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Abstract

The decisions to reduce, leave unchanged, or increase (the price, rating, policy in-
terest rate, etc.) are often characterized by abundant no-change outcomes that are
generated by different processes. Moreover, the positive and negative responses can
also be driven by distinct forces. To capture the heterogeneity of the data-generating
process this paper develops a two-stage cross-nested model, combining three ordered
probit equations. In the policy rate setting context, the first stage, a policy inclination
decision, determines a latent policy stance (loose, neutral or tight), whereas the two
latent amount decisions, conditional on a loose or tight stance, fine-tune the rate at
the second stage. The model allows for the possible correlation among the three latent
decisions. This approach identifies the driving factors and probabilities of three types of
zeros: the "neutral” zeros, generated directly by a neutral policy stance, and two kinds
of 7offset” zeros, the ”loose” and ”tight” zeros, generated by a loose or tight stance,
offset at the second stage. Monte Carlo experiments show good performance in small
samples. Both the simulations and empirical applications to the panel data on individ-
ual policymakers’ votes for the interest rate demonstrate the superiority with respect
to the conventional and two-part models.
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1 Introduction

Ordinal dependent variables, taking on negative, zero and positive values, are often charac-
terized by the abundant and potentially heterogeneous observations in the middle (neutral
or zero) category. For instance, most central banks adjust policy rates by discrete incre-
ments — namely multiples of 25 basis points — and no-change decisions commonly constitute
an absolute majority (e.g., 63, 66, 76 and 79 percent in the US Federal Reserve, National
Bank of Poland, Bank of England and European Central Bank, respectively)!. As Fig-
ure 1 shows, the policy rate of the National Bank of Poland (NBP) remained unchanged
during three different circumstances: namely, during policy tightening; during maintaining
(between the reversals); and during periods of easing. Many of "zeros" that are clustered
between the reversals during the maintaining periods, are likely to be driven by different
forces than many of those that are situated between the changes in the same direction
during periods of policy tightening or easing.

To illustrate this, Table 1 reports the average values of macroeconomic indicators, ob-
served separately only during policy decisions to either increase, reduce or leave the rate
unchanged. In the no-change case, these values are reported separately for periods of policy
tightening, maintaining and easing. The economic conditions, observed on average when
the rates were not changed during the tightening/easing periods, are much closer to those,
observed when the rates were increased/reduced, than to those that prevailed on average
when the rates were maintained between the reversals. On the other hand, some of the
no-change decisions during the maintaining periods occurred under the economic circum-
stances, similar to those observed during some decisions to hike or cut the rates.

Figure 1: The reference rate of the National Bank of Poland
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Notes: E/M/T denote the periods of policy easing/maintaining/tightening.

These stylized facts suggest that no-change decisions can be generated by different
decision-making processes. In addition, the positive and negative changes may be also
driven by distinct determinants. This definitely poses a problem for a standard discrete-
choice model such as the ordered probit (OP) or logit model. In such situations, it would
be a misspecification to disregard the heterogeneity of zeros, to treat all the observations as
coming from the same data-generating process (d.g.p.), and to apply a conventional model,

"During the 6/1997-10/2012, 1/1999-10/2012, 10/1982-10/2012 and 3/1998-10/2012 periods, respectively.



based on a single equation. This paper develops a three-equation cross-nested ordered pro-
bit (CNOP) model for such types of ordinal outcomes, and illustrates the model in the
context of policy interest rate decisions.

Table 1: Economic conditions observed on average at different policy rate decisions during
the periods of policy easing, maintaining and tightening

Policy period Policy rate decision cpi ®-tar A(cpi ©-tar) situation
Reduce -0.37 -0.23 8.93
Easing
No change -0.62 -0.20 8.29
Maintaining No change 0.34 -0.02 15.15
No change 241 0.21 19.80
Tightening
Increase 1.70 0.23 2041

Notes: Sample period: 02/1998 — 12/2009; situation - index of expected general economic situation in
industry from Business Tendency Survey; cpi® — tar - deviation of expected CPI over next 12 months
(Ipsos-Demoskop survey of consumers) from the NBP target; A - recent monthly change.

Suppose that an ordinal dependent variable — for example, a discrete change to policy
rate — can be in three latent regimes (loose, neutral or tight), where it can take on only
nonpositive, zero or nonnegative values, respectively. The upper left panel of Figure 2
shows a decision tree. The first stage, a policy inclination decision, sets the regime, i.e.
monetary policy stance. The inclination decision is driven by a direct reaction to the
economic conditions, particularly to the developments since the last policy meeting. At the
second stage, if the stance is neutral, no further policy actions are taken and the rate is
maintained. If the stance is loose (tight), the policymakers can cut (hike) the rate by certain
amount or may leave it unchanged. These two amount decisions, conditional on either loose
or tight policy stances, fine-tune the rate and are more of a tactical and institutional nature.
The model allows for the possible correlation among the three latent decisions. Under this
interpretation, we can classify three kinds of zeros and describe how they arise: the ”always”
or "neutral” zeros, generated directly by neutral policy reactions to economic conditions;
and two kinds of "not-always” or ”offset” zeros, the ”loose” and ”tight” zeros, generated
by loose or tight policy regimes, offset by tactical and institutional reasons.

The existence of different types of no-change decisions is justified by the very nature of
monetary policymaking, which involves processing huge amounts of data, meeting different
and sometimes conflicting goals, and which is often conducted by a committee composed
of heterogeneous members, as well as by the discrete nature of the interest rate changes
themselves. For example, despite a loose policy stance, the policymakers can maintain the
rate due to the following reasons. First, the recent ”policy bias” statement of the central
bank, which indicates the most likely policy direction in the immediate future, was neutral
or even tightening (this addresses the policymakers’ concerns about the competence and
credibility of the central bank’s communication). Second, the dissenting policymakers at



the last meeting preferred the higher rate, creating an upward pressure to the rate at the
current meeting (this accounts for the fact that the monetary policy is commonly conducted
by a committee, often composed of heterogeneous members)?. Third, the rate was already
lowered at the last meeting (this reflects the general reluctance to move the rate frequently).
Fourth, the cumulative changes to the economic indicators since the date of the last non-
zero policy rate adjustment do not suggest the policy easing (the policymakers, who face
uncertainty about the economy and incur the costs in the case of the subsequent rate
reversal, prefer to wait and to react to more accumulated economic information in order to
minimize the risk of the reversals). Finally, the policy rate has already reached the lower
zero bound.

Figure 2: Decision trees of the CNOP, NOP, ZIOP and ACH models

Cross-Nested Ordered Probit Model Nested Ordered Probit Model

Zero-Inflated Ordered Probit Model Autoregressive Conditional Hazard Model

As we shall observe, the proposed three-equation models are fairly easy to estimate via
maximum likelihood. The Monte Carlo results suggest good performance of the proposed
cross-nested ordered probit (CNOP) models in the small samples and demonstrate its supe-
riority with respect to the conventional OP model producing biased estimates if the d.g.p.
is heterogeneous. The new models are applied to explain the policy interest rate decisions
of the NBP, using a panel of the individual votes of the Monetary Policy Council (MPC)

?See, for example, Gerlach-Kristen (2004) and Sirchenko (2010), who documented that the dissenting
views of policymakers at the last policy meeting help predict the next policy decision of the Bank of England
and National Bank of Poland, respectively.



members and real-time macroeconomic data available at MPC meetings. The individual
policy preferences of the policymakers appeared to be well-modelled by a new approach.
The empirical application demonstrates the advantages of the new models in separating
different decision-making paths for three types of zeros, identifying the determinants of pol-
icy decisions and estimating the marginal effects of explanatory variables on the predicted
probabilities.

The CNOP model is able to identify the driving factors of each decision and estimate
the probabilities of the latent policy regimes and three types of zeros. As a practical matter,
this allows certain variables to affect the inclination and amount decisions differently; hence,
the probabilities of positive, negative and three types of zero outcomes may be driven
by different sources. The model estimates how the decomposition of no-change decisions
depends on the observed data, and sheds additional light on monetary policy inertia. Only
about a quarter of observed zeros appeared to be generated by the neutral policy stance.
This finding suggests a high degree of gradualism and deliberate interest-rate smoothing in
the decision-making process of the NBP. The conventional OP models, based on a single
latent equation, are shown to confuse the marginal effects of the explanatory variables
that have an impact only on one decision or opposing impacts on both decisions. Besides,
the marginal effects of the explanatory variables reveal the non-monotonic relationships
between these variables and choice probabilities. The standard OP models overlook such
non-monotonic patterns.

The proposed CNOP model is related to three strands of econometric literature. On the
one hand, it can be described as a two-level cross-nested ordered probit model, an extension
of a two-level nested ordered probit (NOP) model with three nests (see upper right panel of
Figure 2). At the upper level of the NOP model the policymakers decide whether to increase,
maintain, or decrease the rate. This trilemma is modelled by a trichotomous OP model.
In case of a no-change decision, no further policy actions are taken, and the rate remains
unchanged. If the policymakers decide to hike or to cut the rate, they have to choose the
amount of the change. This fine-tuning lower level, conditional on the decision to increase
or decrease the rate at the upper level, is modeled by two distinct OP models. Overall,
the NOP model combines three equations with, in general, different sets of covariates.
Therefore, in contrast to a standard single-equation OP model, in the NOP model, one
set of explanatory variables may be relevant for the rate cuts, while another set may be
relevant for the hikes. The third set of covariates would affect the no-change decisions. In
the CNOP model the three nests overlap — they all contain the zero outcomes. It creates
three distinct d.g.p’s, generating zero observations.

