This paper contributes to the literature in several directions. First, we give a theoretical

ground to the empirical financial literature dedicated to the measure of illiquidity through

the analysis of positive returns autocorrelation [see e.g. Getmansky et al. (2004)]. In our

model, these positive serial correlations are directly linked to the lack of liquidity provision

at the intra-day level. This liquidity deficit generates long-lasting liquidity frictions, and

in turn positive returns autocorrelation. The short-term liquidity frictions are responsible

for intra-day dynamics of return and volatility, while the long-lasting ones result in daily

positive serial correlation of stock returns and squared returns.

Second, we extend the analysis of liquidity frictions to the case of information arrival. On

no information days, liquidity frictions should push prices away from their equilibrium level

(temporary effect) before returning to their previous level. On information days, liquidity

frictions should also temporary prevent prices from becoming fully revealing before they

revert (permanent effect). In the first case, the inefficiency is considered as over whenever

the price revers, while in the second case, the interaction between information and liquidity
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frictions clearly complicates the issue [see Waelbroeck and Gomes (2013) for a discussion on

the permanent effect and information contents of trades]. Working with triangular arbitrage

relations is a way to concentrate on frictions without taking care of the information problem

[see for example Foucault et al. (2014)]. However, this approach cannot be generalized to

single risky assets as it is only relevant for arbitrage relations. Our approach allows to

disentangle short versus long-lasting liquidity frictions in the general case where information

arrival has an impact on prices.

Third, we propose new liquidity measures that add to the extensive literature [see e.g.

Aitken and Comerton-Forde (2003), and Goyenko et al. (2009)]. Just like the new growing

literature mostly coming from the trading cost analysis [see for example Almgren and Chriss

(2001), Almgren et al. (2005), Criscuolo and Waelbroeck (2013), and Lehalle (2014)], these

new measures are dynamic, they separate long-term from short-term effects and are linked to

the autocorrelations of returns, volume and volatility. However, conversely to that stream,

our measures do not need intra-day data.

Most long-term investors are only considering daily data even if intra-day strategies are

impacting their performances. Here, we take the perspective of such investors and explain

how intra-day strategies, information arrival, and liquidity frictions are affecting intra-daily

and in turn, daily returns and volume evolutions. In our model, the daily price change and

volume processes are represented by a bivariate mixture of distributions conditioned by two

latent time-persistent variables It and Lt. Since the price change and volume equations are

nonlinear functions of the first latent variable It, we use an Extended Kalman Filter (EKF)

to filter the two latent variables and to estimate the model parameters, simultaneously. This

procedure enables us to: (i) capture the impact of long-lasting liquidity frictions on the

daily price change and volatility dynamics; (ii) separate out the impact of both long and

short-lasting liquidity frictions, on the serial correlation of the daily volume.

Our results show that, over the 48% (44/92) of stocks, taken from the FTSE100, and

that are actually facing liquidity problems, the liquidity providers are the only investors
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acting strategically on a group of stocks accounting for nearly 20% (18/92). For another

25% (23/92) of the stocks, the long-term investors are strategic while the liquidity providers

are inactive. Finally, for the last 3% (3/92) group of stocks, the liquidity providers as

well as the liquidity consumers are both acting strategically. It means that 28% (26/92) of

the stocks of our sample are facing a slow-down of the information propagation to prices,

and thus a decrease of (daily) price efficiency, due to the strategic behavior of the long-

term investors. Based on some goodness of fit tests, as well as on some simple strategies

based on our structural model, we show the superiority of our approach against other MDH’

specifications.

The paper is organized as follows. Section 2 introduces our model. Section 3 presents

our statistical methodology to extract information and liquidity latent factors from the daily

time series of returns and volume. In Section 4, we apply our econometric set up to individual

stocks belonging to the FTSE100 and discuss the empirical results. Section 5 explores the

validity of our approach. Section 6 concludes the paper.

2 The model and its implications

In this section, we consider a dynamic extension of Tauchen and Pitts (1983), where liquidity

frictions can be both short-term and/or long lasting. We first characterize stocks liquidity

frictions’ types based on the parameters that form the basis of the hypothesis testing. We

then use this extension to show how the dynamic relationship between daily returns and

traded volume as well as the serial correlation of price changes, squared price changes and

traded volume depend on these frictions.

2.1 The model

In our scheme, the economy is characterized by a trading sequence in a single risky asset

by two types of market participants: Liquidity Consumers (LC) who trade in response to
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information flow, and Liquidity Providers (LP) who trade in response to liquidity frictions.

Within the trading day, the market passes through a sequence of distinct equilibria due to

the arrival of new pieces of information. These information arrivals generate trades that

impact the intra-daily price increments and transaction volumes, and in turn, the daily price

changes and volumes.

In the absence of liquidity frictions, the intra-daily as well as daily price changes and

volumes fully reflect the incoming information instantaneously. In this case, we get the

standard Mixture of Distribution Hypothesis (MDH) framework of Tauchen and Pitts (1983).

This model suggests that a bivariate mixture of distributions, in reduced form, can represent

daily price changes and volumes, with information being the only mixing variable. Let us

consider one single asset and J active participants with heterogeneous reservation prices who

trade in response to information only. At each information arrival time i, each trader j revises

his reservation price P̄ij and ask for the quantity Qij = a(Pij − P̄ij), j = 1, ..., J . Hence,

the price change ∆Pi and the traded volume Vi only come from the information arrival at

time i. A day is a sequence of i consecutive equilibria initiated by a random number It of

information. We get at the daily level:

∆Pt =
It∑
i=1

∆Pit, Vt =
It∑
i=1

Vit.

At the end of the day, and under a gaussian assumption: ∆Pit ∼ N(0, σ2
p) and Vit ∼

N(µv1, σ
2
v), Tauchen and Pitts (1983) obtain that the daily price change and volume processes

are represented by a bivariate mixture of independent Gaussian distributions with the same

mixing variable:

∆Pt = σp
√
ItZ1t, (2.1)

Vt = µv1It + σv
√
ItZ2t, (2.2)

with Z1t and Z2t being two mutually-uncorrelated and serially-uncorrelated Gaussian vari-
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ables with zero means and unit variances. In this simple model, we note that the variance

of the two processes are proportional to the same latent variable It. The more information

reaches the market during the day, the more volatile returns and traded volumes get.

Because trading might be, and usually is, asynchronous, short-term liquidity frictions

exist creating at least temporary order imbalances at the intra-day frequency. These order

imbalances prevent prices from being fully revealing. The price deviations they generate

are resorbed within the trading day thanks to the intervention of liquidity providers. These

"new market makers" à la Menkveld (2013), who end the trading day flat, are strategic. As

discussed in Darolles et al. (2015), liquidity providers trade on short-term liquidity frictions

and increase the daily traded volume by doing so. However, they do not impact the daily

price changes; at the end of the trading day prices reflect all the incoming information

during that day. The Mixture of Distribution Hypothesis with Liquidity (MDHL) model of

Darolles et al. (2015) suggests that the daily price changes and volumes can be represented

by a bivariate mixture of distributions, in reduced form, with two latent variables, It and Lt

supposed to be i.i.d.. Compared to the Tauchen and Pitts (1983) specification corresponding

to Equations (2.1)-(2.2), the second equation corresponding to the traded volume includes

an additional term capturing the increase of volumes due to short-term liquidity frictions

denoted Lt:

∆Pt = σp
√
ItZ1t, (2.3)

Vt = µv1It + µv2Lt + σv
√
ItZ2t, (2.4)

with Z1t and Z2t being two mutually-uncorelated and serially-uncorrelated Gaussian vari-

ables with zero means and unit variances. In this formulation, the joint model for price

changes and volumes captures short term liquidity frictions but does not capture potential

autocorrelations on the time series of price changes and traded volumes.

We now go further in the analysis. We allow for the presence of long lasting liquidity
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frictions reflecting situations where information is not completely incorporated into prices

within the trading day. This can arise when only part of market participants are able to trade

for any reason. This may also happen when long-term investors, as liquidity consumers, are

slicing efficiently in order not to be spotted by the strategic liquidity providers. By doing

so, they also become strategic and disseminate slowly, over several days or even weeks, the

information they possess to the market.

Let ∆Pt and Vt be the daily price change and traded volume, respectively. The statistical

model proposed here follows Richardson and Smith (1994) and Andersen (1996). Richardson

and Smith (1994) assume that information has an impact on the price variation level, while

Andersen (1996) consider a time-persistent information levels. Combining these two features

to the short-lasting liquidity frictions model leads to a specification that covers the conse-

quences of slicing on the price change and the volume dynamics. The model corresponds to

a bivariate mixture of distributions, in reduced form, conditioned by two latent variables, It

and Lt, which are supposed to be time-persistent:

∆Pt = µpIt + σp
√
ItZ1t, (2.5)

Vt = µv1It + µv2Lt + σv
√
ItZ2t, (2.6)

where

ln It = β ln It−1 + ηt, (2.7)

Lt = aLt−1 + ωt, (2.8)

with ηt and ωt being two i.i.d. mutually independent variables. The intuition behind

this model, and in particular the first equation relative to price change, can be found in

the ARCH-in-mean model [Engle et al. (1987)] or the stochastic volatility-in-mean model

[Koopman and Upensky (2002)] developed to capture the positive relationship between the

expected returns and the volatility level. If µp is positive, then µpIt increases with σp
√
It:
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the expected reward increases with the risk.

