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Abstract

We discuss parameter estimation in a situation where the objective is good out-of-sample per-

formance. A discrepancy between the out-of-sample objective and the criterion used for in-sample

estimation can seriously degrade this performance. Using the same criterion for estimation and eval-

uation typically ensures that the estimator is consistent for the ideal parameter value, however this

approach need not be optimal. In this paper, we show that the optimal out-of-sample performance

is achieved through maximum likelihood estimation (MLE), and that MLE can be vastly better than

the criterion based estimation (CBE). This theoretical result is analogous to the well known Cramer-

Rao bound for in-sample estimation. A drawback of MLE is that it suffers from misspecification

in two ways. First, the MLE (now a quasi MLE) is inefficient under misspecification. Second, the

MLE approach involves a transformation of likelihood parameters to criterion parameters, which

depends on the truth. So that misspecification can result in inconsistent estimation causing MLE

to be inferior to CBE. We illustrate the theoretical result in a context with an asymmetric (linex)

loss function, where the CBE performs on par with MLE when the loss is close to being symmetric,

while the MLE clearly dominates CBE when the loss is asymmetric. We also illustrate the theoretical

result in an application to long-horizon forecasting.

Keywords: Forecasting, Out-of-Sample, Linex Loss, Long-horizon forecasting.
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1 Introduction

Out-of-sample evaluation is nowadays considered an acid-test for a forecasting model (Clements and

Hendry, 2005), and the “...ability to make useful ex-ante forecasts is the real test of a model” (Klein,

1992). The econometric literature tackling model evaluation has hence escalated in the recent years,

encompassing both absolute measures (evaluation criteria such as MSFE, MAD, Linex, Lin-lin, Predic-

tive LogLik, etc.) and relative ones (comparison tests, e.g. for equal forecasting abilities, encompassing,

adapted for nested models, allowing to compare several specifications, etc.).

However, little attention has been given to the fact that in this context, i.e. model estimation with

out-of-sample forecasting objective, two loss functions need to be specified, one in the estimation step

and the other for the evaluation one, and they are not necessarily identical. Most importantly, these loss

functions are generally arbitrarily chosen, regardless of the one used in the other step. The most obvious

choice is the mean square [forecast] error (MS[F]E) for its simplicity, but other criteria like mean absolute

deviation (MAD), likelihood (LIK), or even asymmetric criteria such as linex or asymmetric quadratic

loss are randomly considered for model estimation and/or evaluation. This finding is intriguing, since

a wrong association of estimation/evaluation criteria can drastically deteriorate the model’s forecasting

abilities. The main question that arises in this context is which loss functions lead to the optimal

out-of-sample performance of a model? Or, to put it differently, does the synchronization of estimation

and evaluation criteria leads to an improvement in the forecasting abilities of a model?

Important links between the way in which the parameters of a model are estimated and the measures

of predictive ability have actually been noted, in particular by (Granger, 1969), (Weiss and Andersen,

1984) and Weiss (1996). (Granger, 1969) put forward the idea that asymptotically the same criterion

should be used in estimation and evaluation. This possible solution has been also embraced by (Weiss

and Andersen, 1984) and Weiss (1996), who suggest that relative to a given loss function, out-of-sample

predictive ability is enhanced if the same loss function is used to estimate parameters rather than using

some other means of estimation. More recently, Schorfheide (2005) considers the particular case of

quadratic loss functions in a potentially misspecified VAR(p) framework. He proposes a modification

to Shibata (1980)’s final prediction error criterion to jointly choose between the maximum likelihood

predictor and the loss function predictor and to select the lag length of the forecasting model. In

this framework it appears that “switching from quasi maximum likelihood estimation to loss function

estimation and increasing the dimensionality of the forecasting model can be viewed as substitutes”.

The results of the empirical studies are more mitigated. Weiss and Andersen (1984) conclude that

the estimation method can have major consequences on the forecasting abilities of ARIMA models.
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Christoffersen et al. (2001) show that the same loss function should be used for option pricing models,

whereas González-Rivera et al. (2007) find that no systematic gain arises from the use of the same loss

function in Riskmetrics volatility forecast models. All in all, to our knowledge, the existing studies

consider a restraint context by focusing on a particular cost function (MSE most often) or on a specific

type of model (ARIMA, VAR, GARCH, etc.). Besides, although using the same criterion in both steps

insures that the estimator is consistent for the ideal parameter value, it might not be optimal from the

out-of-sample performance viewpoint.

In this paper we hence scrutinize the issue of wether this classic approach relying on the use of the

same criterion in- and out-of-sample dominates other forms of estimation. To this aim, we consider the

general case of M-estimators (Amemiya, 1985, Huber, 1981) and rely on Akaike (1974)’s framework,

known as the fixed scheme in the forecasting literature. We use a second-order Taylor expansion of

the evaluation criterion around the optimal parameter value for each of the estimators considered and

hence derive the expression for the expected value of the difference between the values of the evaluation

criterion corresponding to the two estimators.

We show that the optimal out-of-sample performance is achieved through maximum likelihood esti-

mation (MLE), and that MLE’s performance can be vastly better than the one produced by the criterion

based estimation (CBE) whatever the out-of-sample criterion considered. Our theoretical result is anal-

ogous to the well known Cramer-Rao bound for in-sample estimation. We also consider the case where

the likelihood has more parameters than the evaluation criterion, and discuss the losses incurred by the

misspecification of the likelihood.

We illustrate the theoretical result in a context with an asymmetric (linex) loss function. Criterion

based estimation performs on par with maximum likelihood when the loss is near-symmetric, whereas

the MLE clearly dominates CBE with asymmetric loss. Most importantly, not only the asymptotic

but also the finite-sample findings support these conclusions. In contrast, if the likelihood has the

same number of parameters as the criterion-based predictor CBP (the other parameter being set to its

true value), the gains from using MLE in forecasting relatively to CBE increase. If, however, the ML

estimator is misspecified, its relative performance drops considerably and it can easily become inferior

to that of the CB estimator.

A second application of our theoretical result pertains to long-horizon forecasting. We consider

the case of a well-identified gaussian linear AR(1) process, where the maximum-likelihood predictor

(MLP) and the CBP are labeled Iterated (or ’plug-in’) and Direct forecasts. It results that MLP

outperforms CBP both when the model is estimated with and without an intercept. Besides, the longer
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the forecasting horizon the better the MLP relatively to CBP. Another important finding is that the

relative performance of MLP with respect to CBP plunges when the process is nearly integrated (the

autoregressive coefficient is close to 1).