Notice also another key difference between the NOP and CNOP models: in the former
both levels’ decisions are observable, whereas in the latter they are observed partially, only
when the outcome is nonzero. In the CNOP model the outcomes in the inflated zero category
are observationally equivalent — we never know from which of the three regimes the zeros
arise, whereas in the NOP model we always know to which of the three nests the observed
outcomes belong. In this sense the three regimes in the CNOP model are latent.

In case of the unordered categorical data where the choices can be grouped into nests
of similar options, the nested logit model is used widely. Several kinds of multinomial
logit models with overlapping nests have been also proposed. Wen and Koppelman (2001)
introduced a generalized nested logit model, which contains the other cross-nested logit
models as special cases. The nested and cross-nested models, specifically designed for the



ordered alternatives, are not used so widely?.

On the other hand, the CNOP model can be perceived as a three-part middle-category-
inflated mixture model. The two-part mixture models, developed to deal with both the
abundant zeros and unobserved heterogeneity, include the zero-inflated Poisson (Lambert
1992) and negative binomial (Greene 1994) models for count outcomes, as well as the zero-
inflated ordered probit (ZIOP) model (Harris and Zhao 2007) and zero-inflated proportional
odds model (Kelley and Anderson 2008) for ordinal variables. These zero-inflated models
are the natural extensions of the two-part (or hurdle, or split-population) models, first
proposed by Cragg (1971) for non-negative continuous data, and then developed for the
count data (Mullahy 1986), survival time data (Schmidt and Witte 1989), and discrete
ordered time-series data (the autoregressive conditional hazard (ACH) model of Hamilton
and Jorda 2002). A two-part model basically represents a two-level model with two nests.
It combines a binary outcome model for the probability of crossing the hurdle (the upper-
level participation decision) with a truncated-at-zero model for the outcomes above the
hurdle (the lower-level amount decision). The difference between the two-part ACH and
ZIOP models (see bottom panels of Figure 2) is that in the former the two parts are
estimated separately, the zero observations are excluded from the second part, and, hence,
the discrimination among different kinds of zeros is not accommodated, whereas in the
latter the two nests overlap, assuming two types of zeros, and, hence, the probability of
zeros is ”inflated”. The ZIOP model is able to identify the different d.g.p’s of two kinds of
zeros*. Hamilton and Jorda (2002) applied the ACH model to the changes to the Federal
funds rate target, made by the US Federal Open Market Committee; Brooks et al. (2012)
applied the ZIOP model to the panel data on the changes to the policy rate, preferred by
each member of the Bank of England’s Monetary Policy Committee.

The three-part CNOP model is a natural generalization of the two-part ZIOP model.
A trichotomous participation decision (increase versus no change versus decrease) seems to
be more realistic than a binary one (change versus no change) if applied to such types of
ordinal data — the policymakers, who are willing to adjust the rate, have naturally already
decided in which direction they want to move it. Combining these two distinct decisions
at the upper hurdle into one category, as done in the ZIOP model, may seriously distort
the inference. The same explanatory variable can have different weights in the decisions
to increase or reduce the rate. Besides, the CNOP model allows the probabilities and
magnitudes of the positive changes to the rate to be affected by different determinants than
those of the negative changes. The ZIOP model is more suitable if applied to explain such
decisions as, for example, the levels of consumption, when the upper hurdle is naturally
binary (to consume or not to consume).

Finally, the two-part model is similar by structure to a discrete version of the sample
selection model®. However, in the sample selection model the first hurdle, the selection
decision, determines whether the outcome variable is observed, rather than whether the ac-
tivity is undertaken, as in the two-part model, where all the outcomes are actually observed.
In many applications, in the absence of the sample selection problem, there is no need in
modeling the latent potential, as opposed to the observed actual outcomes, but there is a

3Small (1987) proposed a model for ordered outcomes, called the ordered generalized extreme value
model, that has overlapping nests.

40n the other hand, the ZIOP model assumes no serial correlation among the latent residuals, whereas
the ACH model accounts for the serial dependence in discrete-valued time series.

’The early contributions are Gronau (1974) and Heckman (1976 and 1979), among others.



need to model the ”corner solution” outcomes or address the heterogeneity insteadS.

The NOP and CNOP econometric frameworks are introduced in the next section (in-
cluding their extended versions, the NOPC and CNOPC models, where the mechanisms
determining the three decisions are dependent). Section 3 briefly reports the results of
Monte Carlo simulations to assess and compare the finite sample performance of the OP,
NOP(C) and CNOP(C) models, as well as the performance of the LR and Vuong tests
and model selection criteria. In Section 4 the six alternative models — OP, multinomial
probit, generalized OP, ZIOP, CNOP and CNOPC - are applied to explain policy interest
rate decisions of the NBP, using a panel of the individual votes of the MPC members and
real-time macroeconomic data available at policy meetings. Section 5 concludes. The On-
line Appendix contains three parts: Appendix A with the details of Monte Carlo design,
Appendix B with the details of Monte Carlo results and Appendix C with supplemental
output from empirical application.

2 The econometric framework

The CNOP model allows for any number of ordered discrete categories of the dependent
variable greater than two, while the NOP model degenerates to the standard OP model
in case of three outcome categories. For ease of exposition and without loss of generality,
the observed dependent variable is assumed to take on a finite number of discrete values j
coded as {—J,...,—1,0,1,..., J}, and the inflated neutral outcome is coded as zero’.

The proposed models are suitable for the large survey data, both cross-sectional and
longitudinal, though a sufficiently long discrete-valued time series is also applicable. Since in
this paper the models are applied to the panel data, the econometric framework is presented
in the panel context using double subscript, where the index ¢ denotes one of N cross-
sectional units and index ¢ denotes one of T time periods. The application to the pure
cross-sectional or time-series data is straightforward by setting N or T to one.

Each observation is treated as an independent draw from the population both along
the cross-sectional and time-series dimensions. Thus, it is assumed that the cross-sectional
units are independent, that the model specification is dynamically complete, hence, there

is no serial correlation among the latent errors®.

2.1 The cross-nested ordered probit (CNOP) model

Let r;y = {—1,0,1} be a trichotomous latent variable that determines whether the individual
policy stance is loose, neutral or tight, and let m,; and m; be the discrete nonpositive and
nonnegative latent variables that set the magnitude of Ay;, conditional on r;; = —1 and

For a debate between the sample selection and two part-models see Leung and Yu (1996), Jones (2000),
Dow and Norton (2003), Madden (2008).

TOf course, the inflated outcome does not have to be in the very middle of ordered categories. If the
inflated outcome is at the end of the ordered scale, the three-part CNOP model reduces to the two-part
ZIOP model.

8The treatments of spatial effects (that are quite reasonably expected in the panel with small N) and
serial autocorrelation of the disturbance terms are among the possible extentions of the model. For example,
the CNOP model can be further extended by allowing for the serial correlation among the latent residuals
and employing the dynamic OP specifications (Eichengreen, Watson and Grossman, 1985) of three latent
equations, estimated via the Gibbs sampler.



ri+ = 1, respectively. Then assume that the observed vote for a change to policy rate Ay;:
is generated as

Iy my if ry = -1,

K2 — .

Ay = 5 {1 —rig)mgz + L+ ri)m } = 0 if 74 =0,
m;g if ry=1.

Notice that 7 is observed only if Ay;; # 0, while m;, and m;; are observed only if
Ay < 0 or Ay > 0, respectively. Conditional on a set of explanatory variables, we will
assume further that the mechanisms generating 7, m;, and mjt' are either independent or
dependent.

The model assumes two stages and three regimes, and includes three OP latent equa-
tions. At the first stage (the upper level of the decision tree — see the top left panel of Figure
2) there is a continuous latent variable 7}, representing the magnitude of the policymaker
1’s policy stance and set at a meeting ¢ in response to the observed data according to a

policy inclination equation
i = XuB + vit, (1)

where x;; is the t™ row of an observed T; x K 5 data matrix X;, T; is the number of
observations available for the individual 7, 3 is a K x 1 vector of unknown coefficients, and
vit is an error term, independently and identically distributed (i.i.d.) across ¢ and t.

The regime-setting decision r;; is coded as —1, 0, or 1, if the policymaker i’s policy
stance is loose, neutral or tight, respectively. The correspondence between 77, and 7 is
given by the matching rule

-1 if ry < ar,
Tit = 0 if o1 <7} <ag,
1 if asr< ’I“;kt,

where —o0 < a1 < ag < 00 are unknown threshold parameters to be estimated.
Under the assumption that the disturbance term v;; is distributed with the cumulative
distribution function (c.d.f.) F, the probabilities of each possible outcome of r;; are:

Pr(ri = —1|xi) =Pr(r}, < ai|xi) = F(oq — x},03),
Pr(ry = 0|xit) =Pr(ag <1} < aglxiy) = F(ag —x3,08) — F(ag —x,0), (2)
Pr(ry = 1|xit) = Pr(ag < r}|xit) =1- F(ag —x},3).

At the second stage (the lower level of the decision tree) there are three regimes and
two latent amount equations.

e Regime 1iy = —1 (loose policy stance).