Note that, It and Lt capture the effects of long-term and short-term liquidity frictions,

respectively. Indeed, the first latent variable It represents the portion of the incoming in-

formation which is absorbed by the market at day t. We allow It to be time-persistent in

order to capture the effect of long lasting liquidity frictions on daily price change and traded

volume. The more important the slicing of orders, the smaller each bit of It and the longer

the persistence time.

2.2 Implications in terms of liquidity frictions

To give a basic outline, and following our specification, short-term liquidity frictions create

excess volume but have no particular impact on prices: the key parameter is µv2. Long term

liquidity frictions create some directional price movement but no excess volume: the key

parameters are µp and β. Going into details, we can picture four different stock environment

types:

(i) The first type consists in stocks with short-term liquidity frictions. They are characterized

by µv2 6= 0 and either µp = 0, or if µp 6= 0 then β = 0. We call this stock category, the pure

short-term liquidity friction case. Note that, this short-term liquidity friction case differs

from that of Darolles et al. (2015) since in our framework, the Lt process is supposed to be

time-persistent. For these stocks, liquidity providers are strategic while liquidity consumers

are not. The latters are trading at once or at least within the day and the formers are

providing the missing liquidity. By the end of the day, there is no more liquidity friction left

in the market and the prices contain all the information possessed by market participants.

(ii) The second category concerns stocks that are facing long-term liquidity frictions. We

have µp 6= 0, β 6= 0 and µv2 = 0. For these stocks, the liquidity providers are inactive,

maybe because liquidity consumers are strategic and efficient in hiding from the liquidity

arbitragers. As a consequence, information does not disseminate to the prices accurately.

(iii) Stocks belonging to the third category are affected by both long lasting and short-term
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liquidity frictions (the mixed liquidity friction case). For these stocks, µp 6= 0, β 6= 0 and

µv2 6= 0. The short-term liquidity providers’ activity (µv2) is not enough to ease the trading

so that the incoming information is not completely revealed on the day of its arrival. It means

that both type of participants are acting strategically but none of them is efficient in doing so.

The short-term liquidity frictions diminish because liquidity providers are trading. However,

because the liquidity consumers are splitting up their orders, information propagates slowly

to the prices over several days.

(iv) The last category is made of stocks which do not suffer from liquidity frictions. If µp = 0,

β = 0, and µv2 = 0, we get the Tauchen and Pitts (1983) case. When µp = 0, β 6= 0 and

µv2 = 0, we get the Andersen (1996) case.

Finally, estimating the parameters of our model enables us to test, the four hypotheses

presented above in order to characterize the liquidity profile of each stock during a given

period of time. We are able to test whether a stock has been facing liquidity frictions during

the test period. And if this is the case, we can go further in the analysis by specifying the

type of liquidity frictions (long-lasting, short-term liquidity frictions or both at the same

time) affecting the stock trading characteristics.

2.3 Implications in terms of serial correlations

The empirical financial literature reports that returns are highly autocorrelated and this

serial correlation is linked to liquidity [see for example Getmansky et al. (2004) for hedge

fund investments, and Säfvenblad (2000) for review of the empirical literature for stocks].

Our model allows for a better understanding of serial correlations of returns, volume and

volatility: these autocorrelations are due to information and liquidity, which translates into

short-term and/or long lasting liquidity frictions. As we will see in this section, any clas-

sification based on the empirical autocorrelations will not allow to disentangle between the

different sources.

Equations (2.5) and (2.7), taken jointly, define a stochastic volatility model. The presence
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of long-lasting liquidity frictions is responsible for the persistence of the stochastic volatility

in the daily price change time series, as captured by It, and more particularly by β measuring

its persistence. Estimating the parameters in (2.5) and (2.7) for individual stocks allows us

to infer the presence of long-lasting liquidity frictions; a stock affected by long-term liquidity

frictions should present statistically significant µp. In the absence of long-lasting liquidity

frictions, µp should equal to zero, and equations (2.5) and (2.7) reduce to the daily price

change equation of Darolles et al. (2015), with It representing an i.i.d. information process.

Equations (2.5) and (2.7) imply that daily returns and squared returns are serially cor-

related. Their respective autocovariances are given by:

Cov(∆Pt,∆Pt+1) = µ2
pCov(It, It+1), (2.9)

Cov(∆P 2
t ,∆P

2
t+1) = σ4

pCov(It, It+1) + µ4
pCov(I2t , I

2
t+1) (2.10)

+µ2
pσ

2
pCov(It, I

2
t+1) + µ2

pσ
2
pCov(I2t , It+1).

Equation (2.9) shows that the presence of serial correlation in daily price changes results from

the interaction of the drift effect of It on prices (µp parameter) with the serial correlation

pattern of the It process (Cov(It, It+1)). As for equation (2.10), the dynamics of daily

volatility is entirely due to the presence of long lasting liquidity frictions; it results from

a combination of information intensity µp and precision σp with the time-persistence of It

process. Note also that, the short-term liquidity frictions have no impact on the dynamics

of neither the daily price change, nor the squared price change.

Since the daily traded volume depends on both the It and the Lt processes, its dynamics

will be impacted by both the occurrence of the long-lasting liquidity frictions, through µv1,

and the persistence of short-term liquidity frictions, through µv2. More precisely, equations

(2.6) and (2.8) imply that:

Cov(Vt, Vt+1) = µ2
v1Cov(It, It+1) + µ2

v2Cov(Lt, Lt+1). (2.11)
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This equation shows that the unconditional autocovariance of daily traded volume results

from the interaction of long lasting and short-term liquidity frictions. Based on our model,

it is possible to disentangle the two types of liquidity frictions, which cannot be assessed by

simply computing the serial correlation coefficients from daily traded volume time-series. In

this context, and , based on the estimated parameters of our model, we can separate the

impacts of both types of liquidity frictions on volume serial correlation.

Our model encompasses the MDH version of Andersen (1996), and thus the seminal MDH

model of Tauchen and Pitts (1983). We have:

(a) Andersen (1996) proposed an ad hoc dynamic version of his static modified MDH model

in order to account for the time-persistence of daily squared price change and traded volume

series. In Andersen’s modified MDH version, daily price change and traded volume series

are generated by a unique latent variable, the information flow process. Andersen’s dynamic

MDH model explains the time-persistence of daily squared returns and traded volumes by

the serial correlation of the information flow process. However, the author does not account

for drift effects of It on the daily price change. Our model reduces to Andersen’s dynamic

MDH version for µp = 0, and µv2 = 0. In particular, Andersen’s framework implies, that

Equations 2.9-2.11 resum to:

Cov(∆Pt,∆Pt+1) = 0,

Cov(∆P 2
t ,∆P

2
t+1) = σ4

pCov(It, It+1),

Cov(Vt, Vt+1) = µ2
v1Cov(It, It+1).

As compared to our model, Andersen’s dynamic MDH version does not account for

time-persistence of daily price changes while this stylized fact is empirically well-known.

In addition, the intuition behind the presence of stochastic volatility is not the same in

both models. In Andersen (1996), the information flow time-persistence is responsible for

the presence of stochastic volatility. In our framework, although information process is
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considered to be i.i.d., the presence of long-lasting liquidity frictions modifies the way news

are incorporated into daily price changes. Thus, the stochastic volatility is the consequence

of the presence of long-lasting liquidity problems. Finally, in Andersen’s model, the serial

correlation of daily traded volume is due to the time-persistence of information flow process.

In our framework, volume serial correlation is due to the presence of both long-lasting and

short-term liquidity frictions.

(b) If we disregard the effect of both types of liquidity frictions on daily trading characteristics

by setting µp = 0, β = 0, and µv2 = 0, we get the standard MDH model of Tauchen and

Pitts (1983) implying that:

Cov(∆Pt,∆Pt+1) = 0,

Cov(∆P 2
t ,∆P

2
t+1) = 0,

Cov(Vt, Vt+1) = 0.

Note that the MDH model of Tauchen and Pitts (1983) shares the same implications

in terms of autocorrelation with some alternative MDH versions, like the MDHL model of

Darolles et al. (2015). While the former is a no liquidity friction model, the latter accounts

for short-term liquidity frictions. As a consequence, serial correlations can only be rough

indicators of stock liquidity frictions, and this advocate for our structural model.

3 Estimation

In the model (2.5)-(2.8), the daily price change and the volume processes are represented by

a bivariate mixture of distributions conditioned by two latent time-persistent variables It and

Lt. Since the price change and the volume equations are nonlinear functions of the first latent

variable It, we use an Extended Kalman Filter (EKF) to filter the two latent variables and

estimate the model parameters, simultaneously. The EKF is a widely used class of algorithms
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to approximate the non-linear measurement or transition equations using linearization tech-

nique [see e.g. Anderson and Moore (1979)]. We first provide the state-space formulation of

the model based upon a first-order Taylor expansion of the measurement equations. Then,

we present the associated algorithm together with the estimation procedure.