The rest of the paper is structured as follows. Section 2 unfolds our theoretical results, whereas

section 3 presents the results of the two applications. Section 4 concludes and the appendix collects the

mathematical proofs.

2 Theoretical Framework

Let the objective be given by a criterion function, Q(Y, θ), where Y is a sample and θ is a vector of

unknown parameters. These parameters are to be estimated from the observed sample, X . We follow

standard convention and refer to X and Y as the in-sample and the out-of-sample, respectively.

In this paper we discuss estimation of θ when the objective is to maximize the expected value of

Q(Y, θ). The specific objective is to determine the estimator, θ̂(X ), that maximizes

E[Q(Y, θ̂(X ))]. (1)

A natural candidate is the direct estimator given by

θ̂D = θ̂D(X ) = arg max
θ
Q(X , θ),

which is deduced from the same criterion that defines the out-of-sample objective. Since all estimators

in this paper will be functions of X , we shall drop the X -argument to simplify the exposition.

The direct estimator need not be optimal, in the sense of maximizing (1). So, we shall compare it to

estimators that are based on other criteria than Q, and we will show that the optimal estimator is the one

deduced from maximum likelihood estimation. Another reason for considering alternative estimators

is the common practice of estimating parameters using conventional methods without regard to the

out-of-sample objective. This practice has many pitfalls and can result in out-of-sample performance

that is substantially worse than that of the direct estimator.

For instance, it is important that the estimator is consistent for the “true” parameter, which can

sometimes be defined by

θ0 = arg max
θ

E[Q(Y, θ)],
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but more generally it is defined as the maximizer of limn→∞ n
−1Q(Y, θ),(below we make regularity

conditions which ensure that θ0 is well-defined).

Because the direct estimator is intrinsic to the criterion Q, it will be consistent for θ0 under standard

regularity conditions, in the sense that θ̂D
p→ θ0 as the in-sample size increases. This consistency need

not be satisfied by estimators based on other criteria.

Consider an alternative estimator defined by

θ̃(X ) = arg max
θ
Q̃(X , θ).

In this paper we will compare the merits of θ̃ with those of the direct estimator θ̂D. This is done within

the theoretical framework of M-estimators (extremum estimators), see Huber (1981), Amemiya (1985),

and White (1994). Our exposition and notation will largely follow that in Hansen (2010).

To simplify the exposition, we consider the case where the sample size is the same for both X and

Y, and denote this by n. For an analysis of the impact of sample-split on the out-of-sample evaluation

methods, see Hansen and Timmermann (2012).

In the following we let Dn denote a normalizing diagonal matrix, whose diagonal elements go to ∞

as n → ∞. In the canonical case where the parameter estimator converges in distribution at rate
√
n,

we simply have Dn = n1/2I, where I denotes the identity matrix.

Assumption 1. (i) As n → ∞ n−1Q(Y, θ) p→ Q(θ) uniformly in θ, where Q(θ) is a non-stochastic

function with a unique global maximum, θ0.

(ii) For suitable functions, S(Y, θ) and H(Y, θ) the criterion function is such that

Q(Y, θ) = Q(Y, θ0) + S(Y, θ0)′(θ − θ0) +
1

2
(θ − θ0)′H(Y, θ̇)(θ − θ0),

where ‖ θ̇ − θ0 ‖= O(‖ θ − θ0 ‖) .

(iii) The maximizers θ̂ = arg maxθ∈ΘQ(X , θ) and θ̃ = arg maxθ∈Θ Q̃(X , θ) converge in probability to θ0

and θ̃0, respectively (both interior to Θ), and these estimators are uniquely given from

0 = S(X , θ̂) = S(X , θ0) +H(X , θ̈)(θ̂ − θ0),

with ‖ θ̈ − θ0 ‖= O(‖ θ̂ − θ0 ‖). Moreover, for suitable functions S̃(Y, θ) and H̃(Y, θ),

0 = S̃(X , θ̃) = S̃(X , θ̃0) + H̃(X ,
...
θ )(θ̃ − θ̃0),
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with ‖
...
θ − θ̃0 ‖= O(‖ θ̃ − θ̃0 ‖);

(iv) ∆n
p→ 0 as n → ∞ implies that D−1

n H(X , θ0 + ∆n)D−1
n

p→ −A, D−1
n H(Y, θ0 + ∆n)D−1

n
p→ −A,

and D−1
n H̃(X , θ̃0 + ∆n)D−1

n )
p→ −Ã, and


D
−1/2
n S(X , θ0)

D
−1/2
n S̃(X , θ̃0)

D
−1/2
n S(Y, θ0)

 d→ N(0,


B ∗ 0

∗ B̃ 0

0 0 B

 .

(iv) As n→∞ we have E[D
−1/2
n S(Y, θ)|X ]→ 0 a.s.

We leave part of the covariance matrix unspecified, because it does not play a role in our analysis.

Definition 1. Q and Q̃ are coherent if θ0 = θ̃0, otherwise the criteria are said to be incoherent.

Similarly, we refer to an estimator as coherent for the criterion Q if its probability limit is θ0.

The effect of parameter estimation is given by the quantity Q(Y, θ̂)−Q(Y, θ0), and it follows from

Hansen (2010) that

Q(Y, θ̂)−Q(Y, θ0)
d→ −1

2
Z ′1ΛZ1 + Z ′1ΛZ2,

as n → ∞, where Z1, Z2 ∼ iidN(0, I) and Λ is a diagonal matrix with the eigenvalues of A−1B. The

expected loss that arises from parameter estimation using the direct estimator is (in an asymptotic

sense) given by
1
2tr{A−1B}.

This result is related to Takeuchi (1976) who generalized the result by Akaike (1974) to the case with

misspecified models.

Lemma 1. Consider an alternative estimator, θ̃, deduced from an incoherent criterion, so that θ̃ p→

θ̃0 6= θ0. Then

Q(Y, θ0)−Q(Y, θ̃)→∞,

in probability. In the canonical case the divergence is at rate n.

Proof. From Assumption 1 we have

Q(Y, θ̃)−Q(Y, θ0) = S(Y, θ0)(θ̃ − θ0) +
1

2
(θ̃ − θ0)′H(Y, θ̇)(θ̃ − θ0),

where the first term is bounded in probability, S(Y, θ0)(θ̃ − θ0) = Op(1). Applying the decomposition
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(θ̃ − θ0) = (θ̃ − θ̃0 + θ̃0 − θ0) to the second term reveals that the leading term is

−∆′DnD
−1
n H(Y, θ0)D−1

n Dn∆ = ∆′Dn(A+ op(1))Dn∆,

where ∆ = θ̃0 − θ0. This term drifts to infinity at rate ‖ Dn ‖2 as n→∞.