Conditional on being in regime r;; = —1 the continuous latent variable m_*, representing
the desired change to the rate, is determined by the amount equation

My =2V + €5 (3)



where 7y is a K, x 1 vector of unknown coefficients, z;, is the ' row of an observed T} x K,
data matrix Z;, and ¢, is an i.i.d. error term with the c.d.f. F~.
The discrete change to the rate m;, is determined according to the rule-

mi_t:jif,uj__1<yi_t*Sluj_forj:—JtOO,

where —oo = pu=; ; < pu_; < ... < pu-; < py = oo are J unknown thresholds to be
estimated.
The conditional probability of a particular outcome j is given by

F(pZ; —247) for j=-J,
o F~(u; —z,v)— F (u; , —z;,v) for —J<j<O0,
Pr(m;; = jlzg, rie = —1) = 1— Fj_ (M_it— ;') ]1 ! for j =
- 7 )
0 for 0<j<J,

which can be written more compactly, given that —oco = p—;_; and pug = oo, as

o F (5 —25) = F~ (i, —2) for —J <j <0,
Pr(mit:ﬂzwrit:_l):{ 0 ’ " e for 0<j<J. )

e Regime 1y = 0 (neutral policy stance).

Conditional on being in regime 7; = 0 no further policy actions are taken - the rate
remains unchanged:

Ayit|(rit = 0) = 0.
Therefore, the conditional probability of a particular outcome j is given by

' 0 for j#0,
Pr(Ayit = jlxit, rie = 0) = { 1 for i i 0. )

e Regime 1y = 1 (tight policy stance).

Conditional on being in regime r;; = 1 the continuous latent variable m:g*, representing

the desired change to the rate, is set by the other amount equation
miy" =78+ e, (6)

where d is a K5 x 1 vector of unknown coefficients, z; is the t™ row of an observed T} x Kj
data matrix Z:r, and 6;-'; is an i.i.d. error term with the c.d.f. F'T.
The discrete change to the rate m:g is determined by

m;:jjf,u;‘_l<y;*§,u;'forj:0to<],

where —0o = pt; < pf <. < uj_l < ,u}r = oo are J unknown thresholds to be estimated.
The conditional probability of a particular outcome j is given by



) 0 for —J<j<0
+ + . _ > y
Primy = jlzg,ra = 1) = { Ft(ul —2'0) — F*(uf ) —2;/0) for 0<j<J. (™)

Assuming that vy, €;, and a;; are independent, the full unconditional probabilities to
observe the outcome j are given by combining the probabilities in (2), (4), (5) and (7):

Ij:() PI‘(T’it = O’Xit) Pr(Ayit = j\xit, Tt — 0)
Pr(Ay; = j|xit,z;t,z;g) =< +lj>oPr(ry = 1|xq) Pr(m;g = j|zi+t,rit =1)

+1j<o Pr(riy = —1|x4) Pr(my = jlz;;, rie = —1)

Ljzo[F (a2 — x3yB) — F(a1 — x;,3)]
= o[l — Flaa — xyB)[F T () — 20) — F* (), — 2;'9)] (8)
+li<oF(ar — xiB)F~ (u; —25'0) — F~ (1,1 — 2;,'9)],

where [j>¢ is an indicator function such that Ij>9 = 1 if j > 0 and I;>¢ = 0 otherwise
(analogously for I;—¢ and I<).

The proposed model, as any model with a latent variable, is not identified without some
(arbitrary) assumptions. Let us assume the standard normal form of the error distributions
F, F~ and F7, and also that the intercept components of 3, v and & are all equal to zero”.
However, the above probabilities are absolutely estimable functions, i.e. they are invariant
to the identifying assumptions. These probabilities can be estimated by using the partial

(pooled) ML estimator of the vector of parameters 8 = (o, 3, u™",v', ™, 8’)" that solves

N T J
maXZZ Z qitj hl[Pr(Ayit = j|X’it7 Z;tv Z;ga G)L (9)

Oe® “ .
i=1t=1j=—J

where ¢;4; is an indicator function such that ¢;; = 1 if Ay, = j and 0 otherwise. All the
parameters in all three equations are separately identified (up to scale) through functional
form.

The typical panels contain data covering a short timespan for each individual. In this
case, the asymptotic arguments rely on N tending to infinity. With T" fixed and N — oo,
this estimator is consistent and v/N-asymptotically normal without any additional assump-
tions other than the standard identification assumptions and regularity conditions (see
Wooldridge 2010, pp. 489-490). However, the usual asymptotic standard errors and test
statistics obtained from pooled estimation are valid only under the assumption of no serial
correlation among error terms v;, €;, and 6;-;. Without dynamic completeness, the standard
errors must be adjusted for serial dependence, for example, by using a robust to density
misspecification sandwich estimator of asymptotic variance of

YEmploying the ordered logit or complementary log-log counterparts are among the possible alternative
versions of the proposed model.



N T R -1
)(—zzﬂitw)) - (10)

i=11=1

. N T R -1 N T T »
Avar(0) = (- ZHit(9)> (Z [ sit(0)) si(6)
1 t=1

i=11t=1 i=1 Lt=

~ ~

where s;:(0) is the score vector and H;¢(6) is the expected Hessian (see Wooldridge 2010,
pp. 490-493). The asymptotic standard errors of @ are the square roots of the diagonal
elements of (10).

In the application to panel data with small N and relatively large T', we are basically in
the realm of time-series analysis, and the asymptotic arguments rely on 1" tending towards
infinity, standard identification and stationarity assumptions. Using either fixed T"and N —
oo or fixed N and T' — oo asymptotics, the above pooled ML estimator in (9) is consistent
and asymptotically normal even if the error terms are arbitrarily serially correlated, the
dynamics are not correctly specified, and X;, Z; and Zj contain not strictly exogenous
covariates, lags of covariates and lagged Ay;, Y.

2.2 The nested ordered probit (NOP) model

The only difference between the NOP and CNOP models is that all three nests of the
NOP model do not overlap, i.e. regimes r;; = —1 and r;; = 1 do not allow for a no-
change response (see the top panels of Figure 2). Therefore, in the NOP model the full
unconditional probabilities to observe an outcome j (again, assuming that the disturbance
terms of three latent equations are independent) are given by

Ij:() Pl"(Tit = O’Xit)—l-
Pr(Ayi = jlzg, 2, %it) = Liso Pr(riy = 1x4) Pr(w;} = jlzj;,ri = 1)
+Ij<0 PI‘(Tit = _1‘Xit) Pr(wi_t = j|zi_t,7'it = —1)

Li—o[F (a2 — x;;,8) — F(o1 — x},3)]
=3 +lsoll = Flag =, B)[F (1] — 2'8) — F (), —2;'9)] (11)
+licoF (ar = xiB)F~ (u; —25'y) — F~(u;y — 25/7)];

where now —oco =p_; ; <p”; <..<pu”; =00 and —oo =pg <. < u}r_l < ,u}r = 0
are 2(J — 1) unknown thresholds to be estimated at the lower level (instead of 2J in the
CNOP model), and the other parameters and assumptions are analogous to those in the
CNOP model.

To estimate the NOP model one can employ the ML estimator from (9), using the
probabilities from (11). The log of the likelihood function of the NOP model, in contrast to
that of the CNOP one, is separable with respect to the parameters in three latent equations.
Thus, solving (9) is equivalent to maximizing separately the likelihoods of three OP models,
corresponding to the above three latent equations (1), (3) and (6), where the data matrices
Zj and Z; are truncated to contain only the rows with Ay;; > 0 and Ay;; < 0, respectively.

'0This result is analogous to employing pooled OLS estimation in linear panel models.



2.3 Relaxing assumption of independent disturbances

The NOP and CNOP models can be further extended by relaxing the assumption that
the error terms v, €~ and €' are uncorrelated, and introducing the correlated versions
of the models, NOPC and CNOPC ones. I now assume that (v,e~) and (v,e™) follow
the standardized bivariate normal distributions with the correlation coefficients p~ and p™,
respectively. The full unconditional probabilities to observe an outcome j for the CNOPC
model can be written now as

Pr<Ayit = ]) = 15= ()[F(Oég - thﬁ) (al - xztﬁ)]
L0 Fo(x}B — anip] — th "6 —pt) — Fa(x}B — agip | — Zzt '6; —pT)] (12)
+1i<o[Fa(aq — %}, 3; By — 2y "yip7) — Folon — X}, 8; Pj_1 — 2y "¥;p7)]s

where Fy(¢q;09;€) is the c.d.f. of the standardized bivariate normal distribution with the
correlation coeflicient £ between the two random variables ¢, and ¢,.

The full unconditional probabilities to observe an outcome j for the NOPC model are
given by

Pr(Ayit = .7) = 1j= O[F(OQ - thﬁ) (041 - xztﬁ)]
Lo Fa(x,8 — azp) — th '8;—p") — Fa(x,B — aip g — Zzt 05 —pt)] (13)
+lico[Falar — X[, By — 23 vip™) — Falon — xiuBipns g — 2% p7)]-

To estimate the CNOPC and NOPC models by ML, we have to solve (9), replacing the
probabilities in (8) and (11) with those in (12) and (13), respectively, and re-defining the
vector of parameters 0 as 0 = (o, B, ™", v, ™, 8", p, pt).

2.4 Partial effects

The partial (or marginal) effect (PE) of each continuous covariate on the probability of each
discrete choice is computed as the partial derivative with respect to this covariate, holding
all the others fixed at their sample median values. For the discrete-valued covariates the
PFE is computed as the change in the probabilities, when this covariate changes by one
increment and all the others are fixed. To facilitate the derivation of the PEs, the matrices
of covariates and corresponding vectors of parameters can be partitioned as follows:

X =(W,P,M,X), Z"=(W,P,V,Z"), Z~=(W,M,V,Z"),
) i N
B= (8,8 BB, §=(8,,8,8,8), = VA Vn),

where W includes only the variables common for X, Z* and Z~; P includes only the
variables common for both X and Z™, but which are not in Z~; M includes only the variables
common for both X and Z~, but not in 7TV includes only the variables common for both
Z~ and Z™, but not in X; Whereas X Z+ and Z~ include only those unique variables that
appear only in one of the latent equations.