3.1 State space formulation of the model

Let Xt = (X1,t, X2,t) be the vector of state variables implied by Equations (2.7)-(2.8). The

variables X1,t = ln It and X2,t = Lt represent the dynamic linear processes given by (2.7)

and (2.8), respectively. The transition equation can then be formulated as follows:

Xt = f(Xt−1, wt) = FXt−1 + wt, (3.1)

where f is a linear function defined by the transition matrix:

F =

 β 0

0 a

 ,

and wt = (ηt, ωt)
′ is a vector of two mutually-uncorrelated sequences of temporally-uncorrelated

Gaussian additive white noise with covariance matrix:

Σ =

 σ2
η 0

0 σ2
ω

 .

Let Yt = (Y1,t, Y2,t)
′ be the measurement vector implied by Equations (2.5)-(2.6). The

variables Y1,t = ∆Pt and Y2,t = Vt correspond to the observed daily price changes and

observed daily volumes. Based on (2.5)-(2.6), the measurement equations relating each
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element of Yt to the state variables can be formulated as follows:

Yt = h(Xt, δt) =

 µp exp(X1,t) + σp
√

exp(X1,t)Z1t

µv1 exp(X1,t) + µv2X2,t + σv
√

exp(X1,t)Z2t

 , (3.2)

where h is a function of the state variable Xt and δt = (Z1t , Z2t) is a vector of two mutually-

uncorrelated and serially-uncorrelated Gaussian variables with zero mean and unit variances.

These measurement equations are non-linear functions of the state variables Xt with non-

additive noises, preventing us from using the simple Kalman Filter (KF here after). Instead,

we implement the EKF procedure consisting in linearizing the measurement equations (3.2)

before applying the KF. Indeed, applying the first-order Taylor expansion to h(Xt, δt) around

Xt|t−1 and 0, we get:3

h(Xt, δt) ≈ h(Xt|t−1, 0) +Ht|t−1(Xt −Xt|t−1) +Dt|t−1δt, (3.3)

where At and Ht are the Jacobian matrices of the non-linear function h with respect to the

state vector and the system noise respectively:

Ht|t−1 =
∂h

∂X
′
t

(Xt|t−1, 0) =

 µp exp(X1,t|t−1) 0

µv1 exp(X1,t|t−1) µv2

 , (3.4)

Dt|t−1 =
∂h

∂δ
′
t

(Xt|t−1, 0) =

 σp
√

exp(X1,t|t−1) 0

0 σv
√

exp(X1,t|t−1)

 . (3.5)

We can now apply the KF algorithm to the system including the transition equations

(3.1) and the linearized measurement equations (3.3), which yields the EKF. The following

subsection presents the EKF algorithm as well as the statistical procedure for estimating the

model parameters and filtering the state variables simultaneously.
3Note that the best estimate of the state vector at time t, Xt|t−1 is the expectation of Xt given the

available information up to t − 1: Xt|t−1 = E[Xt|Yt−1], where Yt−1 = Yt−1, Yt−2,.... As it will be presented
in the next subsection, Xt|t−1 is computed via the prediction phase of the EKF algorithm.
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3.2 Parameter estimation

Let us denote Xt−1|t−1 = E[Xt−1|Yt−1], where Yt−1 = Yt−1, Yt−2,..., the optimal estimator of

Xt−1 based on the observations up to Yt−1 and Pt−1|t−1 the corresponding 2 × 2 covariance

matrix of the estimation error: PX
t−1|t−1 = E[(Xt−1 − Xt−1|t−1)(Xt−1 − Xt−1|t−1)

′ |Yt−1]. We

can now details the different steps involved in the KF algorithm.

State prediction. Given Xt−1|t−1 and Pt−1|t−1, the optimal estimator of Xt is given by:

Xt|t−1 = E[Xt|Yt−1] = FXt−1|t−1, (3.6)

while the covariance matrix of the estimation error is:

PX
t|t−1 = E[(Xt −Xt|t−1)(Xt −Xt|t−1)

′|Yt−1] = FPX
t−1|t−1F

′
+ Σ, (3.7)

where F and Σ are defined in the previous subsection. Equations (3.6)-(3.7) correspond to

the state prediction equations.

Measurement prediction. From the optimal estimator of Xt−1, we can predict the ob-

servable variables:

Yt|t−1 = h(Xt|t−1, 0) =

 µp exp(X1,t|t−1)

µv1 exp(X1,t|t−1) + µv2X2,t|t−1

 , (3.8)

and the covariance matrix of the prediction error:

Mt|t−1 = E[(Yt − Yt|t−1)(Yt − Yt|t−1)
′|Yt−1] = Ht|t−1P

X
t|t−1H

′

t|t−1 +Dt|t−1D
′

t|t−1. (3.9)

where Ht|t−1 and Dt|t−1 are defined in the previous subsection. Equations (3.8)-(3.9) corre-

sponds to the measurement prediction equations.

State updating. Once a new observation Yt becomes available, the state equation can be
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updated using the two following updating equations:

Xt|t = Xt|t−1 + PX
t|t−1H

′

t|t−1M
−1
t|t−1(Yt − Yt|t−1), (3.10)

and

PX
t|t = PX

t|t−1 − PX
t|t−1H

′

t|t−1M
−1
t|t−1Ht|t−1P

X
t|t−1, (3.11)

Taken together, equations (3.6)-(3.11) are the EKF, whose recursive application yields the

time series of the state variablesXt conditional on θ = (µp, σp, β, ση, µv1, µv2, σv, a, σω). Given

the vector of parameters θ, the calibration can be carried out via a Maximum Likelihood

Estimator (MLE). We first apply the EKF (3.6)-(3.11) to the observed daily price change

and traded volume time series, and get, for each t, t = 1, ..., T , the one-step-ahead error

vector Yt − Yt|t−1 and the associated covariance matrix Mt|t−1. The next step is to use these

two time series to construct the log likelihood function:

L(θ) = −T ln(2π)− 1

2

T∑
t=1

ln |Mt|t−1| −
1

2

T∑
t=1

(Yt − Yt|t−1)M−1
t|t−1(Yt − Yt|t−1)

′
. (3.12)

Finally, numerical methods can be used to maximize the log-likelihood function (3.12) with

respect to the unknown vector of parameters θ.

4 Empirical applications

4.1 The data

Our sample consists in all FTSE100 stocks listed on March 27, 2014. We consider the period

from January 1st, 2010 to December 31, 2013, i.e., 1009 observation dates. We exclude stocks

with missing observations ending up with 92 stocks. Daily returns and traded volumes are

extracted from Bloomberg databases. Following Bialkowski et al. (2008) and Darolles and
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Le Fol (2014), we retain the turnover ratio4 as a measure of volume which controls for the

dependency between the traded volume and the float. The float represents the difference

between annual common shares outstanding and closely held shares for any given fiscal year.

Common and closely held shares are also extracted from Bloomberg databases.

For each of the 92 stocks, we compute: (i) the empirical four first moments (mean,

volatility, skewness and kurtosis) of volume and returns; (ii) the correlation between squared

returns and volume; (iii) the first-order serial correlation of returns, volume and squared

returns. The distributions of these statistics are summarized in Table 1 in the appendices.

The first row reports the average, the dispersion, the minimum, and the maximum of the

means of returns and volume across the 92 stocks. The second row gives the same cross-

section statistics (average, dispersion, minimum and maximum) for the volatilities of returns

and volume, and so on for the skewness, kurtosis, the correlation between squared returns

and volume as well as the serial correlation coefficients. Finally, note that we perform a

Pearson test to check the significance of the correlation coefficients computed in Table 1.

The statistics reported in the three last rows are computed using the statistically significant

coefficients only.

On the one hand, the results reported in Table 1 are consistent with the empirical im-

plications of the standard mixture of distribution hypothesis. In fact, (i) volume is positive

and present a positive skewness; (ii) the return and volume distributions are fat tails since

thekurtosis statistics are greater than 3; (iii) the correlation between the squared returns and

volume is always positive. Note that, the standard MDHL model of Darolles et al. (2015)

explains this positive correlation by the effects of both information flow and short-term liq-

uidity frictions, while in other competing MDH versions [such as that of Tauchen and Pitts

(1983) or Andersen (1996)] this positive correlation is strictly due to the information flow,

disregarding the presence of liquidity frictions.

On the other hand, the results on the serial correlation of returns, volumes and squared
4Let qkt be the number of shares traded for asset k, k = 1, ...,K on day t, t = 1, ..., T , and Nkt the float

for asset k on day t. The individual stock turnover for asset k on day t is Vkt = qkt

Nkt
.
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returns do not match the standard MDH predictions. The related descriptive statistics,

reported in the last two rows of Table 1, indicate that: (i) the serial correlations of daily

returns range from -0.0978 to 0.0866, exhibiting a dispersion of 0.0762 across stocks; (ii)

for the daily traded volume, we get larger values lying in between 0.1781 and 0.7539 with a

cross-sectional average of 0.4305 and dispersion of 0.1017; (iii) the first order serial correla-

tion coefficients of squared returns evolve between 0.0619 and 0.2616, with a cross-sectional

average of 0.1267 and a dispersion of 0.0556.