So, the direct estimator strongly dominates all estimators that are based on incoherent criteria. This

shows that consistency for θ0 is a critical requirement.

2.1 Likelihood-Based Estimator

Next, we consider the maximum likelihood estimator. Let {Pϑ}ϑ∈Ξ be a statistical model, with Pϑ0 the

true probability measure, so that the expected value is defined by Eϑ0(·) =
´

(·)dPϑ0 . In particular we

have

θ0 = arg max
θ

Eϑ0 [Q(Y, θ)],

which defines θ0 as a function of ϑ0, i.e. θ0 = θ(ϑ0).

Assumption 2. There exists τ(ϑ) so that ϑ ↔ (θ, τ) is continuous and one-to-one in an open neigh-

borhood of (θ0, τ0) = (θ(ϑ0), τ(ϑ0)).

Lemma 2. Given Assumption 1 and 2, let ϑ̃ be the MLE. Then θ̃ = θ(ϑ̃) is a coherent estimator.

Proof. Let P denote the true distribution. Consider the parameterized model, {Pϑ : ϑ ∈ Ξ}, which is

correctly specified so that P = Pϑ0 for some ϑ0 ∈ Ξ. Since θ0 is defined to be the maximizer of

E[Q(Y, θ)] = Eϑ0 [Q(Y, θ)] =

ˆ
Q(Y, θ)dPϑ0 ,

it follows that θ0 is just a function of ϑ0, i.e., θ0 = θ(ϑ0).

Remark. One challenge to using the MLE is that it may be complicated to determine the mapping θ(·).

Theorem 1. OPTIMALITY OF MLE. Let θ̂D = arg maxθ∈ΘQ(X , θ) denote the direct estimator and

θ̃ML = θ(ϑ̃) denote the MLE based estimator, where ϑ̃ denotes the maximum likelihood estimator. Then,

as n→∞

Q(Y, θ̂D)−Q(Y, θ̃ML)
d→ ξ,

where E[ξ] ≤ 0.
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Remark. We will, in most cases, have a strict inequality in which case the ML based estimator is superior

to the direct estimator in an asymptotic sense.

Proof. To simplify notation, we write Qx(θ) in place of Q(X , θ), and similarly Sx(θ) = S(X , θ), Hx(θ) =

H(X , θ), Qy(θ) = Q(Y, θ), Q̃x(θ) = Q̃(X , θ), etc. Moreover, we denote the direct estimator by θ̂ and

the MLE by θ̃, where we recall that for a correctly specified likelihood the information matrix equality,

Ã = B̃ holds.

Out-of-sample we have that

Qy(θ̂)−Qy(θ0) = Sy(θ0)′(θ̂ − θ0) +
1

2
(θ̂ − θ0)′Hy(θ

∗)(θ̂ − θ0) + op(1)

' Sy(θ0)′[−Hx(θ0)]−1Sx(θ0)− 1

2
Sx(θ0)′[−Hx(θ0)]−1[−Hy(θ0)][−Hx(θ0)]−1Sx(θ0)(2)

whereas for the MLE we find

Qy(θ̃)−Qy(θ0) = Sy(θ0)′(θ̃ − θ0) +
1

2
(θ̃ − θ0)′Hy(θ0)(θ̃ − θ0) + op(1)

' Sy(θ0)′[−H̃x(θ0)]−1S̃x(θ0)− 1

2
S̃x(θ0)′[−H̃x(θ0)]−1[−Hy(θ0)][−H̃x(θ0)]−1S̃x(θ0)(3)

so that the difference in the criterion value for the two estimators is given by

Qy(θ̂)−Qy(θ̃) ' Sy(θ0)′[−Hx(θ0)]−1Sx(θ0)− 1

2
Sx(θ0)′[−Hx(θ0)]−1[−Hy(θ0)][−Hx(θ0)]−1Sx(θ0)

− Sy(θ0)′[−H̃x(θ0)]−1S̃x(θ0) +
1

2
S̃x(θ0)′[−H̃x(θ0)]−1[−Hy(θ0)][−H̃x(θ0)]−1S̃x(θ0).

By the law of iterated expectations, two of the terms drop out when taking expectations, so the expected

value of the limit distribution depends only on the two quadratic forms. The limit distribution of these

two terms is given by
1

2

(
Z̃ ′B̃1/2Ã−1AÃ−1B̃1/2Z̃ − Z ′B1/2A−1B1/2Z

)
, (4)

where Z, Z̃ ∼ N(0, I). The expected value of the first term is shown to be

tr
{
B̃1/2Ã−1AÃ−1B̃1/2E(Z̃Z̃ ′)

}
= tr

{
AB̃−1

}
,

where we used the information matrix equality. The expectation for the second term is found similarly,
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so that the expectation of (4) is given by

1

2

(
tr
{
AB̃−1

}
− tr

{
A−1B

})
=

1

2

(
tr
{
A1/2(B̃−1 −A−1BA−1)A1/2

})
≤ 0.

The inequality follows from the fact that B̃−1 is the asymptotic covariance matrix of the MLE whereas

A−1BA−1 is the asymptotic covariance of the direct estimator, so that A−1BA−1−B̃−1 is positive semi-

definite by the Cramer-Rao bound. The line of arguments is valid whether θ has the same dimension

as ϑ or not, because we can reparametrize the model in ϑ 7→ (θ, γ), which results in block-diagonal

information matrices. This is achieved with

γ(ϑ) = τ(ϑ)− ΣτθΣ
−1
θθ θ(ϑ),

where  Σθθ Σθτ

Στθ Σττ

 ,

denotes the asymptotic covariance of the MLE for the parametrization (θ, τ).

2.2 The Case with a Misspecified Likelihood

Misspecification deteriorates the performance of the likelihood based estimators through two channels.

First, the resulting estimator is no longer efficient, eliminating the argument in favor of adopting the

likelihood-based estimator. Second and more important, misspecification can impact the proper map-

ping from ϑ to θ. Thus the MLE-based estimator θ̃ may become inconsistent under misspecification,

making in very inferior to the direct estimator.