A matrix of covariates X* and the vectors of parameters for X* can be written down as

= (W,P,M,X,V,z+7zi>, 16* = ( {wv ;)7 ;nvlélaolaolaol)/a



6* = (521]75;77 0/7 0/ 6/ ’5/701),7 7* = (7{[1)?0/77;7170177{[}70,7;;/),'

b

The partial effects of the row vector xJ, on the overall probabilities in (12) can be now
computed for the CNOPC model as

PE = —Ij—o[f(az —x);8) — f(a1 — x};8)]8"

Pr(Ay;t=j)

xjB—aztot (uf_, —2f'8)
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where f is the probability density function (p.d.f.) of the standard normal distribution F'.
The PEs for the NOPC model are given by replacing Ij>o with I~ and Ij<o with ;<.
The PEs for the NOP and CNOP models are obtained as above by setting p~ = p™ = 0.
The asymptotic standard errors of the PEs are computed using the Delta method as the
square roots of the diagonal elements of

— —
— — = —

Avar( PE(0) ) = VoPE(0))Avar(0)V,PE(0))'.
Pr(Aya=j) Pr(Ayiz=j) Pr(Aya=j)

2.5 Model comparison

The performance of competing models can be compared by using the model selection tests
and informational criteria.

The NOP and CNOP models are nested in the NOPC and CNOPC models, respectively,
as their uncorrelated special cases. The NOP model is nested in the CNOP model. The
latter becomes a NOP model with the same value of the likelihood function if p—; — oo
and pug — —oo, and hence, Pr(y; = 0|z}, rix = 1) — 0 and Pr(y;; = 0|z;;,rx = —1) — 0,
which can be implemented by letting p—; and ,uar to be equal to the largest and smallest
numbers available for the estimation software. Testing the NOP versus NOPC, NOP versus
CNOP, NOP versus CNOPC, NOPC versus CNOPC, and CNOP versus CNOPC model
can be performed with the likelihood ratio (LR) test.

The OP models is not nested in either of the two-level models, and vice versa. However,
the OP model is not strictly non-nested with them. All five models overlap if all their
slope coefficients are restricted to being zero (i.e. if 3 =0, v= 0, § = 0, and the vector of
slope parameters in the OP latent equation is also fixed to zero), and only the thresholds
are estimated. Therefore, testing the OP versus any of the two-level models, as well as
the NOPC versus CNOP model (which overlap if both reduce to the NOP model) can
be conducted with a test for non-nested overlapping models, such as the Vuong test (due



to Vuong 1989) that utilizes the statistical significance between the difference in the log
likelihoods. The testing procedure is sequential. First, we need to verify that the two models
are not equivalent, i.e. separately perform t- or F-tests to check whether the parameters
of interest violate the overlapping constraints. Second, if the overlapping restrictions can
be rejected, we have to conduct the Vuong test for strictly non-nested models. The null
hypothesis of this test is that both models are misspecified, but equally close to the unknown
true d.g.p. The test statistic is very simple to compute: it is equal to the average difference
of the individual likelihoods divided by the estimated standard error of those individual
differences. Under the null hypothesis, the Vuong test statistic converges in distribution to
a standard normal one. If the absolute value of the test statistic is less than the critical
value, say 1.96, we cannot discriminate between the two models given the data. If the test
statistic exceeds 1.96, we reject the equivalence in favor of one of the models; if the test
statistic smaller than -1.96, we reject the equivalence in favor of the other.

The following model-selection information criteria are computed: AIC = —21(0) + 2k,
BIC = =21(0) + In(N)k, cAIC = =21(0) + (1 + In(NV))k (consistent AIC), AICc =
AIC +2k(k+1)/(N —k—1) (corrected AIC), and HQIC = —21(0) + 2In(In(N))k, where
k is the total number of the estimated parameters. The adjusted McFadden pseudo-R?
measure of fit (given by 1 — (I(@) — k)/lp(6), where Ip(0) is the value of the restricted
likelihood function, maximized with all the slope parameters in 6 fixed to zero) can also be
used for the model selection, but its selection results are equivalent to those of the AIC,
because the value of the [y(€) is identical in all the above models. Another measure of fit,
the Hit rate, is computed as the percentage of correct predictions, where the predicted
discrete outcome is that with the highest estimated probability.

3 Finite sample performance

I conducted massive Monte Carlo experiments to illustrate and compare the finite sample
performance of the ML estimators in the single- and three-equation models, namely to assess
the bias and uncertainty of the estimates of parameters and partial effects, as well as their
asymptotic standard errors, the performance of the LR and Vuong tests and model selection
criteria as discussed in the previous section, and the effect of exclusion restrictions. The
simulations were performed using GAUSS programming language (version 10) with CML
module (version 2) for the constrained ML estimation. The details of Monte Carlo design
and the results of these simulations are reported and discussed in Appendix A. Here 1
provide a brief summary of Monte Carlo design and main findings.

The observations in the repeated samples were drawn independently. This corresponds
to either the cross-sectional model with uncorrelated units or to the time series model
without serial dependence. Therefore, the results are applicable to assess the finite-sample
performance of the ML estimator with: (i) i.i.d. cross-sectional data and N — oo asymp-
totics; (ii) dynamically complete model for time-series data and T'— oo asymptotics; (iii)
ii.d. panel data with fixed 7" and N — oo asymptotics; and (iv) dynamically complete
model for panel data with fixed N and T — oo asymptotics'!.

Five different d.g.p’s were simulated: OP, NOP, NOPC, CNOP, and CNOPC. For each
d.g.p., 3000 repeated samples with 250, 500 and 1000 observations were generated. Under

"' The Monte Carlo simulations for the panel data with small N and relatively large T, where latent errors
are either not autocorrelated or autocorrelated, will be added soon.



each d.g.p. and for each sample size, several competing models were estimated, always
including the OP and NOP models as the benchmarks. I found that: (i) it requires two to
three times more observations for the three-part models to achieve the same accuracy of the
estimated parameters as that of the OP model; (ii) each of the five models under its own
d.g.p., not surprisingly, estimates the quantities of interest better than the other models;
however, the three-part models under the true OP d.g.p. perform much better than the
OP model under the NOP(C) and CNOP(C) d.g.p’s; (iii) as the sample size increases, the
performance of the three-part models under the OP d.g.p. improves drastically, whereas
the performance of the OP model under the NOP(C) and CNOP(C) d.g.p’s improves only
slightly.

Under any three-part d.g.p, the Vuong tests tend to correctly favor the true model
versus the OP model in almost 100% of replications, as sample size increases. However,
under the OP d.g.p. the Vuong tests of the NOP and CNOP models versus the OP model
fail to discriminate between the two models, and are never in favor of the true OP model.
The LR tests of the NOP versus NOPC and the CNOP versus CNOPC model (when the
true d.g.p. is correlated) both have an empirical size between 4 and 5 percent, very close
to the nominal size of 5 percent. Regarding the information criteria, while the AIC' and
AICc under the OP, NOP and CNOP d.g.p’s select the true model slightly less frequently
than the BIC and cAIC, under the NOPC and CNOPC d.g.p’s they clearly outperform the
HQIC and especially the BIC and cAIC.

In addition, in order to assess the effect of exclusion restrictions, three different scenarios
of the overlap among the covariates in the specifications of three latent equations were
simulated: ”no overlap” (each covariate belongs only to one equation), ”partial overlap”
(each covariate belongs to two equations) and ”complete overlap” (all three equations have
the same set of covariates). I found that the more exclusion restrictions the more accurate
the estimates of the PEs, and the fewer the problems with estimation. The simulation
results suggest that the asymptotic estimator might not perform well without the exclusion
restrictions, that is with the complete overlap among the covariates, in the small samples
(fewer than 35 observations per parameter). In case of the NOPC and CNOPC models
under the partial overlap scenario in the small samples there might be the problems with
the convergence and invertibility of the Hessian.

4 An application to policy interest rate

“It is highly desirable that policy practice be formalized to the maximum possible
extent.”

— W. Poole, then-President of the Federal Reserve Bank of St. Louis'?

The policy rate is a key determinant of the other short-term market interest rates, and
of sharp interest for market participants: “What the market needs to know is the policy
response function by which the central bank acts in a consistent way over time” (Poole,
2003). Furthermore, “if practitioners in financial markets gain a better understanding of
how policy is likely to respond to incoming information, asset prices and bond yields will
tend to respond to economic data in ways that further the central bank’s policy objectives”
(Bernanke, 2007). Another important reason to model policy rate is a search for better

2See Poole (2006).



policy. In order to improve it, we have to obtain a clear empirical description of what is
going to be improved. It is really hard to evaluate the monetary policy without describing
it, using an econometric model.

In this section I let the real-world data speak, and apply the proposed and conventional
OP models to explain the systematic components of policy interest rate decisions of the NBP,
employing a panel of the individual votes of the MPC members and real-time macroeconomic
data available at each MPC meeting during the 1998-2009 period!3.

4.1 Data

Since the adoption of direct inflation targeting in 1998 the NBP policy rate — the reference
rate — may be undoubtedly treated as a principal instrument of Polish monetary policy'*.
The reference rate has been always set administratively by the MPC of the NBP, and is not
an outcome of the interaction between the market supply and demand. The MPC consists
of ten members and makes policy rate decisions once per month by means of formal voting.
The Council members are appointed for a non-renewable term of six years, but the Chair
may serve for two consecutive terms. The first term lasted from February 1998 through
January 2004'. The second term lasted from February 2004 through January 2010.