4.2 Characterizing stock liquidity profile

As discussed in section 3, we apply the Extended Kalman Filter methodology to our dynamic

MDHL model given in (2.5)-(2.8) in order to filter the two latent variables It and Lt and

estimate the related parameters, simultaneously.

We report in columns 2 to 4 of Tables 2 and 3 in the appendices, the estimated µp, β and

µv2 parameters for the 92 stocks of our sample.5 These results show that at the 90% level

of confidence almost 48%, i.e., 44 out of 92 of the stocks6 present statistically significant µp,

β and/or µv2 parameters so as to show that they are facing liquidity frictions, as specified

in Section 2. More precisely, and following the description of the liquidity profiles given on

page 9, we have:

(i) Table 4 contains the 18 stocks (19.6% of our sample) belonging to the pure short-term

liquidity friction case. Note that for these 18 stocks, µv1 is significant7. The liquidity

providers act strategically; they enter the market to provide liquidity and cash the liquidity

premium supported by non-strategic (impatient) liquidity consumers.
5The remaining parameters of the price change and the volume equations, not reported in this article,

are available upon request.
6At 95% this percentage falls to 41%, i.e. 38 stocks out of 92. Note that, all the results presented hereafter

in the text corresponds to a level of confidence of 90% even if the results at 90% are displayed in all the
tables of the appendices.

7Darolles et al. (2015) suggests that stocks presenting statistically significant µv2 parameter are expected
to present a statistically significant µv1 parameter as well since the occurrence of short-term liquidity frictions
is closely related to the arrival of information flow to the market modifying the way it is incorporated into
prices. The estimations of the µv1 parameters are not reported here but are available upon request.
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(ii) Table 5 reports the estimated parameters for the 23 stocks (25% of our sample) of the

pure long-term liquidity friction category, with µp 6= 0, β 6= 0 and µv2 = 0. For these

stocks, liquidity consumers act strategically by splitting their trades in order to hide from

the liquidity providers. It may be because the strategic liquidity consumers are efficient in

remaining out of the radar of the strategic liquidity providers that the latter are not trading.

A by-side effect of their splitting is a slowdown of the propagation of information in the

prices that can last for days and even weeks inducing a deterioration of the market (price)

efficiency.

(iii) The 3 stocks (3% of our sample) that are of the mixed liquidity friction type are

reported in Table 6. As for these stocks, liquidity providers as well as liquidity consumers

act strategically without being fully efficient. In fact, liquidity consumers are splitting but

their splitting scheme is detected by the strategic liquidity providers who lower the impact

of short-term liquidity frictions on price changes. However, they are not able to detect, or

to correct these short-term frictions completely, and the end-of-the-day prices are revealing

only part of the information possessed by market participants.

(iv) There are 48 remaining stocks (52% of our sample) that do not belong to any of the

above liquidity profile categories. The results relative to these stocks are displayed in Table

7 in the appendices. We find 6 stocks following a standard MDH model, and 34 stocks

following Andersen’s (1996) modified MDH model. The eight last stocks suffer from some

frictions (µp 6= 0) but not linked to liquidity problems (β = 0, and µv2 = 0).

4.3 Empirical serial correlation coefficients

We here confront the results obtained by our structural approach based on the dynamic

MDHL framework to those resulting from the purely empirical ad hoc approach based on

serial correlation coefficients of returns, squared returns and traded volumes. We show that

both approaches do not always feature the same liquidity profile.

First, as we see in Tables 4 to 7 (columns 5 to 7), the results on the serial correlation of
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returns, volumes and squared returns do not match the standard MDH predictions. Recall

that, serial correlations of returns should be zero for all the competing models but our, and

the serial correlation of volumes and squared returns should be zero for Tauchen and Pitts

(1983). At the 90% confidence level, the first order serial correlations of returns, volumes

and squared returns are jointly statistically significant for 18 stocks; there are individually

significant for 23, 91 and 70 over 92 stocks, respectively.8

Our modeling implies that, in the presence of long-lasting and short-term liquidity fric-

tions, the daily return, squared return and volume time-series should simultaneously exhibit

statistically significant (and positive) serial correlations. The empirical implications of our

model are satisfied by 10 stocks for which the serial correlation coefficients of returns, vol-

umes and squared returns are jointly statistically positive. Among these 10 stocks, two of

them belong to long-term liquidity friction case (GKN LN and SL LN stocks), three others

belong to the short-term liquidity friction case (ADM LN, RBS LN and RIO LN stocks),

another one verifies the standard MDH of Tauchen and Pitts (IMI LN stock), while the

remaining four of them verify the Andersen’s (1996) case (LAND LN, RDSA LN, WEIR

LN and IAG LN stocks). In addition, amongst the 51 stocks verifying Andersen’s (1996)’

model, only 23 of them appear to verify the model when we consider our model parameters

µp, β and µv2. More importantly, 22 out of these 51 stocks belong to the three first liquidity

profile categories pictured by our dynamic MDHL model (i.e., the pure short-term, the pure

long-lasting and the mixed liquidity friction case, respectively).

Besides, the use of the empirical serial correlation coefficients to understand the dynamic

patterns of the daily traded characteristics in the context of information and liquidity fric-

tions presents two main limitations. First, these coefficients, as well as the related Pearson

test, are computed under the homoscedasticity assumption. They may be biased in the

presence of heteroscedasticity, and so is the test of ther statistical significance. Second, the

serial correlation coefficients do not allow us to either separate the impact of information
8Note that, at the 95% confidence level, the first order serial correlations are jointly statistically significant

for 12 stocks, and individually significant for 17, 91 and 64 over 92 stocks, respectively.
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and liquidity frictions on the dynamics of the daily trading characteristics or to assess how

the interaction of both types of liquidity frictions (short versus long-lasting) drives these

dynamics. In particular, we cannot tell whether the statistically significant serial correlation

coefficients of daily traded volume time-series are implied by the time-persistence of infor-

mation process alone (as in Andersen (1996)) or by a combination of both information and

liquidity shock processes (as assumed in our framework). In this context, our generalized

MDHL framework improves the comprehension of daily time-series dynamics by putting

enough structure on the data in order to separate the impacts of both information and

liquidity shock time-persistent processes on daily trading characteristics.

4.4 Extracting the It and Lt time series

Our approach enables us to extract two time series of interest: the information process It and

the liquidity friction process Lt. The information process is more volatile than the liquidity

friction one and as expected, we see in the Figure 1 that whatever the It evolution, Lt is

almost zero for no liquidity friction stocks, like AHT LN [Panel a)] and BATS LN [Panel b)].

Lt then gets bigger for the liquidity friction cases, ABF LN [Panel c)] and ADN LN [Panel

d)].

Looking specifically at ADN LN, we get an interesting example of the possible use of the

two time series. Zooming over September 2011 for that stock (see Figure 2), we can see that

the two factors are reacting to some common shocks but do not behave the same. Aberdeen

Asset Management PLC (ticker ADN LN) is a global investment management group which

have offices around the world, including in New York. The shock on September 11, 2011 is

huge and by far, the largest over the entire period. As we can see in the two graphs, the pikes

in the information factor are more pronounced than in the liquidity factor. Moreover, if the

information process come back to its "normal level" quite quickly, the decay in the liquidity

friction process is much slower. The detailed analysis of It and Lt will definitely be key,

and we leave it for further research. Another possible use of these processes, is to propose
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some strategies based on It or Lt. In the next session, we build an efficient (liquidity-based)

strategy based on It.

5 Model comparison and robustness checks

To formally assess the validity of our approach, we first follow Andersen (1996) and imple-

ment Likelihood Ratio tests to compare the goodness of fit of our model to those of Tauchen

and Pitts (1983) and Andersen (1996). We then build two strategies to capture the liquidity

risk premium: one based on empirical correlations, and another one based on our estimated

coefficients.

5.1 Goodness of fit

In order to compare our model to the two rival models, we estimate the two restricted

MDH versions and test each of the corresponding null hypothesis, independently: (i) HTP
0 :

{µp = 0, β = 0, µv2 = 0, and a = 0} (Tauchen and Pitts case); (ii) HA
0 : {µp = 0, µv2 = 0,

and a = 0} (Andersen case). The likelihood ratio is then computed based on the difference

in the (log) objective function of the constrained HTP
0 (or HA

0 ) and unconstrained models.