2.3 Quantifying the Relative Efficiency

In the next two sections we illustrate the theoretical results by proposing applications to the case of

an asymmetric linex loss function and to the case of multistep-ahead forecasting, respectively. For this

purpose, we define the relative criterion efficiency

RQE(θ̂, θ̃) =
E[Q(Y, θ̃(X ))−Q(Y, θ0)]

E[Q(Y, θ̂(X ))−Q(Y, θ0)]
. (5)
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Note that an RQE < 1 indicates that the MLE outperforms CBE from the viewpoint of out-of-sample

performance.

We now illustrate the results obtained in the previous section. The first application studies the out-

of-sample relative efficiency of the maximum-likelihood (MLP) and criterion-based (CBP) predictors in

the framework of asymmetric loss functions. The second one looks at direct vs. iterated multi-period

forecasts in the case of a stationary linear AR(1) process with gaussian innovations both when the model

is estimated with and respectively without a constant term. Note that in this well-specified model the

iterated estimator is equivalent to the maximum-likelihood one (Bhansali, 1999).

3 The Linex Loss Function

In this section we apply the theoretical results to the case where the criterion function is given by the

linex loss function. Symmetric loss, such as that implied by the mean square error is inappropriate in

many application, e.g. Granger (1986), Christoffersen and Diebold (1997), and Hwang et al. (2001).

The linex loss function is a highly tractable asymmetric loss function that was introduced by Varian

(1974), and has found many applications in economics, see e.g. Weiss and Andersen (1984), Zellner,

1986, Diebold and Mariano (1995), and Christoffersen and Diebold (1997).

Here we shall adopt the following parameterization of the linex loss function

Lc(e) = c−2[exp(ce)− ce− 1], c ∈ R\{0}, (6)

which has minimum at e = 0, where e denotes the prediction error. The parameter c determines the

degree of asymmetry, in the sense that the sign of c determines whether the symmetry is skewed to the

left or right. The asymmetry increases with the absolute value of c while quadratic loss arises as the

limited case, limc→0 Lc(e) = 3e2, see Figure 1.

The optimal linex predictor for x solves x∗ = argmin
x̂
E[Lc(e)]. Christoffersen and Diebold (1997)

showed that for a gaussian process (xi
i.i.d.∼ N(µ, σ2)), the optimal predictor is actually the population

mean µ plus a function of the prediction-error variance σ2 and the degree of asymmetry c,

x∗ = µ+
cσ2

2
. (7)
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It immediately follows that the maximum-likelihood predictor is

x̃ = µ̃+
cσ̃2

2
, (8)

where µ̃ is the sample mean and σ̃2 is the sample variance. At the same time, the criterion-based

predictor x̃ minimizes the sum of in-sample losses x̃ = arg min
x̆

∑n
i=1 Lc(e). It depends on other estima-

tors, µ̂ and σ̂2, whose analytical forms are not essential for constructing the predictor. In fact, in the

particular case of the linex loss this minimization problem has a closed-form solution

x̂ =
1

c
log[

1

n

n∑
i=1

exp(cxi)], (9)

where n is the sample size. The tractability of the three predictors under linex loss reduces compu-

tational burden and makes this loss function very attractive for performing Monte-Carlo simulations.

We hence compare the out-of-sample performance of the maximum-likelihood predictor and that of

the criterion-based predictor by relying on the opposite of the linex loss as an evaluation criterion

Q(ĕ) = −
∑2n

i=n+1 c
−2[exp(cĕi) − cĕi − 1], where ĕi = xi − x̆ is the prediction error for the ith out-of-

sample observation and x̆ represents each of the predictors at a time. Denote by Q(e∗) the evaluation

criterion for the optimal predictor, by Q(ê) the criterion for the maximum likelihood predictor and by

Q(ẽ) the one for the linex criterion-based predictor, respectively. To achieve our objective, we hence

consider the following experiment.

Step 1. A sample of size 2n is drawn from the normal distribution with mean µ = 0 and variance

σ2 = 1. The first n observations (in-sample) are used to generate the ML and CB predictors and the

other n observations constitute the out-of-sample set, that of realizations, with which the predictors are

compared in order to calculate the losses.

Step 2. The three predictors are immediately obtained from eq.7 and by applying eq.8, eq.9 to the

in-sample data, respectively.

Step 3. Compute the out-of-sample evaluation criterion for the three predictors.

Step 4. Repeat steps 1 to 3 a large number of times (100,000 and 500,000 simulations are considered

here).

Step 5. We can now evaluate the out-of-sample performance of the predictors. Since x∗ is the optimal

predictor under the linex loss, the expected value of the evaluation criterion associated with x∗ is always

larger than the one corresponding to the two other predictors. It follows that both the numerator

and denominator of eq.5 are negative, so that a RQE < 1 indicates that the maximum likelihood
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predictor performs better than the criterion-based one under the linex out-of-sample evaluation criterion.

Conversely, RQE > 1 would support the choice of the linex criterion-based predictor over the ML one.

The experiment is repeated for different sample sizes n ∈ {100; 1, 000; 1, 000, 000}, so as to emphasize

both the finite-sample and the asymptotic relative efficiency of the two predictors. Note also the

equivalence between increasing (decreasing) the asymmetry parameter c and increasing (decreasing)

the standard-deviation σ for a normally distributed process with mean 0 and variance σ2. Denote

by Lc the loss associated with the optimal predictor x∗ for an asymmetry coefficient c. Therefore,

L∗c,i = c−2[exp(c(xi − x∗)) − c(xi − x∗) − 1], which, by eq.7, is equivalent to L∗c,i = c−2[exp(cxi −

c2σ2/2))− cxi + c2σ2/2− 1]. Let z be a random variable such that zi = cxi. Then, zi ∼ N(0, c2σ2), so

that the loss incurred by its optimal predictor is given by Ld,i = d−2[exp(dzi−dz∗)−d(zi−z∗)−1], where

d is the asymmetry coefficient and z∗ = d(cσ)2/2. It follows that there is a value of d for which Lc,i and

Ld,i are equivalent ∀i ∈ {1, n}. It is then clear that decreasing (increasing) the asymmetry coefficient c

times while increasing (decreasing) the standard-deviation c times does not change the output in terms

of loss. In view of this result we decide to fix the standard deviation to 1 while considering several

values of the asymmetry coefficient, i.e. c ∈ {0.01; 0.1; 1; 2; 3}.