Table 2: Frequency distribution of the individual votes of the MPC members on policy rate

Ayi (preferred rate change by member i) Decrease No change Increase All
Number of observations 309 889 187 1385
Percentage 22% 64% 14% 100%

Notes: The sample period is from 04/1998 through 12/2009. The first meeting of the second MPC in
February 2004 is omitted.

The MPC has always altered the levels of policy rates in discrete adjustments — the
multiples of 25 basis points (bp) - made in the range from 25 to 250 bp. Table 2 shows
the frequency distribution of the dependent variable — the individual MPC members’ votes
(reported in Tables 23, 24 and 25 of Appendix C) for the changes to the rate in the period
1998/04 - 2009/12. To provide a reliable inference, the individual policy preferences are
consolidated for analysis into three categories: increase, no change and decrease. At a
monthly policy meeting, each member can express his or her preferred policy rate change,
and can make a proposition to be voted on. If no proposition is made, there is no voting
at all, and the rate remains unchanged; otherwise, the Chair selects the largest proposed
move and the members vote on it. If the first voted proposition commands a majority, then
the others are not voted on; otherwise, the members vote on the alternative proposal. As
a matter of fact, the second voted proposal has always been passed. In case of two rounds

'3The data are taken from Sirchenko (2008) and updated till the end of 2009.

"See Sirchenko (2008) and references therein for the background of monetary policy in Poland.

'SHowever, one member was replaced before the policy meeting in January 2004, and another passed away,
so his seat was filled midterm in August 2003. Because the first MPC Chair had resigned in December 2000,
the Chair since then has been appointed with a three-year lag with respect to the other members.



of voting, the desired interest rate changes during the first round are used in estimations.
The first two meetings (in February and March 1998) of the newly-established MPC are
dropped from the sample to account for a transition to a new policy regime of inflation
targeting. The first meeting of the second MPC in February 2004 is also omitted. The
policymakers have been absent from the meetings 15 times. Among the 1385 observations
used in estimations, the policymakers preferred to leave the rate unchanged 889 times (in
64 percent of cases), as Table 2 reports.

The policy inclination decision is assumed to be driven by a direct response to new
economic information, such as inflation developments, the prospects for real economy, the
spread between long- and short-term market interest rates, and recent change to the ECB
policy rate. The amount decisions, fine-tuning and smoothing the rate, are expected to
be driven by the tactical institutional factors such as: (i) recent ”"policy bias” or ”balance
of risks” statements (addressing the policymakers’ concerns about the competence and
credibility of the central bank’s communication); (ii) the dissent among the policymakers
at the previous policy meeting (if dissenters preferred a lower policy rate, it creates a
downward pressure to the rate at the current meeting, and, hence, the probability of rate
cut increases); and (iii) the change to the rate, made by the MPC at the previous policy
meeting (reflecting the inertia of monetary policy and deliberate interest-rate smoothing
behavior of the central bank).

The indicator of policy bias (bias;) at the meeting ¢ is defined as —1 if it is "easing”,
0 if "neutral”, and 1 if "restrictive”. The measure of dissent among the policymakers is
calculated as follows. Consider a committee with M members. For each member ¢ and each
policy meeting ¢ define the individual dissent indicator

1 if Ayy > Anbpry,
dip = 0 if Ay; = Anbpry, (15)
-1 if Ay < Anbpry,

where Ay;; is the change to the reference rate preferred by member i, and Anbpr; is the
change made by the MPC. The measure of dissent at the meeting ¢ (dissent;) is then defined
as the average of individual dissents across all MPC members:

| M
dissent; = M;dit. (16)
1=

Table 26 of Appendix C reports for each MPC meeting the values of policy bias indicator
(biast), overall dissent at the meeting (dissent;), and policy rate decision of the Council
(Anbpr;). There was at least one dissenting member in 44 percent of MPC meetings. As
Table 27 of Appendix C shows for each MPC member, the average values of individual
dissents (d;;) across all meetings are between -0.232 and 0.400, i.e. the most "dovish"
member (Ziotkowska) preferred a lower interest rate than the majority in 23.2% of meetings,
while the most "hawkish" member (Filar) was in favor of a higher interest than the majority
in 40% of meetings.

A dummy variable for the expected inflation above the official inflation target (I(cpif >
tary)) is included into ZTonly. The change to the rate at the last policy meeting (Anbpri_1)
is allowed to enter all three equations. The detailed definitions of all variables used in the



study are given in Table 3. The sample descriptive statistics is shown in Table 22 of
Appendix C.

To account for the unobserved individual heterogeneity of policy preferences, I allow
for intercept variation'®. Slope heterogeneity is not of a concern, since our interest is in
estimating the average effects of explanatory variables. Under an assumption that the slope
coefficients differ randomly across individuals, the pooled estimator gives unbiased estimates
of these average effects.

Table 3: Definitions of variables

Mnemonics Variable description (source of data)
Dependent variable
Ay Change to NBP reference rate, preferred by i MPC member: 1 if anincrease, 0 if no change, -1if a

decrease (NBP).
Variables in X only

Acpi Last monthly change to consumer price index (CPI), annual rate in percent (GUS - Central Statistical Office

of Poland).
situation Index of expected general economic situation in industry from Business Tendency Survey, divided by 100
read Difference between 12- and 1-month Poland interbank offer rate, 5-business-day moving average,
® annualized percent (Thompson Reuters).
Ltechr Change to the ECB policy rate (since 02/1999, in 1998 - to Bundesbank policy rate, set equal to zero in
01/1999), announced at the last policy meeting, annualized percent (ECB and Bundesbank).
Variablesin X, Z and Z*
Anbpr Change to the NBP reference rate, announced at an MPC meeting, annualized percent (NBP).
), 1if the average Dissent; (from the first up to the last MPC meeting) is greater than 0.1, O - otherwise; see
: Eq.(17).
1), 1if the average Dissent; (from the first up to the last MPC meeting) is less than -0.1, O - otherwise; see
' Eq.(17).
I(Bal); 1if i MPC member is Balcerowicz, and O otherwise. The other MPC members are coded as:

Cze - Czekaj, Dab - Dabrowski, Fil - Filar, Gra - Grabowski, Gro - Gronkiewicz-Waltz, Joz - Jozefiak,
Krz - Krzyzewski, Lac - Laczkowski, Nie - Nieckarz, Nog - Noga, Ows - Owsiak, Pie - Pietrewicz, Pru -
Pruski, Ros - Rosati, Skr - Skrzypek, Sla - Stawinski, Was - Wasilewska-Trenkner, Woj - Wojtyna, Woz -
Wjtowicz, Zio - Zidtkowska.
Variablesin Z” and/or Z* only
dissent Measure of dissent at an MPC meeting, defined by Eq. (15) (NBP).

Indicator of “policy bias" or "balance of risks" statements (available since 02/2000, set equal to zero before):

bias -1if "easing’, 0if "neutral”, and 1 if "restrictive” (NBP).

1if cpi® > tar, and O otherwise; tar is the official inflation target; cpi ® is the expected CPI over next 12

.e
|(cpi~>tar) months, annual rate in percent (1psos-Demaskop survey of consumers and NBP).

I consider two alternative specifications of the CNOP(C) models. Both include the
following common covariates: in X — Acpiy, situations, spreads, Aecbry, and Anbpry_q;
in Z= — Anbpri_1, dissent;_1, and bias;_1; and in ZT — Anbpr;_1, dissent;_1, bias;_1,
and I(cpi§ > tary). In addition to the above, the fixed effects (FE) specification includes

Y6Gince the model is highly non-linear, failure to address the heterogeneity can lead to a bias, not just
inefficiency, even if all covariates are truly exogenous, whereas no bias emerges in the linear case.



twenty dummy variables for individual MPC members, allowing each individual to have a
different intercept in all three latent equations'”. The FE specification is an appropriate
approach here, because we don’t have a sample of individuals drawn randomly from a large
population, but instead possess a full set of all twenty-one MPC members. Given that
the cross-sectional dimension (N = 21) is small relative to the observed numbers of time
periods (T; are about 67 on average, ranging from 36 to 76), we don’t have the ”incidental
parameters problem” (see Neyman and Scott 1948, Lancaster 2000). Nor should we expect
any significant fixed T asymptotic bias of our estimator with such a large temporal size'®.
An alternative specification with dummies for hawkish and dovish members (the HD
specification) is more parsimonious, and includes only two dummy variables, I(h);; and
I(d);t, defined for ¢ > 2 as 1 if the average individual dissent (from the first up to the
previous MPC meeting) is, respectively, above 0.1 or below -0.1, and 0 - otherwise:

t—1
1 if 3" diq > 0.1,
I(h)y = ' “1];1 -1~ and I(d); =

0 otherwise, 0 otherwise.

t—1
1 if A 3"diq < —0.1,
PP )

The HD specification, which includes only two instead of twenty dummies in each of
the three latent equations, saves 54 degrees of freedom compared to the FE specification.
Thus, it can produce more efficient estimates of the common slopes.

5 Estimation results

The following eight competing models were estimated by pooled ML, using the same set of
explanatory variables (i.e. all the covariates in X, Z~ and Z* of the CNOP model): (i) the
standard OP model; (ii) the OP model with random effects (REOP); (iii) the generalized
OP (GOP) model that relaxes the parallel regression assumption of the standard OP model,
and that allows the slope coefficients to differ by outcome category; (iv) the multinomial
probit (MNP) model, simultaneously estimating binary probits for all possible comparisons
(in our case two) among the outcome categories; (v) the two-equation ZIOP model that
allows zero observations to come from two different processes; (vi) the ZIOP(a) model,
which is identical to the ZIOP model, except that all the covariates in the participation
equation are taken by their absolute values to take into account the binary (change versus
no change) nature of the first-stage decision; and (vii-viii) the three-equation CNOP and
CNOPC models with different sets of covariates in each equation!?. To give the ZIOP and
ZIOP(a) models better chances, all of the CNOP covariates are included into both parts,
contrary to the three-part models.

