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Abstract

I consider repeated games with private monitoring played on a network. Each player

has a set of neighbors with whom he interacts: a player’s payoff depends on his own and

his neighbors’ actions only. Monitoring is private and imperfect: each player observes

his stage payoff but not the actions of his neighbors. Players can communicate costlessly

at each stage: communication can be public, private or a mixture of both. Payoffs are

assumed to be sensitive to unilateral deviations. The main result is that a folk theorem

holds if and only if no two players have the same set of neighbors.
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1 Introduction

Consider a repeated game played on a network, where nodes represent players, and edges

link neighbors. Interaction is local: a player’s payoff depends only on his own and his

neighbors’ actions. Players observe their stage payoff only, hence monitoring is private, local

and imperfect. Hence, both interaction and monitoring structures are given by the network.

In addition, players can send costless messages at each stage. Communication can be private

or public, that is: players can send different messages to distinct players (e.g. private emails),

or they can communicate publicly with a subset of players (e.g. Carbon Copy). In the latter

case, the Carbon Copy list of players is certifiable. (Players could also use Blind Carbon

Copy, that is a mixture of private and public communication.) This paper circumscribes the

networks for which a full folk theorem holds in this setup, i.e. under which conditions all

feasible, strictly individually rational payoffs are equilibrium payoffs in the repeated game

when players are sufficiently patient. The main result is that a folk theorem holds if and only

if no two players have the same set of neighbors (Condition DN). For a wide class of payoff

functions, I construct a perfect Bayesian equilibrium (henceforth, PBE) for the family of

networks that satisfy Condition DN. Condition DN is also necessary: if it is is not satisfied,

then the folk theorem does not hold.

The key to the characterization lies in understanding when communication makes it possi-

ble (i) to transmit precise information about players’ deviations (detection and identification)

and (ii) to coordinate players’ behavior. Throughout the paper, I assume that the payoff func-

tions are such that any unilateral deviation affects each neighbor’s payoff (Assumption P).

Hence, neighbors’ deviations are detectable, although deviators may not be identifiable. The

condition on the networks’ topology for a folk theorem to hold for any payoff function that

satisfies Assumption P, is that any two players must have different set of neighbors (Condition

DN). It has a simple interpretation. Assume that player i detects a neighbor’s deviation,

and that, according to player i, the deviator could be either his neighbor j or his neighbor k.

The condition states that there exists another player ` who (without loss of generality) is a

neighbor of j but not of k. If indeed player j is the deviator, then player ` can confirm this to

player i, since he has also detected a unilateral deviation; whereas if player k is the deviator,

then ` can report to player i that j is innocent, since ` has not detected a deviation. Now,

player ` could deviate by not reporting his information. This issue is handled by requiring

deviating players to confess their deviation afterwards, that is: the equilibrium strategies are

such that, each player confesses a deviation after a history in which he did deviate.1 Under

unilateral deviations, if player ` does not report his information truthfully, then the player

1Close arguments can be found in Ashkenazi-Golan ([2]).
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who deviates first, either j or k, will confess to player i.

The construction of the equilibrium strategy when Condition DN is satisfied is adapted

from Fudenberg and Maskin ([12]). However, since histories are private here, several mod-

ifications must be made. In particular, a communication protocol is developed in order to

identify the deviator when there is a deviation. Moreover, the punishment and reward phases

have to be adapted. Indeed, Condition DN does not rule out networks for which a player,

say k, has a single neighbor, say `. In that case, player ` might have an incentive not to

report player k’s deviations for which player ` is the unique monitor. However, with the same

argument as before which relies on unilateral deviations, if player ` does not report player

k’s deviation, then player k confesses. Nevertheless, it might be impossible for players other

than k and ` to distinguish between the two following histories: “player k deviates in action

at stage t, and his unique monitor ` truthfully reports the deviation” and “player k does

not deviate at stage t, whereas player ` lies when reporting player k’s deviation.” However,

it is then possible to punish both players k and ` since no player is a neighbor of both of

them: I require player k (respectively `) to minmax player ` (respectively k), and all player