The results are reported in table 1. Part i displays the asymptotic results (n = 1, 000, 000) whereas

part ii reports the finite-sample findings (n ∈ {100; 1, 000}). 100,000 simulations have been performed

in the former case, whereas 500,000 repetitions were considered in the latter case.

Our main finding in large-samples is that the relative efficiency of MLP with respect to CBP increases

as the degree of asymmetry rises (see column 2 of Table 1). To be more precise, as c increases, the ratio

RQE gets closer to 0, since the expected value of the criterion for MLP does not diverge from the one

corresponding to optimal predictor as rapidly as that of CBP. Besides, it seems that for near-symmetric

loss, i.e. very low values of c such as 0.01 or 0.1, the two predictors fare similarly relative to the optimal

one (RQE equals 1).

At the same time, columns 3 and 4 display the difference between the expected value of the criterion

for the two predictors and that of the optimal predictor x∗. The expected values are accurately esti-

mated, with standard deviations smaller than 10−2 for all sample sizes considered. 1 It is clear that the

larger the asymmetry, the smaller the expected values, i.e. the larger the forecast loss. This indicates

that the two predictors move away from the optimal one, CBP’s speed of divergence being higher than

that of MLP.

The last 3 columns of the table include the expected value of the optimal predictor, as well as
1These results are available upon request.
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the expected values of the biasses associated with MLP and CBP. Small values of standard deviations

associated with the expected values, i.e. less than 10−7, insure the desired level of accuracy of the results.

As anticipated, we find that the bias asymptotically vanishes (see part i of the table). Additionally, it

appears that CBP exhibits a bias larger than MLP.

3.1 Finite-Sample Considerations

The small sample findings basically support our asymptotic results with the following caveats (see part

ii of table 1). First, the relative efficiency of MLP with respect to CBP indeed increases as c increases.

However, as expected, RQE decreases more slowly in small samples (e.g. it reaches 0.279 for n = 100

as opposed to 0.012 for n = 1, 000, 000 when c = 3). Second, to compare results across sample sizes, we

emphasize the fact that Q(·) is the opposite of the sum of out-of-sample losses associated with a certain

predictor. In other words, it is necessary to properly rescale these results by dividing by the number of

out-of-sample observations considered in a specific experiment. We hence obtain the expected value of

per-observation out-of-sample loss in the evaluation criterion associated with a predictor (MLP, CBP)

relative to the optimal predictor, which is independent of the sample size. Notice that the smaller the

sample size, the smaller the total loss, E(Q̆ − Q∗), and implicitly the larger the loss associated with

one out-of-sample forecast. For example, the per-observation criterion is -0.005 for n = 100, -0.000495

for n = 1, 000 and -0.0000000495 for n = 1, 000, 000 when c = 0.01. Third, the predictors exhibit

small-sample bias, which increases with the degree of asymmetry (see part ii of the table).

All in all, the MLP performs relatively better than CBP whatever the sample size as long as the

degree of asymmetry considered is close to 1 or larger. Furthermore, according to RQE, CBP does

not outperform MLP in any case. These results confirm our theoretical findings that MLP is the

out-of-sample equivalent of Cramer-Rao lower bound.

3.2 Further results

As discussed in the theoretical section, in the case of the linex loss, the MLP relies on two MLE (µ̂

and σ̂) whereas the CBP is obtained directly. It follows that less estimation risk should characterize

the CBP relatively to the MLP. In this context, for comparability reasons, we consider the case with

only one parameter estimated by ML, the other one being considered known and equal to its true value.

Table 2 reports the asymptotic results obtained through 100,000 simulations for different values of the

asymmetry coefficient. To be more precise, panel i presents the case of estimated mean µ̂ and known

variance σ, while panel ii includes the results obtained for known mean µ and estimated variance σ̂.
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Notice that when only the mean is estimated by MLE, the loss associated with the MLP is constant (and

roughly -0.5), the relative efficiency of this predictor increasing faster than in the case where both the

mean and variance are estimated (see panel i in table 1). By contrast, if only the variance is estimated

by MLE, the loss increases with the degree of asymmetry. It is important to note that the MLE loss in

table 1 is actually the sum of the losses reported in panels i and ii in table 2. At the same time, the

relative efficiency of the MLP with respect to the CBP soars when the variance is estimated, relatively to

the case where both the mean and variance are estimated. In this case, MLP is relatively more efficient

than CBP even for nearly symmetric loss (small values of the asymmetry coefficient). To summarize, if

the two predictors (MLP and CBP) rely on the same number of estimators, i.e. one in this case, and

an asymmetric loss function is considered, the gains from using MLE in forecasting relatively to CBE

increase (RQE is closer to 0).

3.3 Likelihood Misspecification

To study the effects of likelihood misspecification, we now consider that the sample is drawn from

the normal-inverse gaussian (NIG) distribution. Two cases are considered. First, a NIG(0,1,0,3) is

considered, where the numbers between parentheses represent the first four moments of the distribution.

Second, a NIG(-20.47,46.77,-1,1.67), i.e. with negative asymmetry equal to -1, is used. The experiment

implemented is similar to the one presented at the beginning of this section, with the specification that

the optimal predictor is now

x∗NIG =
kc+ δ

√
α2 − β2)− δ

√
α2 − (β + c)2)

c
, (10)

instead of that given by eq.7, and that the MLP in eq.8 is now called QMLP, since the gaussian

distribution is no longer the true one. Note also that k, α, β and δ represent the location, tail heaviness,

asymmetry and scale parameters of the NIG distribution respectively. Besides, the asymmetry coefficient

in the linex function is set to 0.01 and 0.1 respectively, to fulfill the conditions of existence of the optimal

predictor.

The top part of table 3 shows that QMLP performs on par with CBP if a standard NIG distribution

is employed. If, however, a different parametrization is considered, the QMLE becomes inconsistent,

and its performance drops beneath that of the CBP (see the bottom part of table 3). Additionally, in

this context, the more the loss function is asymmetric, the larger the gap between the relative efficiency

of the two predictors.
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4 Long-horizon forecasting

Our theoretical results are also applicable to multi-period ahead forecasting, specifically to the debate

on the relative merits of direct forecasting versus iterated forecasting. There is a vast literature tackling

this issue, and we do not have much to add to this particular setting beyond showing how this literature

is related to our framework. Consider the case of a mean-square error (MSE) loss function and a true

model given in the form of a stationary finite-order autoregressive model, for which the asymptotic

theory has been established in Bhansali (1997) and Ing et al. (2003)

yt = µ+

p∑
i=1

ϕiyt−i + εt, (11)

where 1 ≤ p < ∞ is the order of the autoregressive process, {ϕi}pi=1 6= 0 is the set of parameters and

{εt} is a sequence of (unobservable) independent and identically distributed (i.i.d.) random noises, each

with mean 0 and variance σ2 for t ∈ {1, T}. Recall that direct forecasts are obtained by regressing the

multi-period ahead value of the variable on its present and past values for each forecast horizon. In

contrast, iterated forecasts (also called “plug-in” forecasts) are obtained by considering the same fitted

model across all forecast horizons and iterating forward.