Under the null HTP
0 (or HA

0 ), the test statistic is asymptotically drawn from a χ2 distribution

with 4 (or 3) degrees of freedom. The p-values associated to the likelihood ratio, denoted

p− val(TP ) for Tauchen and Pitts case and p− val(A) for Andersen case, are displayed in the

two last columns of Tables 4 to 7.9

Four main remarks can be drawn. First, overall our results provide strong evidence of

the weakness of the standard MDH version of Tauchen and Pitts (1983); at the 95% level of

confidence, the null HTP
0 is rejected by 89 out of the 92 stocks of our sample (i.e., 97% of

stocks). These results are coherent with those of subsections 4.2 and 4.3, and confirm the

superiority of our dynamic MDHL specification relative to its static counterpart.
9The bolded p-values mean that the null (HTP

0 or HA
0 ) is rejected at the 95% level of confidence.
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Second, the Andersen MDH version is rejected by 52 stocks (i.e., 57% of our sample) at

the 95% level of confidence, meaning that for these stocks our dynamic MDHL model fits

better than Andersen’s MDH specification with the statistical patterns of the data. More

specifically, 20 of these stocks (i.e., almost 40% of them) belong to our second category, i.e.

they present a pure long-term liquidity friction profile.10

Third, we cannot reject the null, HA
0 , for 40 stocks of our sample. It is important to note

that these stocks are concentrated in our fourth category, the no liquidity friction case (i.e.,

30 out of the 40 stocks or 75% of them) as reported in Table 7 in the appendices. Among

these stocks, 23 (4) have parameters that verify Andersen’s (Tauchen and Pitts’s) model.

The last 3 stocks seem to present other frictions that cannot be assimilated to liquidity

problems according to our framework.

Finally, The restricted Andersen case is rejected for most of the stocks of our sample

affected by short-term and/or long-term liquidity frictions.11 This result highlights the im-

portance of using our unrestricted approach especially for stocks affected by short-term

and/or long-lasting liquidity frictions.

5.2 Liquidity premium strategies

Another way to assess the accuracy of our approach is to compare strategies investing in the

most illiquid stocks to capture the liquidity premium: some of them built on the character-

istics of our estimated model (µp and/or β for our application), and another one based on

the empirical correlation of returns.

With this aim, we first build four competing hedged portfolios based on different stock-

picking criteria estimated on data from January 1st, 2010 to December 31, 2013. All portfolios

are equally weighted. Then, we analyze the out of sample performance of these portfolios by

assuming that they are held unchanged for the following two years, i.e., from January 2nd,
10For the stocks of the pure long-term category, HA

0 is rejected for 20 out of the 23 stocks.
11More precisely, the null HA

0 is rejected for all the stocks belonging to categories (i) to (iii) except for 7
stocks presenting a short-term liquidity profile and only 3 belonging to the pure long-term liquidity type.
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2014 to December 31, 2015. More precisely, the four competing hedged portfolios considered

here present long/short portfolios obtained as follows:

(i) The first one, called PF 1, consists in a long position on a portfolio including all stocks

with a statistically significant and positive first-order serial correlation of returns, and a

short position on the Index made of our 92 stocks.12

(ii) The second portfolio, PF 2, consists in a long position on a portfolio including all stocks

with a statistically significant and positive µp parameter (i.e., 29 stocks of our sample), and

a short position on the Index.

(iii) The third portfolio, PF 3, is long position on stocks whose µp and β parameters are

jointly statistically significant and positive (i.e., 20 stocks), and a short position on the Index.

(iv) The fourth portfolio, PF 4, is long on stocks verifying Andersen (1996) framework (i.e.,

the 34 stocks presenting µp = 0 and β 6= 0), and short on the Index.

For each portfolio, we compute the out of sample returns from January 2nd, 2014 to

December 31, 2015. In Table 8 in the appendices, we display for each portfolio, as well as for

the equally-weighted Index, the average returns, standard deviations as well as the Sharpe

ratios in annualized terms: Panel A of Table 8 for the overall two-year out-of sample period,

and Panels B and C for each of the one-year periods.

As we can see in Table 8, for all considered out-of-sample periods, all the strategies based

on our structural approach outperform the strategy based on the empirical serial correlation

of daily returns. Moreover, PF 3 - based on µp and β- is quite stable (and by far the more

stable) and always outperform both the empirical correlation strategy (PF1) as well as the

Andersen-based strategy (PF 4).

Generally speaking, as shown in Figure 3 in the appendices, our results highlight the su-

periority of a structural approach as compared to the empirical ad hoc one based on empirical
12This portfolio contains 14 stocks. For eleven of them, the serial correlation coefficient of squared returns

is also statistically positive. The other 3 stocks exhibit positive serial correlation of daily returns while the
first-order serial correlation of squared returns is not statistically different from zero. We also dropped these
3 stocks from the portfolio 1 and obtain similar results. For this reason we here present only the results
inherent to portfolio 1 comprising the 14 stocks of our sample presenting positive first-order serial correlation
of returns.
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serial correlation coefficients in inferring the presence of long-lasting liquidity frictions. In

addition, the selection criteria based on µp and β jointly does a better job than that based

on either µp or β parameter alone in identifying stocks to be included in long-term liquidity

premium strategies.

5.3 Momentum strategies

In the toy example of the previous (static) strategy, we showed that strategies based on µp

and β are outperforming strategies based on classical returns’ serial correlation coefficients.

In this section, we add to the strategies based on the µp and/or β parameters, the use of the

extracted It process to finally end-up with a dynamic liquidity based strategy, or momentum

strategy. We compare this strategy to the empirical one, combining the serial correlation of

returns with realized pas returns. Here again, all the portfolios are equally weighted. To

simplify, we do not account for the transaction costs related to the dynamic rebalancing of

the portfolios. This assumption does not biased the comparison of the two strategies as they

are both associated with the same turnover level. We have:

(i) The first portfolio (PFM 1) consists of stocks presenting statistically significant serial

correlation coefficient of daily returns over the period ranging from January 1st, 2010 to

December 31, 2013 (i.e., 13 stocks). Based on these stocks, we build a momentum portfolio

following a simple trading rule: at the end of the trading day t, we take a long (short)

position on a portfolio of stocks with positive (negative) returns for that day, and compute

its performance at day t+1. This portfolio is rebalanced at the end of each trading day from

January 2nd, 2014 to December 31, 2015. Then for each trading day, we compute the daily

return of our portfolio in excess to the index return to control for market risk and isolate

the momentum effect.

(ii) The second portfolio (PFM 2) consists of stocks presenting jointly statistically signif-

icant and positive µp and β parameters over our sample period, Jan. 2010 - Dec. 2013 (i.e.,

20 stocks). For each of these stocks, we assume that the parameters of our model remain
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unchanged during the out of sample period (2014-2015) and use the Extended Kalman Filter

methodology to filter the latent variable It given these parameters up to December 2015. We

then build a momentum strategy by taking a long (short) position on an equally-weighted

portfolio of stocks with It−1 variable higher (lower) than a given threshold, say the moving

average of a considered stock-specific It time-series computed during the previous year (i.e.,

the last 260 days). We rebalance this portfolio at the end of each trading day from Jan.

2014 to Dec. 2015 and again compute its daily returns in excess to the index returns.

The average returns, standard deviations as well as the Sharpe ratios in annualized terms

for these two hedged portfolios are given in Table 9 in the appendices: Panel A of Table 9

for the overall two-year out-of sample period, and Panels B and C for each of the one-year

periods. These results show that PFM 2 combining our µp and β parameters with the signal

extracted from the stock-specific latent variable It outperforms the standard momentum

strategy combining the empirical serial correlation coefficient with the past daily returns.

This is true for the overall out of sample period as well as the two one-year sub-periods (see

also the Figure 4 in the appendices).

To conclude, in subsections 5.2 and 5.3 we provide strong evidence of the superiority

of our structural approach with respect to the empirical one based on serial correlation

coefficients to capture the risk premium inherent to the presence of long-lasting liquidity

frictions as well as to improve the efficiency of the momentum strategies.

6 Concluding remarks

In this article, we distinguish between two types of liquidity problems: short-term and long-

lasting liquidity frictions. The former correspond to the liquidity provision and impact stock

returns at the intra-day frequency while affecting the traded volume at the daily periodicity.

The later are responsible for the dynamics of daily return and volume time-series because

information is not completely incorporated into prices within the day. These frictions come

27



from the strategic behavior of liquidity consumers, i.e. the long-term investors. We propose

a statistical model that specifies the impact of information arrival on market characteristics

in the context of liquidity frictions. It accounts for both the long lasting liquidity frictions

and the time-persistence of short-term liquidity frictions whose presence can be inferred from

the daily return dynamics. Our modelling allows us to disentangle both types of liquidity

frictions on stock return and volume dynamics.

In our model, a bivariate mixture of distributions conditioned by two latent time-persistent

variables - information and liquidity-, represents the daily price change and the volume pro-

cesses. We use an Extended Kalman Filter (EKF) to filter the two latent variables and

estimate the model parameters, simultaneously.

Our results show that, over the 48% (44/92) of stocks from the FTSE100 that are actually

facing liquidity problems, the liquidity providers are the only investors acting strategically on

a group of stocks accounting for nearly 20% (18/92). For another 25% (23/92) of the stocks,

the long-term investors are strategic while the liquidity providers are inactive. Finally, for

the last 3% (3/92) group of stocks, the liquidity providers as well as the liquidity consumers

are both acting strategically. It means that 28% (26/92) of the stocks of our sample are

facing a slow-down of the information propagation to prices and thus a decrease of (daily)

price efficiency due to the strategic behavior of the long-term investors. Based on some

goodness of fit tests, as well as on some simple strategies based on our structural model, we

show the superiority of our approach against other MDH specifications.