Table 4 reports the summary statistics from six alternative models with FE specification
and REOP model?. The two- and three-equation models demonstrate a sharp increase in

""The individual dummy for Gronkiewicz-Waltz, the first MPC Chair (in 1998-2000) and the only MPC
member in the sample, who has never dissented, is omitted.

18For example, using Monte Carlo methods, Greene (2004) studied the incidental parameters problem for
discrete-choice panel models, including the OP model. As T increases from 2 to 20, the 160 percent bias of
the estimated coefficients reduces to 6 percent.

9Tn addition, the ordered logit and multinomial logit counterparts were also estimated with similar, but
slightly worse likelihoods than those of the OP and MNP models.

20The loglikelihood (and hit rate) of the ordered logit and multinomial logit models (not reported) are



the likelihood and hit rate compared to the single-equation ones. The CNOP model is
superior to the others according to AIC' and HQIC, while the ZIOP(a) model is favored by
the BIC and AICc. However, all the Vuong tests of the CNOP model versus the ZIOP(a),
ZIOP and OP models are in favor of the CNOP model at the 1 percent significance level.
The CNOPC model with heavily parameterized FE specification has experienced problems
with the invertibility of the Hessian (likely, due to the multicollinearity problems).

Table 4: Changes to policy rate: comparison of alternative models with fixed effects speci-
fication including twenty individual dummies

Model REOP OP GOP MNP ZIOP ZIOPa CNOP
In1(6) -7285 -696.1 -640.9 -639.1 -580.7 -559.3 -502.6
# of parameters 11 30 58 58 59 59 78
AIC 1479.1 1452.1 1397.7 13%4.2 1279.4 1236.6 1161.2
BIC 1536.6 1609.1 17013 1697.7 1588.2 1545.3 1569.4
Corrected AIC 1547.7 1639.1 1759.7 1755.7 1647.2 1604.3 1647.4
HQIC 1500.6 1510.9 1511.4 1507.7 1394.9 1352.1 1313.9
Hit rate 0.745 0.760 0.804 0.816 0.833
Vuong vs OP -6.98** -8.31** -11.41%*
Vuong vs ZIOP -1.92 -4.81**
Vuong vs ZIOPa -3.94**

Notes: **/* denote statistical significance at 1/5 percent level, respectively. For computations of
information criteria and Vuong test statistics see Section 2.5.

The estimations of seven models with HD specification are reported in Table 52'. The
far more parsimonious HD specification demonstrates a rather good fit, and is preferred
over the FE specification by BIC, AICc and HQIC for all the models, and by AIC for the
CNOP and ZIOP(a) models. Again, the two- and three-equation models have far better
fits than the single-equation ones. The CNOP model is now overwhelmingly superior to all
of the others (including now also the CNOPC model) according to all information criteria.
The Vuong tests of the CNOP model versus the ZIOP and OP models are in favor of the
CNOP model at the 1% significance level, and versus the ZIOP(a) model at the 5% level.
The CNOPC model exhibits insignificant increase in the likelihood according to the LR
test (p-value is 0.65). The estimated correlation coefficients p~ and p* (and their standard
errors in parentheses) are -0.48(0.64) and 0.25(0.29), respectively.

The details for the specifications and estimated coefficients of the OP, ZIOP, CNOP and
CNOPC models are presented in Tables 28 and 29 of Appendix C for the FE specification,
and Table 30 of Appendix C for the HD specification. I only briefly discuss the estimated
coefficients focusing instead on the marginal effects of the explanatory variables on the choice
probabilities. The policy inclination decisions of the CNOP(C) models indeed appear to
be driven by reaction to the economic situation. All the coefficients on the changes to

-702.4 (0.744) and -643.6 (0.764), respectively — very to those of the OP and MNP counterparts.
?IThe loglikelihood (and hit rate) of the ordered logit and multinomial logit models (not reported) are
-721.9 (0.759) and -685.6 (0.762), respectively — very to those of the OP and MNP counterparts.



inflation (Acpi), expected economic situation (situation;), interest rate spread (spread;),
and recent change to the ECB policy rate (Aecbr;) are statistically significant at the 1%
level, and have the expected positive signs. The coefficients on both policy bias (bias;—1)
and dissent among the policymakers (dissent;_1) are both insignificant if included into
X (p-values are larger than 0.2), but are significant at the 1% level if included in Z~ (for
both bias;_1 and dissent;_1) and Z* (for bias;_1 only) in the FE specification of the CNOP
model. In two equations of the ZIOP model, the coefficients on both bias;_1 and dissent;_1
have the opposite signs.

Table 5: Changes to policy rate: comparison of alternative models with specification in-
cluding only two dummies, for hawkish and dovish policymakers

Model oP GOP MNP ZIOP ZI0OPa CNOP CNOPC
In 1(6) -715.1 -684.6 -682.4 -63L4 -586.6 -557.1 -556.7
# of parameters 12 22 22 23 23 22 24
AIC 1454.2 14132 1408.9 1308.8 12191 1158.2 1161.3
BIC 1517.0 1528.4 1524.0 1429.2 13395 1273.3 1286.9
Corrected AIC 1529.0 1550.5 1546.0 1452.2 1362.5 1295.3 1310.9
HQIC 1477.7 1456.3 1451.9 1353.9 1264.2 1201.3 1208.3
Hit rate 0.749 0.773 0.783 0.793 0.828 0.829
Vuong vs OP -5.92¢* -7.57%* -8.48** -8.69**
Vuong vs ZIOP -4.19** -4.50** -4.65**
Vuong vs ZIOPa -2.06* -2.15*
LR vs MIOP 0.87

Notes: **/* denote statistical significance at 1/5 percent level, respectively. For computations of
information criteria and Vuong test statistics see Section 2.5.

The coefficient on the last change to the NBP policy rate (Anbpr;_1) is statistically
significant at the 1% level in all equations of the OP, ZIOP and CNOP(C) models. This
variable represents the endogenous partial adjustment of policy rate, due to the intentional
interest-rate smoothing and intrinsic gradualism of central bank behavior. We expect a
positive coefficient in a single-equation OP model; therefore, for example, in the case of a
hike to the rate, the probability of a hike/cut at the next meeting should be larger/smaller,
ceteris paribus, than in the case of a cut. However, the coefficient on Anbpr;_; has a negative
sign in the OP model. Using the OP models, one would conclude that the larger the hike
to the rate at the last meeting, the more likely is a cut at the next meeting. Arguably, this
nonsensical result is due to an assumption of the single-equation OP model that the effect
of a particular variable is homogenous.

In the CNOP(C) models we assume that the observed changes to the rate are the result of
three distinct decisions, on which a given variable may have the opposite effects. We expect
a high level of persistency in the latent policy stance, because of the slow cyclical fluctuations
of macroeconomic indicators that exogenously drive the policy stance. Moreover, the central
bank is conservative and dislikes frequent reverses in the direction of interest rate changes.
Therefore, we expect a positive coefficient on Anbpr;_1 in the inclination equation.



However, we expect the negative coefficients in the amount equations for the same
reasons of policy gradualism and inertia. The amount decisions are conditional on the
policy stance, and are unidirectional: nonpositive or nonnegative, if the policy stance is
loose or tight, respectively. The policymakers are cautious and tend to "wait and see",
once they have moved the rate. Therefore, we expect a negative sign of the coefficient
on Anbpr;_1 in the amount equations. As a matter of fact, while the rate changes are
positively correlated during the whole sample (the first-order autocorrelation coefficient is
0.22), they are actually negatively correlated during the tightening and easing sub-periods
(the autocorrelation coefficients are -0.22 and -0.05, respectively).

Table 6: Changes to the policy rate: partial effects of covariates on probabilities in the OP,
Z1I0P and CNOP models

Pr(Ay;; = "decrease") Pr(Ayi: ="no change") Pr(Ayit = "increase")
oP ZIOP  CNOP oP ZIOP  CNOP oP ZIOP  CNOP
ead -0.137%** 0004 -0.287**  0122*** 0014 0269**  0015** -0010 0018
spreads (0015  (0.015)  (0.038) (0.016)  (0.05  (0.038) (0.004)  (0.040)  (0.009)
echr -0.057%** 0051 -0.061***  0.044** -0197% 0.042***  0013** 0146* 0.018**
‘ (0.009)  (0.044)  (0.014) (0.008) (0103  (0.015) (0.004)  (0.076)  (0.006)
stuation -0.136*  -0.164 -0613%**  0121* 0635 0574 0015  -0471  0.039**
" (0076 (0166  (0.129) (0.067)  (0.424)  (0.125) (0.010)  (0.303)  (0.019)
ol -0.172** 0179 -0458**  0153** -0.695** 0420***  0019*** 0515  0.020**
plt 0022) (0.146) (0.079) (0023 (0.329  (0.078) (0005 (0252  (0.013)
Abor 0.021*** 0102 -0.065***  -0.019*** -0.190*** 0058***  -0.002*** 0088  0.007*
Prea 0004 (0062  (0.015) (0.004)  (0.069)  (0.016) (0.001)  (0.046)  (0.004)
o, -0.089%**  -0037 -0.067%**  0043** 0168  -0037  0046*** -0131L 0103**
" (0012) (0.03 (0.018) (0014) (0113  (0.029) (0010) (0.096)  (0.028)
e, 0.174***  -0.044 0.162***  -0167** 0124 -0.159***  -0006*** -008L  -0.003*
" (0.033)  (0.039) (0.042) 0.038) (0.101)  (0.042) (0002) (0.079)  (0.002)
bins -0.101%**  -0.035 -0.062*** 0005 0015 0049***  0096** 0019  0.012*
“ (0.013) (0.028)  (0.017) (0019) (0012  (0.016) (0013)  (0.018)  (0.007)
dissent 02314 -0119 -0.042**  0206*** 0039 0036***  0025** 0080 0006
“ (0044  (0.093)  (0.014) (0042 (0.037)  (0.013) (0.007)  (0.071)  (0.004)
e 0017 -0.00 0016  -0003  -0.003* 0002 0093 0003
©i>@nNe  6m7  (0.073) (0.016)  (0.010)  (0.002) (0.002) (0071  (0.002)

Notes: For definitions of variables see Table 3. *** /** /* denote statistical significance at 1/5/10 percent
level, respectively. Robust to serial dependence asymptotic standard errors are in parentheses. Partial
effects of a given covariate are computed for the HD specification holding the other covariates at their
sample median values.