Mapping this iterated vs. direct forecasting debate into our theoretical framework thus involves

answering the question of wether using the same criterion for parameter estimation and forecast evalu-

ation, namely the h-periods ahead MSE, i.e. direct forecasting, improves the forecasting abilities of the

model compared to the use of the 1-period ahead MSE in the estimation step, i.e. iterated forecasting.

Furthermore, to match perfectly our theoretical setup, the model is assumed correctly specified (k ≥ p)

and the disturbances are supposed to be normally distributed so that the least-squares estimators of

the AR coefficients in the estimated AR(k) model are asymptotically equivalent to the MLE (Bhansali,

1999; Ing et al., 2003). At the same time, the estimator of the true parameter corresponding to the

direct forecasts is the OLS estimator (Kabaila, 1981; Bhansali, 1997). It follows that the first estimator

is asymptotically efficient whereas the second one is asymptotically inefficient for a forecast horizon

larger than 1. To keep the notation consistent with the rest of the paper we hereafter label the iterated

estimator MLE and the direct estimator CBE.

For ease of exposition, without loss of generality, we now restrict our attention to the case of a first-

order autoregressive model where the disturbances are normally distributed with mean 0 and variance 1.

Two cases are considered. First, the unconditional mean of the autoregressive process, µ is considered

to be known and equal to 0. Equation 11 becomes yt = ϕyt−1 + εt. It follows that the optimal predictor
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is y∗T+h = θ∗yT , where θ∗ solves arg min
θ
E[MSE(yT+h, θ)], and MSE(yT+h, θ) = E(yT+h − y∗T+h)2. It

can actually be shown that for a stationary process θ∗ = ϕh, so that the optimal predictor is given by

y∗T+h = ϕhyT . (12)

At the same time, the iterated estimator (MLE) θ̃ = ϕ̃h, where ϕ̃ minimizes the in-sample 1-step-ahead

loss, ϕ̃ = arg min
ϕ

∑T
t=2(yt − ϕyt−1)2. The MLE predictor is hence

ỹT+h = ϕ̃hyT . (13)

Last but not least, the direct estimator (CBE) solves θ̂ = arg min
θ

∑T
t=h+1(yt − θyt−h)2, so that its

associated predictor is

ŷT+h = θ̂yT . (14)

Second, the unconditional mean of the autoregressive process is considered unknown and hence it

is estimated along with ϕ. Since the true intercept is zero, the optimal predictor remains unchanged.

By contrast, the MLE and CBE now solve {ϕ̃, µ̃} = arg min
ϕ,µ

∑T
t=2(yt − µ − ϕyt−1)2 and {θ̂, µ̂} =

arg min
θ,µ

∑T
t=h+1(yt − µ− θyt−h)2 respectively, so that the two predictors become

ỹT+h = ϕ̃hyT + µ̃
h−1∑
j=0

ϕ̃j (15)

and

ŷT+h = µ̂+ θ̂yT . (16)

The forecasting abilities of the two predictors, i.e. MLP and CBP, can now be scrutinized in both

cases (with known / unknown µ) by looking at the gap between the opposite of the MSE associated

with each of the two predictors (MLP and CBP) and that corresponding to the optimal predictor. For

this, we rely on the relative efficiency criterion RQE as in the linex application

RQE =
E[Q̃−Q∗]
E[Q̂−Q∗]

, (17)

where Q∗ represents the evaluation criterion for the optimal predictor, Q̃ corresponds to the iterated

predictor (MLE) and Q̂ is the one for the direct predictor (CBP), respectively. Besides, the criterion

Q is the opposite of the out-of-sample MSE loss, Q̆ = −
∑2T

t=T+1(yt − y̆t)2, where˘denotes each of the
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three predictors at a time.

To compare the relative efficiency of the two predictors (MLP and CBP), the following setup is

considered for the Monte-Carlo simulations.

Step 1. We draw a vector of disturbances {ε}2Tt=1 from a normal distribution with mean 0 and

variance 1. Then we generate the AR(1) vector yt = ϕyt−1 + εt, where the initial value y0 has been set

to 0 and the autoregressive parameter ϕ ∈ (−1, 1) to ensure the stationarity of the process. The first

T observations constitute the in-sample data and are used to estimate the parameters of the models,

whereas the other T observations serve for the out-of-sample forecasting exercise.

Step 2. The MLE, CBE and optimal estimator can now be determined by relying on the in-sample

dataset and theoretical distribution respectively. Recall that we consider the fixed forecasting scheme,

so that the parameters are estimated only once, independent of the number of out-of-sample periods

to forecast. We next compute the three predictors for each out-of-sample period by relying on eq.12 -

eq.14 in the case where µ is known and on eq.12 and eq.15 - eq.16 if µ is estimated.

Step 3. Subsequently, the out-of-sample evaluation criterion is computed for each of the predictors

(optimal, MLP and CBP).

Step 4. Repeat steps 1 to 3 a large number of times (100,000 and 500,000 simulations are run).

Step 5. We can now evaluate the out-of-sample performance of the predictors by relying on the

relative criteria efficiency (RQE) indicator (eq. 17). Since y∗ is the optimal predictor under the squared

loss, the expected value of the evaluation criterion associated with y∗ is always larger than the one

corresponding to the two other predictors. It follows that a RQE < 1 indicates that the MLP, i.e.

iterated predictor, performs better than the CBP, i.e. direct one, under the h-periods-ahead quadratic

evaluation criterion. Conversely, RQE > 1 would support the choice of the criterion-based predictor

over the ML one. Note also that several values have been considered for ϕ, so as to study the change

in efficiency when the process approaches unit-root. Besides, we set the forecast horizon h to 2, 4 and

12 respectively.