Moreover, based on some goodness of fit tests, as well as on some simple strategies based

on our structural model, we show the superiority of our approach.
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Appendices

Returns Volume

Average Dispersion Min Max Average Dispersion Min Max

Mean 0.0006 0.0005 -0.0006 0.0023 0.0033 0.0011 0.0009 0.0067

Volatility 0.0167 0.0046 0.0103 0.0285 0.0023 0.0013 0.0004 0.0080

Skewness -0.1659 0.7764 -4,3833 0.7056 5,3963 4,8583 1,1732 27,8285

Kurtosis 8,4371 10.2007 3,6762 67,3546 82,5710 136,3502 5,3676 845,0944

(Return)2 with
Volume 0.4075 0.1327 0.1175 0.7358 - - - -

Correlation

1st Order 0.0200 0.0762 -0.0978 0.0866 0.4305 0.1017 0.1781 0.7539
Serial Correlation

1st Order Serial
Correlation 0.1267 0.0556 0.0619 0.2616 - - - -
(Return)2

Table 1: Summary statistics for return and turnover time series from January 1st, 2010 to December 31,
2013.
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Bloomberg Code µp β µv2 ρ(Rt,Rt−1) ρ(R2
t ,R

2
t−1)

ρ(Vt,Vt−1)

AAL LN 0,0001 0,9000 0,0000 -0,0017 -0,0029 0,4938
ABF LN 0,0010 0,2000 0,0010 -0,0732 0,1123 0,4704
ADM LN -0,0005 0,2000 0,0004 0,0570 0,0711 0,4947
ADN LN 0,0014 0,4000 0,0041 0,0173 0,0360 0,0574
AGK LN 0,0003 0,9002 0,0001 0,0700 0,0084 0,3328
AHT LN 0,0024 0,7000 -0,0001 0,0340 0,0931 0,3578

AMEC LN -0,0002 0,8997 -0,0014 0,0047 0,1846 0,3934
ANTO LN -0,0009 0,8997 0,0038 -0,0261 0,0859 0,5216
ARM LN 0,0019 0,9000 0,0010 0,0026 0,0764 0,4881
AV/ LN -0,0004 0,4000 0,0014 0,0059 0,1141 0,4540
AZN LN 0,0001 0,9000 -0,0002 -0,0131 0,0531 0,4287
BA/ LN 0,0006 0,9000 -0,0002 -0,0506 0,2616 0,5417
BAB LN 0,0002 0,9001 0,0001 -0,0239 0,2505 0,3992

BARC LN 0,0000 0,9000 0,0053 0,0284 0,0884 0,4019
BATS LN 0,0002 0,2012 0,0004 -0,0653 0,0619 0,3880
BG/ LN 0,0001 0,2000 0,0006 0,0281 0,0906 0,3697

BLND LN 0,0000 0,4000 0,0019 0,0062 0,2393 0,4367
BLT LN -0,0003 0,9000 0,0005 0,0368 0,0778 0,5039

BNZL LN 0,0009 0,7000 0,0011 0,0180 0,0764 0,2839
BP/ LN -0,0002 0,9000 0,0009 0,0506 0,1994 0,7118

BRBY LN -0,0006 0,8998 0,0004 0,0761 0,0010 0,4769
BSY LN 0,0005 0,9002 0,0055 0,0208 0,0357 0,4094

BT/A LN 0,0011 0,9000 0,0000 -0,0384 0,0701 0,5520
CCL LN -0,0009 0,4000 0,0015 0,0816 0,0212 0,4280
CNA LN 0,0003 0,9033 0,0005 -0,0585 0,0850 0,4106
CPG LN 0,0037 0,2000 0,0020 -0,0975 0,1221 0,4504
CPI LN -0,0001 0,9000 0,0002 -0,0197 0,1196 0,4331
CRH LN -0,0004 0,5001 0,0017 0,0174 0,0458 0,2658
DGE LN 0,0006 0,5023 0,0213 -0,0741 0,0252 0,3285

EXPN LN 0,0003 0,5000 0,0008 -0,0143 0,0182 0,3832
EZJ LN 0,0020 0,6999 0,0012 0,0151 -0,0017 0,3537
GFS LN -0,0020 0,6999 0,0013 -0,0525 0,1219 0,4807
GKN LN 0,0017 0,5093 0,0000 0,0736 0,0878 0,3531
GSK LN 0,0003 0,5000 0,0009 -0,0674 0,1023 0,3624

HMSO LN 0,0002 0,2000 0,0064 0,0624 0,1762 0,0472
HSBA LN 0,0001 0,9000 0,0003 -0,0409 0,0599 0,5154
IAG LN 0,0004 0,9003 -0,0001 0,0748 0,0655 0,5890
IHG LN 0,0005 0,9000 0,0013 0,0148 0,1662 0,4107
IMI LN 0,0008 0,7000 0,0016 0,0721 0,2552 0,2672
IMT LN 0,0003 0,2000 0,0011 0,0004 0,0573 0,4044

ITRK LN 0,0011 0,9000 0,0010 -0,0123 0,0683 0,1781
ITV LN 0,0016 0,6997 0,0083 -0,0053 0,0626 0,4077

JMAT LN 0,0008 0,2000 0,0014 -0,0105 0,1585 0,4463
KGF LN 0,0002 0,9000 -0,0009 -0,0010 0,0600 0,5231

LAND LN 0,0003 0,9000 0,0003 0,0536 0,1735 0,4577
LGEN LN 0,0011 0,9000 -0,0005 0,0430 0,2228 0,5751

Table 2: Estimated µp, β and µv2 parameters (Columns 2 - 4) for the first 48 FTSE 100 stocks. The bolded
(bolded and italic) parameters are statistically significant at the 95% (90%) level of confidence. Estimated
first order serial correlation coefficients (Columns 5 - 7) of returns, squared returns and volume time series,
respectively. The bolded (bolded and italic) coefficients are statistically significant at the 95% (90%) level
of confidence, following a Pearson correlation test. 33



Bloomberg Code µp β µv2 ρ(Rt,Rt−1) ρ(R2
t ,R

2
t−1)

ρ(Vt,Vt−1)

LLOY LN 0,0004 0,9000 0,0010 0,0500 0,1918 0,5176
LSE LN 0,0017 0,5002 0,0033 0,0472 0,0297 0,3402

MGGT LN 0,0007 0,9000 0,0015 0,0221 0,1065 0,3437
MKS LN 0,0003 0,8999 0,0024 -0,0129 0,0050 0,4990
MRO LN 0,0012 0,9555 -0,0010 0,0376 0,1170 0,3198
MRW LN -0,0003 0,2000 0,0016 0,0100 0,0765 0,4245
NG/ LN -0,0003 0,9000 0,0011 0,0175 0,0713 0,7539
NXT LN 0,0010 0,9144 0,0001 -0,0008 0,0268 0,5564
OML LN 0,0002 0,8998 0,0001 -0,0175 0,0938 0,4415
PFC LN -0,0004 0,3999 0,0019 -0,0268 0,0460 0,4571
PRU LN 0,0008 0,9000 0,0013 0,0163 0,1786 0,7077
PSN LN 0,0005 0,7000 0,0019 0,0477 0,1163 0,4150

PSON LN 0,0003 0,4000 0,0012 -0,0269 0,0834 0,3799
RB/ LN 0,0005 0,2001 0,0027 -0,0978 0,1578 0,4010
RBS LN 0,0009 0,2000 0,0020 0,0866 0,1841 0,4834

RDSA LN 0,0003 0,9000 0,0004 0,0575 0,1424 0,2327
RDSB LN 0,0004 0,2000 0,0005 0,0418 0,1210 0,3676
REL LN 0,0004 0,9000 0,0007 0,0377 0,0537 0,5091
REX LN 0,0001 0,5022 -0,0001 0,0487 0,0481 0,4281
RIO LN 0,0000 0,9000 0,0005 0,0645 0,1253 0,4674
RR/ LN 0,0013 0,5000 -0,0011 -0,0426 0,0379 0,5008
RRS LN -0,0009 0,8999 -0,0001 -0,0402 0,0728 0,5032
RSA LN -0,0034 0,9001 0,0020 -0,0174 0,0257 0,3845
SAB LN 0,0006 0,9000 0,0013 -0,0160 0,1107 0,3353

SBRY LN 0,0002 0,7000 0,0013 0,0074 0,1383 0,3785
SDR LN 0,0001 0,8999 0,0009 0,0278 0,0528 0,3640
SGE LN 0,0002 0,9000 0,0013 -0,0571 0,1158 0,4947
SHP LN 0,0009 0,9000 0,0027 -0,0334 0,0462 0,3848
SL/ LN 0,0006 0,5001 0,0001 0,0747 0,1071 0,3841

SMIN LN 0,0004 0,4000 0,0007 0,0327 0,0682 0,2423
SN/ LN 0,0004 0,9000 -0,0004 -0,0451 0,2264 0,5926
SSE LN 0,0002 0,2000 0,0014 -0,0341 0,0476 0,3917