Indeed, the coefficient on Anbpr;_1 has a positive sign in the policy inclination equation,
but the negative signs in the amount equations of the CNOP(C) models. It means that the
rate hike/cut at the last meeting increases the probability of the tight/loose policy stance
at the next meeting (compared to the cut/hike), but reduces the probability of the rate



hike/cut conditional on the tight/loose policy regime. Obviously, the OP model fails to
disentangle the opposite directions of the effect of Anbpr;—1 on the inclination and amount
decisions. In the ZIOP model, this effect has a positive sign in both equations — a nonsensical
result. The ZIOP(a) model is able to produce more sensible results: the sign is positive in
the participation equation, but negative in the amount equation.

The partial (marginal) effects on the probabilities in the OP, ZIOP and CNOP models
are compared in Table 6. In contrast to the OP and CNOP models, the estimated effects in
the ZIOP model are mostly insignificant, and, if they are significant, often have the opposite
sign than those in the CNOP model. For example, results based on the ZIOP model suggest
that a half percent month-over-month increase in the annual rate of inflation — holding the
rest of the explanatory variables at their sample median values — implies a 0.347 fall in the
probability of no change to the rate at the next meeting. This contrasts with the OP and
CNOP model results where we can conclude that it would actually lead to, respectively, a
0.077 and a 0.214 rise in the probability of no change.

Table 7: Changes to the policy rate: decomposition of partial effects of covariates on
Pr(Ay=0) into three components

Pr(Ay it = "no change")

Covariates

Loose stance Neutra stance Tight stance
spread -0.101 (0.017)*** 0.274 (0.068)*** 0.095 (0.042)**
Aecbr -0.021 (0.006)*** -0.033 (0.033) 0.097 (0.025)***
situation; -0.215 (0.049)* ** 0.586 (0.182)*** 0.204 (0.091)**
Acpi ¢ -0.161 (0.031)*** 0.437 (0.128)*** 0.152 (0.063)**
Anbpr 1.1 -0.023 (0.006)* ** -0.090 (0.060) 0.171 (0.050)* **
I(h) it -0.020 (0.006)* ** -0.084 (0.048)* 0.067 (0.030)**
I(d) it -0.006 (0.007) -0.139 (0.044)*** -0.014 (0.007)*
biast.1 0.062 (0.017)*** -0.012 (0.007)*
dissent .1 0.042 (0.014)*** -0.006 (0.004)
I(cpi ®>tar): -0.003 (0.002)*

Notes: For definitions of variables see Table 3. ***/**/* denote statistical significance at 1/5/10 percent
level, respectively. Robust to serial dependence asymptotic standard errors are in parentheses. Partial
effects of a given covariate are computed for the CNOP model with HD specification holding the other
covariates at their sample median values.

The key differences are in the effects of the recent change to the policy rate (Anbpr;_1).
The OP and CNOP models have the opposite signs of the PE of Anbpr,_; on the prob-
abilities of all three alternatives, and the ZIOP and CNOP models — on the probabilities
of two choices. For example, the PE of Anbpr,_1 on the probability of rate hike/cut is
positive/negative in the CNOP model, but negative/positive in the OP model. Results,
based upon the OP and ZIOP models, suggest that a 25 bp increase in the recent change
to the policy rate results, respectively, in a 0.019 and a 0.19 fall in the probability of no



change to the rate at the next meeting, holding the rest of the explanatory variables at
their sample median values. However, basing our forecast on the CNOP model, we would
conclude that it would actually lead to a 0.058 rise in the probability of no change at the
next meeting. In contrast to the CNOP model, the PFEs of Anbpr;_1 in the OP and ZIOP

models are not consistent with the observed gradualism of monetary policy decisions.

Figure 3: Changes to policy rate: predicted probabilities as functions of rate change and
policy bias at the last MPC meeting from the OP and CNOP models
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Notes: Predicted probabilities from the OP and CNOP models with HD specification are computed for

the range of Anbpr:—1 and three possible values of policy bias at the previous MPC meeting, holding
I(h)it and I(d);+ at 1 and 0, respectively, and the rest of the explanatory variables at their sample

median values.

The partial effects on the unconditional probability of no change to the rate Pr(Ay;; = 0)

in the CNOP(C) models can be decomposed into three components — Pr(Ay;; = 0|r;; =

-1),

Pr(Ay; = Olry = 0) and Pr(Ay; = O|riy = 1) — generated by the loose, neutral and



tight policy regimes. For example, as Table 7 reports, the 0.43(0.08) PE of the change to
inflation Acpi; on Pr(Ay;; = 0) in the CNOP model is a combined result of three opposing
components: the -0.16(0.03), 0.44(0.13) and 0.15(0.06) PEs in the loose, neutral and tight
policy regimes, respectively. Or, the 0.058(0.016) PE of the recent change to the policy
rate Anbpry_jon Pr(Ay;; = 0) is a sum of the -0.023(0.006), -0.090(0.060) and 0.171(0.050)
PEs in the loose, neutral and tight policy stances, respectively??.

Figure 3 contrasts the predicted probabilities from the OP and CNOP models for the
range of Anbpry;_1 and three possible values of policy bias at the previous MPC meeting
(easing, neutral or restrictive), holding I(h); and I(d); at 1 and 0, respectively, and the rest
of the explanatory variables at their sample median values. The predicted probabilities from
the OP and CNOP models exhibit striking differences. In the OP model, the probabilities
of all three choices change monotonically through almost the entire range of Anbpr;_1. In
contrast, the predicted probabilities in the CNOP model reveal non-monotonic patterns.
For example, in the OP model under the easing policy bias Pr(Ay;; = 0) monotonically
decreases if Anbpr;_; increases, whereas in the CNOP model Pr(Ay;; = 0) is decreasing
if Anbprs_q is less than 100 bp, but is increasing sharply otherwise and becoming closer
and closer to one for values of Anbpr;_1 greater than 0 bp. Clearly, such a non-monotonic
relationship is overlooked in the marginal effects from the OP model.

Figure 4: Changes to policy rate: decomposition of Pr(Ay=0) into three components as
function of rate change and policy bias at the last MPC meeting
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of Anbprs—1 and three possible values of policy bias at the previous MPC meeting, holding I(h);: and
I(d)i: at 1 and 0, respectively, and the rest of the explanatory variables at their sample median values.

The decomposition of Pr(Ay;; = 0) into three components (the loose, neutral and tight
zeros) is illustrated in Figure 4 for the range of Anbpri_; and three values of bias;—1. The
graphs show, for example, that if the rate was increased at the last meeting by 25 bp and
if the policy bias was easing, then Pr(Ay; = 0) is composed, on average, by 37% of the
neutral zeros and 63% of the tight zeros. If the policy bias was neutral, then Pr(Agy;; = 0)
is composed of 46% of the neutral zeros and 54% of the tight zeros. If the policy bias was

22Gtandard errors are in parentheses.



tight, then Pr(Ay; = 0) is composed of 84% of the neutral zeros and 16% of the tight zeros.

The classification tables for the OP and CNOP models with both specifications are con-
trasted in Table 8. Compared to the OP model, the CNOP model with both specifications
demonstrates the drastic improvement in the correct predictions of cuts (from 49% in the
OP to 79% in the CNOP model with FE specifications) and hikes to the rate (from 65% to
77%). The CNOP model predicts fewer zeros (876) than the OP model (980), but predicts
more zeros correctly (767 or 86%) than the OP model (only 758 or 85%). The simple OP
model, as typical, tends to over-predict the most observed outcome, i.e. no-change decision
in our case. The "adjusted noise-to-signal ratio" is clearly lower in the CNOP than in the
OP model for the cuts (9% versus 19%) and no-change outcomes (25% versus 52%), and is
rather low (4%-5%) for the hikes in both models.