4.1 Asymptotic Findings

Part i) of table 4 displays the forecast evaluation results for n = 100, 000 and ϕ ∈ {0; 0.3; 0.8; 0.99} both

when the intercept µ is known (Panel A.) and when it is estimated (Panel B.). The forecasting superiority

in this setup of the iterated method with respect to the direct one has been emphasized theoretically in

the literature (Bhansali, 1999; Ing et al., 2003). Nevertheless, the role of the autoregressive parameter in

the evaluation has not been explicitly tackled, even though it deserves attention. First, notice that the
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larger ϕ, i.e. the higher the persistence of the process, the more the relative efficiency of the MLP with

respect to CBP diminishes. As expected, when the unconditional mean must be estimated, the relative

efficiency of the iterated predictor is lower than for known µ since the variance of the evaluation criterion

rises. Actually two particular cases can be distinguished. First, recall that multi-period prediction errors

have a moving average component in them. Hence, in the special case where ϕ = 0, this moving average

component has a unit root which (in the model without an intercept to be estimated, i.e. µ = 0) causes

Q̃−Q∗ to degenerate to zero at a fast rate. This explains why E(Q̃−Q∗) u 0 in our simulation design.

Naturally, ϕ = 0, is not an interesting case for multi-period ahead prediction in practice. Second, when

the autoregressive parameter approaches near unit-root, i.e. ϕ = 0.99, the RQE advantages from using

the iterated approach fade almost entirely. One intuition behind this is that when ϕ is near-integrated

the iterated estimator losses in efficiency since its variance is approaching at a fast rate the variance of

the direct estimator.

Moreover, an increase in the forecast loss (shrinkage in the evaluation criterion) adds to the reduction

in relative efficiency as ϕ rises, the loss being more important when the constant term is estimated (see

columns 3-4 and 10-11). To put it another way, persistent processes seem to be more difficult to forecast

accurately, especially if the number of estimated parameters increases.

At the same time, asymptotically the MLP and CBP are unbiased. We also note the high precision

of the simulation results, with standard deviations less than 10−4 for the evaluation criteria, and less

than 10−6 for the bias of the estimators.

Now let us compare the short-run forecasting abilities of the models (h = 2) with the ones associated

with longer horizons h = 4 (table 5) and 12 (table 6) respectively. First, it appears that the larger the

forecast horizon, the more MLP is efficient relatively to the CBP, as already noted in the literature.

Still, our simulation framework allows us to note several interesting facts. To be more precise, RQE

gets closer and closer to 0 as h increases independent of the values of the autoregressive parameter, as

long as ϕ does not approaches 1. In this particular near unit-root case, RQE always remains close to 1,

emphasizing the fact that the behavior of the evaluation criterion changes in such circumstances. The

improvement in RQE is nevertheless less significant when the intercept is estimated (see Panel B in

tables 5 and 6). Second, the forecast loss increases exponentially as h grows, emphasizing the difficulty

to correctly forecast at long-horizons independent of the underlying model considered.
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4.2 Finite-Sample Results

As aforementioned, large-sample properties of the two predictors have been the object of numerous

studies. By contrast, to our knowledge only Bhansali (1997) presents small-sample results (in the

particular case of AR(2) and ARMA(2,2) models) by relying on only 500 simulations. Besides, his

framework is different than ours, as he studies the impact of selecting the order of the process for

different models on the MSE associated with the direct and iterated forecasts, respectively.

In part ii) of table 4 we hence report the results for n = 1, 000 and n = 100. One of our main

findings is that the small sample results are consistent with the asymptotic findings, which means that

matching estimation and evaluation criteria does not improve forecasting abilities in a setting where

the other estimator is the MLE. Notice that the RQE seems to slightly improve when the sample-size

is reduced, even though the per-observation forecast loss rises. For this, recall that to compare results

across the different sample-sizes the values must be rescaled by dividing by the number of simulations

(as in the linex application) so as to obtain the per-observation loss in the evaluation criterion due to

estimation.

At the same time, the MLE and CBE exhibit small-sample bias. We stress the fact that the larger

ϕ, i.e. the more persistent the process, the larger the bias. Besides, the bias increases with the shrinkage

of the sample size and rises when the constant µ is estimated as opposed to the case where µ is known.

Tables 5 and 6 present the finite-sample results for h = 4 and 12. As in the case h = 2, RQE

seems to improve with respect to large-samples. At the same time, the value of the evaluation criterion

exponentially drops as the forecast horizon increases, while the estimation bias enlarges. These findings

are particularly true when µ is estimated.

All in all, the MLP is proven to be relatively more efficient than the CBP with respect to the optimal

predictor, even in small samples and when additional parameters are estimated. Most importantly, by

acknowledging the fact that for persistent processes the relative gain of MLE decreases while the bias

increases, we recommend to pay more attention to the estimated autoregressive parameters in empirical

applications that look at multi-step-ahead forecasting. Furthermore, gain in relative predictive ability

in small-samples could result from using bias-corrected estimators, e.g. Roy-Fuller estimator (Roy and

Fuller, 2001), bootstrap mean bias-corrected estimator (Kim, 2003), grid-bootstrap (Hansen, 1999),

Andrews’ estimator (Andrews, 1993; Andrews and Chen, 1994 for AR(p) processes). Indeed, more

accurate forecasts seem to be obtained when comparing such estimators with the traditional ones by

relying on the cumulated root-mean square error. It is particularly the case of persistent processes, i.e.

near-unit-root, for which we have shown that the direct and iterated predictors perform on par (Kim,
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2003; Kim and Durmaz, 2009). Further investigation into this issue would be interesting.

5 Conclusion

In this paper we address the question of whether the use of the same criterion in- and out-of-sample

dominates other forms of estimation. Taking the case of M-estimators and using a second-order Taylor

expansion, we show that the optimal out-of-sample performance is achieved through MLE. Most im-

portantly, MLP can can be vastly better than CBP, whatever the out-of-sample criterion considered.

Our theoretical result is analogous to the well known Cramer-Rao bound for in-sample estimation. We

also discuss the case where the likelihood is misspecified, in particular the optimal transformation of

the likelihood parameters into evaluation-criterion parameters.