STAN LN -0,0036 0,7000 0,0059 -0,0266 0,2485 0,3983
SVT LN 0,0012 0,5026 -0,0012 0,0002 -0,0019 0,6622

TATE LN 0,0010 0,9035 0,0000 -0,0050 0,0444 0,2465
TLW LN -0,0015 0,9000 0,0007 0,0021 0,1120 0,4326
TPK LN 0,0006 0,7000 0,0026 0,0143 0,1357 0,3763

TSCO LN -0,0015 0,2000 0,0011 0,0461 0,0143 0,3784
ULVR LN 0,0001 0,8999 0,0000 -0,0350 0,0638 0,3757
UU/ LN 0,0011 0,4000 0,0018 0,0129 0,0632 0,4550
VOD LN 0,0008 0,2000 0,0015 -0,0480 0,0888 0,3766

WEIR LN 0,0007 0,7001 0,0024 0,0793 0,1758 0,4176
WMH LN 0,0016 0,6999 0,0000 0,0193 0,1067 0,2822
WOS LN 0,0010 0,9003 -0,0010 0,0275 0,1083 0,4553
WPP LN 0,0002 0,9000 -0,0003 -0,0377 0,0954 0,5075
WTB LN 0,0010 0,4000 0,0014 0,0463 0,1657 0,4426

Table 3: Estimated µp, β and µv2 parameters (Columns 2 - 4) for the first 48 FTSE 100 stocks. The bolded
(bolded and italic) parameters are statistically significant at the 95% (90%) level of confidence. Estimated
first order serial correlation coefficients (Columns 5 - 7) of returns, squared returns and volume time series,
respectively. The bolded (bolded and italic) coefficients are statistically significant at the 95% (90%) level
of confidence, following a Pearson correlation test. 34



Bloomberg µp β µv2 ρRt,Rt−1
ρR2

t ,R
2
t−1

ρVt,Vt−1
p− val(TP ) p− val(A)

Code

ADM LN -0,0005 0,2000 0,0004 0,0570 0,0711 0,4947 0,0000 0,0000
AV/ LN -0,0004 0,4000 0,0014 0,0059 0,1141 0,4540 0,0000 0,0000

BRBY LN -0,0006 0,8998 0,0004 0,0761 0,0010 0,4769 0,0000 0,6280
BSY LN 0,0005 0,9002 0,0055 0,0208 0,0357 0,4094 0,0000 0,0000
CNA LN 0,0003 0,9033 0,0005 -0,0585 0,0850 0,4106 0,0000 0,9998
GSK LN 0,0003 0,5000 0,0009 -0,0674 0,1023 0,3624 0,0001 0,0002

HSBA LN 0,0001 0,9000 0,0003 -0,0409 0,0599 0,5154 0,0000 0,9998
IHG LN 0,0005 0,9000 0,0013 0,0148 0,1662 0,4107 0,0000 0,0337

LLOY LN 0,0004 0,9000 0,0010 0,0500 0,1918 0,5176 0,0000 0,1393
MGGT LN 0,0007 0,9000 0,0015 0,0221 0,1065 0,3437 0,0000 0,9997
MRW LN -0,0003 0,2000 0,0016 0,0100 0,0765 0,4245 0,0000 0,0000
RB/ LN 0,0005 0,2001 0,0027 -0,0978 0,1578 0,4010 0,0000 0,0000
RBS LN 0,0009 0,2000 0,0020 0,0866 0,1841 0,4834 0,0000 0,0000

RDSB LN 0,0004 0,2000 0,0005 0,0418 0,1210 0,3676 0,0000 0,0000
RIO LN 0,0000 0,9000 0,0005 0,0645 0,1253 0,4674 0,0000 0,0021
SDR LN 0,0001 0,8999 0,0009 0,0278 0,0528 0,3640 0,0000 0,9308
SGE LN 0,0002 0,9000 0,0013 -0,0571 0,1158 0,4947 0,9999 0,9999
SSE LN 0,0002 0,2000 0,0014 -0,0341 0,0476 0,3917 0,0000 0,0000

Table 4: 1st stock category: the pure short-term liquidity friction case: µv2 6= 0 and either µp = 0 or, if
µp 6= 0 then β = 0.
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Bloomberg µp β µv2 ρRt,Rt−1 ρR2
t ,R

2
t−1

ρVt,Vt−1 p− val(TP ) p− val(A)

Code

ARM LN 0,0019 0,9000 0,0010 0,0026 0,0764 0,4881 0,0000 0,0050
BNZL LN 0,0009 0,7000 0,0011 0,0180 0,0764 0,2839 0,0000 0,1379
CCL LN -0,0009 0,4000 0,0015 0,0816 0,0212 0,4280 0,0000 0,0000
EZJ LN 0,0020 0,6999 0,0012 0,0151 -0,0017 0,3537 0,0000 0,0010
GFS LN -0,0020 0,6999 0,0013 -0,0525 0,1219 0,4807 0,0000 0,0000
GKN LN 0,0017 0,5093 0,0000 0,0736 0,0878 0,3531 0,0000 0,0334
ITRK LN 0,0011 0,9000 0,0010 -0,0123 0,0683 0,1781 0,0000 0,0000
ITV LN 0,0016 0,6997 0,0083 -0,0053 0,0626 0,4077 0,0000 0,0004

JMAT LN 0,0008 0,2000 0,0014 -0,0105 0,1585 0,4463 0,0000 0,0000
LGEN LN 0,0011 0,9000 -0,0005 0,0430 0,2228 0,5751 0,0000 0,0378
LSE LN 0,0017 0,5002 0,0033 0,0472 0,0297 0,3402 0,0000 0,0004

MRO LN 0,0012 0,9555 -0,0010 0,0376 0,1170 0,3198 0,0000 0,0000
NXT LN 0,0010 0,9144 0,0001 -0,0008 0,0268 0,5564 0,0000 0,0000
RR/ LN 0,0013 0,5000 -0,0011 -0,0426 0,0379 0,5008 0,0000 0,0003
RSA LN -0,0034 0,9001 0,0020 -0,0174 0,0257 0,3845 0,0000 0,0000
SHP LN 0,0009 0,9000 0,0027 -0,0334 0,0462 0,3848 0,0000 0,0000
SL/ LN 0,0006 0,5001 0,0001 0,0747 0,1071 0,3841 0,0000 0,9935

STAN LN -0,0036 0,7000 0,0059 -0,0266 0,2485 0,3983 0,0000 0,0000
TLW LN -0,0015 0,9000 0,0007 0,0021 0,1120 0,4326 0,0000 0,0048

TSCO LN -0,0015 0,2000 0,0011 0,0461 0,0143 0,3784 0,0000 0,0000
WMH LN 0,0016 0,6999 0,0000 0,0193 0,1067 0,2822 0,0000 0,0056
WOS LN 0,0010 0,9003 -0,0010 0,0275 0,1083 0,4553 0,0000 0,0650
WTB LN 0,0010 0,4000 0,0014 0,0463 0,1657 0,4426 0,0000 0,0000

Table 5: 2nd stock category: the pure long-term liquidity friction case: µv2 = 0 and µp 6= 0 and β 6= 0

Bloomberg µp β µv2 ρRt,Rt−1 ρR2
t ,R

2
t−1

ρVt,Vt−1 p− val(TP ) p− val(A)

Code

ABF LN 0,0010 0,2000 0,0010 -0,0732 0,1123 0,4704 0,0000 0,0000
UU/ LN 0,0011 0,4000 0,0018 0,0129 0,0632 0,4550 0,0000 0,0000
VOD LN 0,0008 0,2000 0,0015 -0,0480 0,0888 0,3766 0,0000 0,0000

Table 6: 3rd stock category: the mixed liquidity friction case: µv2 6= 0 and µp 6= 0 and β 6= 0
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Bloomberg µp β µv2 ρRt,Rt−1
ρR2

t ,R
2
t−1

ρVt,Vt−1
p− val(TP ) p− val(A)

Code

AAL LN 0,0001 0,9000 0,0000 -0,0017 -0,0029 0,4938 0,9999 0,9999
ADN LN 0,0014 0,4000 0,0041 0,0173 0,0360 0,0574 0,0001 0,0000
AGK LN 0,0003 0,9002 0,0001 0,0700 0,0084 0,3328 0,0000 0,0000
AHT LN 0,0024 0,7000 -0,0001 0,0340 0,0931 0,3578 0,0000 0,0140

AMEC LN -0,0002 0,8997 -0,0014 0,0047 0,1846 0,3934 0,0000 0,3037
ANTO LN -0,0009 0,8997 0,0038 -0,0261 0,0859 0,5216 0,0000 0,0233
AZN LN 0,0001 0,9000 -0,0002 -0,0131 0,0531 0,4287 0,0000 0,2520
BA/ LN 0,0006 0,9000 -0,0002 -0,0506 0,2616 0,5417 0,0000 0,4939
BAB LN 0,0002 0,9001 0,0001 -0,0239 0,2505 0,3992 0,0000 0,7973