Table 8: Changes the policy rate: classification tables of observed and predicted outcomes
for the OP and CNOP models

Predicted outcomes ) /f\dj' Predicted outcomes ) A_‘dj'
Hit noiseto Hit noise to
Actual N rate  signal N Tota rate  signal
ct N0 Hike o cut 0 Hike o

outcomes change ratio change ratio

OP model CNOP model

Specification with fixed effects (twenty individual dummies)
Cut 152 157 0 049 019 243 66 0 309 079 0.09
No change 103 758 28 08 052 74 767 48 839 086 025
Hike 0 65 122 065 004 0 43 144 187 077 005
Total 255 930 150 0.75 317 876 192 1385 0.83

Specification with two dummies for hawkish and dovish members

Cut 167 142 0 056 0.16 237 72 0 309 079 0.09
No change A 746 49 083 049 72 771 46 889 086 028
Hike 0 62 125 067 0.06 0 48 139 187 074 005
Total 261 950 174 0.75 309 891 185 1385 0.83

Notes: A particular choice is predicted if its predicted probability exceeds the predicted probabilities of
the alternatives. An "adjusted noise-to-signal ratio", introduced by Kaminsky and Reinhart (1999), is
defined as follows. Let A denote the event that the decision is predicted and occurred; let B denote the
event that the decision is predicted but not occurred; let C' denote the event that the decision is not
predicted but occurred; let D denote the event that the decision is not predicted and not occurred. The
desirable outcomes fall into categories A and D, while noisy ones fall into categories B and C. A perfect
prediction would have no entries in B and C, while a noisy prediction would have many entries in B
and C, but few in A and D. The "adjusted noise-to-signal" ratio is defined as [B/(B+D)]/[A/(A+C)].

The estimated predicted probabilities of three latent policy regimes, averaged across all
MPC members, are shown for each policy meeting in Figure 5 of Appendix C together with
the policy rate decisions made by the MPC. Averaged over entire sample, they are 0.51,
0.18 and 0.31 for the loose, neutral and tight policy stances, respectively, as Table 9 reports.
These probabilities are also computed separately for the periods of policy easing, maintain-



ing and tightening, as well as separately for the MPC decisions to change the rate or to leave
it unchanged during the easing and tightening periods. The computations reveal that the
average probability of the neutral policy stance during the maintaining periods is only 0.11.
In spite of the 0.54 probability of the loose stance and 0.35 probability of the tight stance,
the MPC maintained the rate for long periods between the rate reversals. The no-change
decisions of the MPC during the easing periods were generated with the 0.52/0.43/0.05
probabilities of the loose/neutral/tight policy stance, while during the tightening periods
these probabilities were 0.31/0.01/0.67, respectively. The MPC decisions to reduce the
rate were generated with the 0.72/0.28/0.00 probabilities of the loose/neutral/tight pol-
icy stance. This closely mimics the observed 0.76/0.24/0.00 frequencies of the individual
policy preferences to reduce/maintain the rate during the MPC decisions to cut it. The
MPC decisions to increase the rate were generated with the 0.10/0.00/0.90 probabilities
of the loose/neutral /tight policy stance. The observed frequencies of the individual pol-
icy preferences to reduce/maintain/increase the rate during the MPC decisions to hike it
were 0.00/0.13/0.87, respectively, suggesting that the policy stances of the dissenters were
actually loose during the MPC decisions to hike the rate.

Table 9: The individual policy decisions and predicted probabilities of individual policy
stances during the periods of policy easing, maintaining and tightening

Average predicted probabilities of Observed freguencies of
Policy MPC individua latent policy stances individual voted policy decisions
period decision loose neutra tight

Pr(ri=-1) Pr(rz=0) Pr(ru=1) decrease nochange increase

Eeei decrease 0.72 0.28 0.00 0.76 0.24 0.00
INng
no change 0.52 043 0.05 0.06 0.94 0.00
Maintaining no change 0.54 0.11 0.35 0.01 0.93 0.06
. no change 0.32 0.01 0.67 0.00 0.83 0.17
Tightening
increase 0.10 0.00 0.90 0.00 0.13 0.87
Whole al 0.51 0.18 0.31 0.22 0.64 0.14

Notes: The policy easing, maintaining and tightening periods are shown in Figure 1. The predicted
probabilities are from the CNOP model with HD specification.

These findings are further confirmed and refined in Table 10, which reports the aver-
age predicted probabilities of individual policy stances separately for the individual policy
decisions of MPC members to reduce, maintain or increase the rate. The average proba-
bility of the neutral policy stance during the individual no-change decisions is only 0.20.
Table 10 also reports the decomposition of Pr(Ay;; = 0) into three parts — Pr(Ay; =
0|ris = —1),Pr(Ay;; = O|riy = 0) and Pr(Ay;; = O|r;y = 1) — corresponding to the "loose",
"neutral" and "tight" zeros. The average predicted probability of no change during the
observed no-change decisions is generated by the loose/neutral/tight policy regimes with
the 0.48/0.25/0.27 probabilities, respectively. For the entire sample the average predicted



probability of no change is decomposed as 0.46/0.28/0.26, respectively. The vast majority
(about 75%) of observed zeros appeared to be generated by the tight or loose policy stances,
offset by the amount decisions at the second stage. These findings suggest a high degree of
the purposeful inertia in the policy-making process of the NBP: only a quarter (at most)
of observed no-change decisions appears to be generated by neutral policy reaction to key
macroeconomic indicators such as inflation, real activity and ECB policy rate. The OP and
ZIOP models have failed to detect this, and produced the biased estimates of the PEs of
Anbpr_q.

Table 10: Predicted probabilities of individual policy stances and decomposition of
Pr(Ay=0) into three policy regimes

Average predicted probabilities Decomposition of Pr(Ayi:= 0)

Individud voted of individua policy stances .
policy decision loose neutral tight 1 00se "neutrii "t|ght"
Pr(r 1= -1) Pr(r 1= 0) Pr(r 1= 1) zeros zeros zeros
Cut 0.77 0.23 0.00 0.33 0.67 0.00
No change 0.51 0.20 0.30 0.48 0.25 0.27
Hike 0.14 0.00 0.86 0.39 0.01 0.61
All 0.51 0.18 0.31 0.46 0.28 0.26

Notes: The predicted probabilities are from the CNOP model with HD specification.

6 Conclusions

"The model is often smarter than you are. ...(T)he act of putting your thoughts together
into a coherent model often forces you into conclusions you never intended..."
-Paul Krugman??

Ordinal responses, when the decisionmakers face the choices to reduce, to leave un-
changed or to increase (e.g., prices, consumption, ratings or policy interest rates) or when
they must indicate the negative, neutral or positive attitudes or opinions, are often char-
acterized by abundant observations in the middle neutral or zero category (no change or
indifferent attitude). Such excessive "zeros” can be generated by different groups of popula-
tion or by separate decision-making processes. Besides, the positive and negative outcomes
can be driven by distinct sources too. In such situations, it would be a misspecification to
treat all the observations as coming from the same d.g.p., and to apply a standard single-
equation model. This paper develops a more flexible cross-nested ordered probit model for
such types of ordinal outcomes, combining three OP latent equations with different sets of
covariates.

The proposed CNOP(C) models allow the separate mechanisms to determine what I
call the inclination decision (y < 0 versus y = 0 versus y > 0, interpreted as a loose,

Z3From the essay "Delusions of Growth" in Krugman (1999).



neutral or tight policy stance) and two amount decisions, conditional on the loose or tight
policy stance (the magnitude of y when it is nonpositive or nonnegative, respectively). The
inclination decision is driven by the direct reaction to the changes in the macroeconomic
environment, whereas the amount decisions allow policy stance to be offset by the tactical
and institutional features of policymaking process. This three-regime approach is able to
discriminate among the following three types of zeros: the "always” or "neutral” zeros,
generated directly by the neutral policy reaction to the economic developments; and two
kinds of "not-always” or ”offset” zeros, the ”loose” and ”tight” zeros, generated by the
loose or tight policy inclinations offset by the tactical reasons. The model also allows for
the possible correlation among three latent decisions.

The Monte Carlo results suggest good performance of the model in the small samples
and demonstrate its superiority with respect to the conventional OP model, which pro-
duces biased estimates of the discrete-choice probabilities and of the marginal effects of the
covariates on those probabilities, if the underlying d.g.p. is heterogeneous. Although the
proposed approach indeed tends to require larger sample sizes than the usual OP model, due
to the heavier parameterization involved, the simulations suggest that the CNOP(C) mod-
els provide accurate and reliable inference even in small samples (about 200 observations)
with a mixture of different d.g.p’s.

The CNOP(C) models are applied to explain policy rate decisions of the National Bank
of Poland, using the panel of the individual votes of the MPC members and real-time macro-
economic data available at the policy-making meetings. The voting preferences appeared
to be well modelled by proposed two-step three-regime approach. The real-world data favor
the CNOP model. Not only does it fit the data much better, but it also has some important
advantages over the single- and two-equation models, such as the standard and generalized
OP, multinomial probit and zero-inflated OP models.

In particular, the CNOP(C) models are able to identify the driving factors of each
decision. For example, the rate change, made at the previous MPC meeting, has the
opposing impacts on the inclination and amount decisions. The conventional OP models are
shown to confuse the marginal effects of the explanatory variables that only have an impact
on one decision or opposing impacts on two decisions. In addition, the proper estimation
of the marginal effects of the explanatory variables is shown to exhibit the presence of a
non-monotonic relationship between these variables and outcome probabilities. It might
have the important implications for the statistical inference, since the OP model fails to
detect such non-monotonic patterns.

The CNOP(C) models are able to estimate the probabilities of three types of zeros and
how this decomposition depends on the observed data. The vast majority (about 75%) of
observed zeros appeared to be generated by the tight or loose policy stances, offset by the
inertial amount decisions. These findings suggest a high degree of intentional interest-rate
smoothing in the decision-making process of the NBP: only a quarter of observed no-change
decisions appears to be explained by neutral policy reaction to economic conditions.

It is quite plausible that the small changes to the rate can be also inflated and charac-
terized by two types of observations, coming either from the loose (tight) or neutral policy
stance. By adding the third amount equation, conditional on the neutral policy regime,
with three outcome categories (no change, small cut and small hike), the resulting four-part
CNOP(C) models will allow for heterogeneity in the three middle categories.
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