`’s neighbors to minmax player `.2 Finally, public communication also serves the purpose

of coordinating players’ actions. In particular, minmax strategies might be mixed, and pure

actions are not monitored even by neighbors. This is an obstacle to detect deviations dur-

ing punishment phases, and to provide incentives (rewards) for the minmaxing players to

randomize according to the distribution given by their minmax strategies. To tackle this

problem, players announce the pure actions they actually play during the punishment phase

(these announcements are made simultaneously with the choice of action). Therefore, players

can detect the deviations of their neighbors during the punishment phase, and can reward

them accordingly thereafter.

To prove that Condition DN is also necessary for a folk theorem to hold, consider the

case for which two players, say j and k, have the same neighbors. I construct a particular

payoff function for which there is a feasible and strictly individually rational payoff that is

not an equilibrium payoff, no matter how little players discount the future. More precisely,

the payoff function is such that there exists a common neighbor of both j and k, say player

i, who cannot differentiate between some deviations of players j and k. In addition, player

i is unable to punish both: intuitively, player i rewards player k (respectively j) when he

punishes player j (respectively player k). This is a failure of joint rationality, following the

terminology of Renault and Tomala ([30]).

2This joint punishment of players k and ` implies that the reward phase has to be modified from Fudenberg
and Maskin ([12]), in a way such that both players k and ` have lower continuation payoffs after having been
minmaxed than after the punishment phase of another player (see Section 5.2.4).
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Application. An application of interest is a partnership game (see [28]). Consider a part-

nership in which production is conducted by a team whose goal is to maintain a certain level

of individual effort by its members. Each member’s effort is not observable and there is moral

hazard (effort is costly). Assume that each member’s compensation depends on the output

of a subset of members only, referred to as the direct colleagues, and this output depends on

the level of effort of these members. For instance, the head of a subteam’s compensation may

depend on his own, his direct subordinates’ and on his own chief’s levels of effort: this defines

a subteam. In addition, agents may communicate with each other via emails, either privately

or publicly. If a member is reported by his direct colleagues, i.e. identified as exerting low

effort, the group can punish him by reducing his share in the total profit, which raises other

members’ shares. This paper shows that coordination is sustainable if and only if any two

members have a non-common colleague. In particular, the following network structures (G1

and G2) illustrate when a folk theorem cannot hold.

Figure 1:
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Also, no complete network satisfies Condition DN, which entails that compensation must

not depend on the efforts of the whole firm’s members in order to enable coordination. How-

ever, if the members form a circle (with at least five members, network G3 in the figure below),

then coordination is sustainable. Moreover, the tree structure depicted by the network G4

also enables a folk theorem to hold.

Figure 2:
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Related literature. This paper lies at the juncture of two independent literatures: re-

peated games and social networks. Regarding repeated games, the folk theorem was origi-

nally established for Nash equilibria ([4, 12, 31, 32]) and extended by Fudenberg and Maskin

([12, 13]) to subgame-perfect equilibria. A key assumption is perfect monitoring. A large

fraction of the literature on folk theorems with imperfect monitoring has focused on imperfect

public monitoring (see [11]).The model of collusion by Green and Porter ([18]) also considers

imperfect public monitoring, where the market price serves as a commonly observed sig-

nal. There is a large recent literature on imperfect private monitoring (see [25] for details).

Fudenberg and Levine ([10]) establish an approximate folk theorem with imperfect private

monitoring without explicit communication. They consider private random signals induced

by the action profile of all other players. With public communication, Compte ([8]), Kan-

dori and Matsushima ([21]), and Obara ([27]) provide sufficient conditions for a folk theorem

to hold. All three consider random signals, whereas signals are deterministic in my setup.