BARC LN 0,0000 0,9000 0,0053 0,0284 0,0884 0,4019 0,0000 0,0112
BATS LN 0,0002 0,2012 0,0004 -0,0653 0,0619 0,3880 0,0000 0,0000
BG/ LN 0,0001 0,2000 0,0006 0,0281 0,0906 0,3697 0,0000 0,0000

BLND LN 0,0000 0,4000 0,0019 0,0062 0,2393 0,4367 0,0000 0,0000
BLT LN -0,0003 0,9000 0,0005 0,0368 0,0778 0,5039 0,0000 0,4874
BP/ LN -0,0002 0,9000 0,0009 0,0506 0,1994 0,7118 0,0000 0,9967

BT/A LN 0,0011 0,9000 0,0000 -0,0384 0,0701 0,5520 0,0000 0,6810
CPG LN 0,0037 0,2000 0,0020 -0,0975 0,1221 0,4504 0,0000 0,0000
CPI LN -0,0001 0,9000 0,0002 -0,0197 0,1196 0,4331 0,0000 0,5058
CRH LN -0,0004 0,5001 0,0017 0,0174 0,0458 0,2658 0,0000 0,9828
DGE LN 0,0006 0,5023 0,0213 -0,0741 0,0252 0,3285 0,0000 0,0000

EXPN LN 0,0003 0,5000 0,0008 -0,0143 0,0182 0,3832 0,0000 0,9997
HMSO LN 0,0002 0,2000 0,0064 0,0624 0,1762 0,0472 0,9998 0,9998

IAG LN 0,0004 0,9003 -0,0001 0,0748 0,0655 0,5890 0,0000 0,9451
IMI LN 0,0008 0,7000 0,0016 0,0721 0,2552 0,2672 0,0000 0,6148
IMT LN 0,0003 0,2000 0,0011 0,0004 0,0573 0,4044 0,0000 0,0000
KGF LN 0,0002 0,9000 -0,0009 -0,0010 0,0600 0,5231 0,0000 0,9631

LAND LN 0,0003 0,9000 0,0003 0,0536 0,1735 0,4577 0,0000 0,2712
MKS LN 0,0003 0,8999 0,0024 -0,0129 0,0050 0,4990 0,0000 0,6283
NG/ LN -0,0003 0,9000 0,0011 0,0175 0,0713 0,7539 0,0000 0,9997
OML LN 0,0002 0,8998 0,0001 -0,0175 0,0938 0,4415 0,0000 0,5962
PFC LN -0,0004 0,3999 0,0019 -0,0268 0,0460 0,4571 0,0000 0,0000
PRU LN 0,0008 0,9000 0,0013 0,0163 0,1786 0,7077 0,0000 0,9997
PSN LN 0,0005 0,7000 0,0019 0,0477 0,1163 0,4150 0,0000 0,0000

PSON LN 0,0003 0,4000 0,0012 -0,0269 0,0834 0,3799 0,0000 0,0000
RDSA LN 0,0003 0,9000 0,0004 0,0575 0,1424 0,2327 0,0000 0,9998
REL LN 0,0004 0,9000 0,0007 0,0377 0,0537 0,5091 0,0000 0,0711
REX LN 0,0001 0,5022 -0,0001 0,0487 0,0481 0,4281 0,0000 0,0842
RRS LN -0,0009 0,8999 -0,0001 -0,0402 0,0728 0,5032 0,0000 0,1776
SAB LN 0,0006 0,9000 0,0013 -0,0160 0,1107 0,3353 0,0000 0,9391

SBRY LN 0,0002 0,7000 0,0013 0,0074 0,1383 0,3785 0,0000 0,0000
SMIN LN 0,0004 0,4000 0,0007 0,0327 0,0682 0,2423 0,0000 0,0000
SN/ LN 0,0004 0,9000 -0,0004 -0,0451 0,2264 0,5926 0,0000 0,4725
SVT LN 0,0012 0,5026 -0,0012 0,0002 -0,0019 0,6622 0,0000 0,9999

TATE LN 0,0010 0,9035 0,0000 -0,0050 0,0444 0,2465 0,0000 0,0000
TPK LN 0,0006 0,7000 0,0026 0,0143 0,1357 0,3763 0,0000 0,1415

ULVR LN 0,0001 0,8999 0,0000 -0,0350 0,0638 0,3757 0,0000 0,0000
WEIR LN 0,0007 0,7001 0,0024 0,0793 0,1758 0,4176 0,0000 0,2916
WPP LN 0,0002 0,9000 -0,0003 -0,0377 0,0954 0,5075 0,0000 0,2099

Table 7: Last stock category: No liquidity friction case (including Tauchen and Pitts (1983) and Andersen
(1996) cases) 37



Panel A: Jan. 2014 - Dec. 2015 PF 1 PF 2 PF 3 PF 4 EW Index

Annualized
Average Return -0,0369 0,0428 0,0685 0,0219 -0,0424

Annualized
Standard Deviation 0,0511 0,041 0,056 0,0267 0,1443

Annualized
Sharpe Ratio -0,7221 1,0439 1,2232 0,8202 -0,2938

Panel B: Jan. 2014 - Dec. 2014 PF 1 PF 2 PF 3 PF 4 EW Index

Annualized
Average Return 0,0296 0,0567 0,0639 0,0126 -0,0149

Annualized
Standard Deviation 0,0468 0,0398 0,0523 0,0263 0,1184

Annualized
Sharpe Ratio 0,6325 1,4246 1,2218 0,4791 -0,1258

Panel C: Jan. 2015 - Dec. 2015 PF 1 PF 2 PF 3 PF 4 EW Index

Annualized
Average Return -0,1035 0,0288 0,073 0,0312 -0,0700

Annualized
Standard Deviation 0,0548 0,0422 0,0596 0,0272 0,1665

Annualized
Sharpe Ratio -1,8887 0,6825 1,2248 1,1471 -0,4204

Table 8: Out of Sample performance statistics in annualized terms. Portfolios 1 to 4 (called PF 1, ..., PF
4, respectively) consist in a long position on a equally-weighted portfolio relying on four competing stock
selecting criteria, and a short position on the equally-weighted portfolio including all the stocks of our sample
(called EW Index). The stock selecting criteria are: the first-order serial correlation of returns (which should
be positive) for portfolio 1; the µp parameter estimated by our structural approach (which should be positive)
regardless of β parameter value for portfolio 2; the µp and β parameters obtained by our approach considered
jointly (they both should be positive) for portfolio 3; the β parameter should be positive while µp = 0 for
portfolio 4 (Andersen (1996) case). All portfolios are formed based on the parameters estimated based on
our overall test period extending from January 1st, 2010 to December 31, 2013 and then are held unchanged
for two consecutive years after their formation date. Panel A displays the performance persistence statistics
for the two-year holding period 2014− 2015, while Panels B and C present the same performance statistics
for each of the of the two one-year subperiods.
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Panel A Panel B Panel C

Jan. 2014 - Dec. 2015 Jan. - Dec. 2014 Jan. - Dec. 2015

PFM 1 PFM 2 PFM 1 PFM 2 PFM 1 PFM 2

Annualized
Average Return 0,1245 0,3377 0,0626 0,1527 0,1864 0,5227

Annualized
Standard Deviation 0,2281 0,3257 0,1857 0,2924 0,264 0,356

Annualized
Sharpe Ratio 0,5458 1,0368 0,3371 0,5222 0,7061 1,4683

Table 9: Annualized out-of-sample performance statistics. The first portfolio (PFM 1) consists of stocks
presenting statistically significant serial correlation coefficient of daily returns estimated over January 1st,
2010 to December 31, 2013 (i.e., 13 stocks). For these stocks, we build a momentum strategy based on
the sign of the returns. The second portfolio (PFM 2) consists of stocks presenting jointly statistically
significant and positive µp and β parameters estimated over Jan. 2010 - Dec. 2013 (i.e., 20 stocks). For each
of these stocks, we use the Extended Kalman Filter methodology to filter the latent variable It given these
parameters from January 2010 to December 2015. We then build a momentum strategy by taking a long
(short) position on a portfolio of stocks with It−1 greater (lower) than the moving average of the considered
stock-specific It computed during the previous year (i.e., the last 260 days). We rebalance this portfolio
at the end of each trading day from Jan. 2014 to Dec. 2015 and compute its daily returns in excess of
the equally-weighted index returns. Panel A displays the performance persistence statistics for the two-year
holding period 2014− 2015, while Panels B and C present the same performance statistics for each of the of
the two one-year subperiods.
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Figure 1: It and Lt time series for a) a no liquidity friction case à la Tauchen and Pitts (1983) - AHT LN,
b) a no liquidity friction case à la Andersen (1996) - BATS LN, c) a Mixed liquidity friction case - ABF LN,
and d) a short term liquidity friction case - ADN LN, from January 4, 2010 to December 31, 2013.
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Figure 2: It and Lt time series for ADN LN, from August 1st, 2011 to July 31, 2012.
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Figure 3: This figure plots the Net Asset Values of the four hedged portfolios considered here during the
out of sample overall period extending from January 2014 to December 2015.
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Figure 4: Net Asset Values of the two hedged momentum portfolios considered here during the out of
sample overall period extending from January 2014 to December 2015.
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