In a context with an asymmetric (linex) loss function we show that the criterion based estima-

tion performs on par with maximum likelihood when the loss is near-symmetric, whereas the MLE

clearly dominates QBE with asymmetric loss. Most importantly, not only the asymptotic but also the

finite-sample findings support these conclusions. In contrast, if the likelihood has the same number of

parameters as the criterion-based predictor CBP (the other parameter being set to its true value), the

gains from using MLE in forecasting relatively to CBE increase. Second, in the case of a well-identified

gaussian linear AR(1) process it appears that MLP outperforms CBP both when the model is estimated

with and without an intercept. The longer the forecasting horizon the better the MLP relatively to

CBP. Still, the relative performance of MLP with respect to CBP plunges when the process is nearly

integrated (the autoregressive coefficient is close to 1).
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A Appendix: Figures and Tables

Figure 1: Linex
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Table 1: Linex Loss

i) Asymptotic results

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃ML − x∗) E(x̂− x∗)

0.01 1.00 -0.50 -0.50 0.005 0.000 0.000
0.1 1.00 -0.50 -0.50 0.050 0.000 0.000
1 0.87 -0.75 -0.86 0.500 0.000 0.000
1.5 0.56 -1.06 -1.88 0.750 0.000 0.000
2 0.23 -1.50 -6.64 1.000 0.000 0.000
3 0.01 -2.72 -224 1.500 0.000 -0.001

ii) Finite sample results: n=1,000

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃ML − x∗) E(x̂− x∗)

0.01 1.00 -0.50 -0.50 0.005 0.000 0.000
0.1 1.00 -0.50 -0.50 0.050 0.000 0.000
1 0.88 -0.75 -0.85 0.500 0.000 -0.001
1.5 0.60 -1.07 -1.78 0.750 -0.001 -0.003
2 0.35 -1.51 -4.34 1.000 -0.001 -0.010
3 0.14 -2.76 -19.9 1.500 -0.001 -0.073

iii) Finite sample results: n=100

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃ML − x∗) E(x̂− x∗)

0.01 1.00 -0.50 -0.50 0.005 0.000 0.000
0.1 1.00 -0.50 -0.50 0.050 0.000 0.000
1 0.90 -0.75 -0.84 0.500 -0.005 -0.009
1.5 0.72 -1.08 -1.49 0.750 -0.008 -0.023
2 0.56 -1.53 -2.75 1.000 -0.010 -0.058
3 0.28 -3.05 -10.9 1.500 -0.015 -0.215

Note: We compare the out-of-sample performance of the maximum-likelihood estimator (MLE) x̃ML with respect to that

of the criterion-based estimator (CBE) x̂ by looking at the ratio of the expected values of the gaps between the evaluation

criterion for each of the two estimators (Q̃ and Q̂) and that corresponding to the optimal estimator (Q∗) under linex loss,

i.e. RQE = E[Q̃−Q∗]/E[Q̂−Q∗]. The evaluation criterion is set to the opposite of the loss function. When RQE < 1 the

MLE outperforms the CBE. The expected value of the optimal estimator E(x∗) as well as the expected bias of MLE and

CBE, E(x̃ML − x∗), and E(x̂− x∗), are also included. Besides, the fixed forecasting scheme is used for estimation, where

the estimation and evaluation samples have the same size, n. The results are presented for several levels of asymmetry

c, different out-of-sample sizes n and have been obtained by performing 500,000 simulations in finite-samples and 100,000 in

large samples.
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Table 2: Linex Loss - Asymptotic results (with only one parameter estimated by both metods - ML and
CB -)

i) Estimated mean (µ̂); Known variance (σ2)

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃ML − x∗) E(x̂− x∗)

0.01 1.00 -0.50 -0.50 0.005 0.000 0.000
0.1 0.99 -0.50 -0.50 0.050 0.000 0.000
1 0.58 -0.50 -0.87 0.500 0.000 0.000
1.5 0.26 -0.50 -1.88 0.750 0.000 0.000
2 0.08 -0.50 -6.67 1.000 0.000 0.000
3 0.00 -0.52 -219 1.500 0.000 -0.001

ii) Known mean (µ); Estimated variance (σ̂2)

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃ML − x∗) E(x̂− x∗)

0.01 0.00 0.00 -0.50 0.005 0.000 0.000
0.1 0.00 0.00 -0.50 0.050 0.000 0.000
1 0.29 -0.25 -0.87 0.500 0.000 0.000
1.5 0.30 -0.56 -1.89 0.750 0.000 0.000
2 0.15 -0.97 -6.63 1.000 0.000 0.000
3 0.01 -2.44 -221 1.500 0.000 -0.001

Note: See note to table 1.
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Table 3: Likelihood Misspecification

A. Normal Inverse Gaussian (0,1,0,3)

i) Asymptotic results

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃QML − x∗) E(x̂− x∗)

0.01 1.000 -0.496 -0.496 0.005 0.000 0.000
0.1 1.005 -0.508 -0.505 0.050 0.000 0.000

ii) Finite sample results: n=1,000

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃QML − x∗) E(x̂− x∗)

0.01 1.000 -0.497 -0.497 0.005 0.000 0.000
0.1 0.990 -0.508 -0.514 0.050 0.000 0.000

iii) Finite sample results: n=100

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃QML − x∗) E(x̂− x∗)

0.01 1.000 -0.499 -0.500 0.005 0.000 0.000
0.1 0.990 -0.506 -0.511 0.050 -0.001 -0.001

B. Normal Inverse Gaussian (-20.47,46.78,-1,1.67)

i) Asymptotic results

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃QML − x∗) E(x̂− x∗)

0.01 1.573 -34.803 -22.122 -20.24 0.005 0.000
0.1 5663 -85970 -15.179 -18.547 0.417 0.000

ii) Finite sample results: n=1,000

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃QML − x∗) E(x̂− x∗)

0.01 0.998 -21.847 -21.885 -20.240 0.005 0.000
0.1 6.398 -101.744 -15.903 -18.547 0.415 -0.002

iii) Finite sample results: n=100

c RQE E[Q̃−Q∗] E[Q̂−Q∗] E(x∗) E(x̃QML − x∗) E(x̂− x∗)

0.01 0.998 -21.920 -21.967 -20.240 0.001 -0.004
0.1 1.531 -24.465 -15.980 -18.547 0.395 -0.015

Note: We compare the out-of-sample performance of the quasi-maximum-likelihood estimator (QMLE) x̃QML with respect

to that of the criterion-based estimator (CBE) x̂ when the true distribution is normal inverse gaussian with the first four

moment mentioned between parentheses. We thus look at the ratio of the expected values of the gaps between the

evaluation criterion for each of the two estimators (Q̃ and Q̂) and that corresponding to the optimal estimator (Q∗) under

linex loss, i.e. RQE = E[Q̃−Q∗]/E[Q̂−Q∗]. For further details, see note to table1.
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