My result departs from these folk theorems, either with private ([8, 21, 27]) or public ([11])

monitoring, in two ways. First, they consider restricted set of strategies, which enable them

to characterize a set of equilibrium payoffs included (sometimes strictly) in the set of feasi-

ble and strictly individually rational payoffs. For instance, Fudenberg, Levine and Maskin

([11]) characterize the set of perfect public equilibria, which may have an empty interior.

As mentioned before, my main result is on the contrary a full folk theorem. Moreover, they

only provide sufficient conditions for a folk theorem to hold, whereas Condition DN is also

necessary in my setup.

Closer to my setting, Ben-Porath and Kahneman ([5]) establish a necessary and sufficient

condition for a folk theorem for the case in which (i) each player observes his neighbors’

moves, and (ii) communication is public. Renault and Tomala ([29]) and Tomala ([34]) study

undiscounted repeated games with the same signals as in [5] (i.e. each player observes his

neighbors’ moves) but communication is constrained by the network structure (they also

establish a necessary and sufficient condition for a folk theorem to hold). All these papers

[5, 29, 34] (and also [7, 22, 26, 35]) assume that monitoring among neighbors is perfect. To

the contrary, I assume here that it is imperfect: payoffs encapsulate all an agent’s feedback

about his neighbors’ play (for instance, firms infer rivals’ likely behavior from their own

profits). Besides, in all these papers, interaction is global, i.e. each player interacts with all

other players. Here, interactions revolve around a network. Moreover, because of Condition

DN, I prove that the folk theorem even fails if the network is complete. Recently, Nava

and Piccione ([26]) and Cho ([7]) study games in networks with local interaction. Yet, both

assume that each player perfectly observes his neighbors’ moves.

Finally, repeated games with local interaction and where players only observe their payoffs
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are studied in Laclau ([23]). This paper departs from [23] in several ways. First, in [23] com-

munication is assumed to be private and local (i.e. players can communicate only with their

neighbors). On the contrary here, communication is global (i.e. players can communicate

with all opponents), and can be private or public. On the one hand, local communication

seems natural in large decentralized markets, like a Hoteling competition with a large number

of firms which interact and know their closest rivals only. On the other hand, global commu-

nication seems less restrictive in other applications, where players know the identity of their

opponents, and are then able to communicate with all of them (via emails for instance). A

good example is the above partnership game, in which it is natural to allow players to send

emails to all the members of the team. Moreover, emails enable players to certify the list

of receivers (Carbon Copy), hence allowing public communication among the team seems

plausible.

Second, contrary to [23] where a Nash folk theorem is established, I impose sequential

rationality. The main difficulty here is to provide incentives to follow the communication

protocol in case of a deviation, and to follow the equilibrium strategy (in particular for

the minmaxing players during the punishment phase after a deviation). The issue is that

following an action deviation by some player i, player j may deviate and send false messages.

As a consequence, the content of the message “k is innocent” becomes manipulable. How to

update sets of innocents becomes challenging, as it is not enough to make conjectures about

a single unilateral deviation, but, possibly, several consecutive deviations. The open issue is

then to construct protocol that allows to identify the player who deviates in action,3 even

if another player deviates during the protocol itself. As opposed to [23], the communication

protocol constructed is robust to successive unilateral deviations. The main idea follows

from the fact that players are required to confess their past deviations. With this strategy,

a majority rule prevents a second deviator during the communication protocol to block the

identification of the initial deviator. The incentives for following the equilibrium strategy are

given by adapting the construction of Fudenberg and Maskin ([12]) as explained previously.

This is rather surprising, since their construction crucially relies on the fact that monitoring

is perfect in their setting, and is known not to be robust generically in repeated games

with (private or public) imperfect monitoring. By contrast, their method can be adapted

in my setup since (i) the distribution of private signals does not have full support, and (ii)

public communication enables the players to learn the sequence of pure actions played by the

minmaxing players during the punishment phase.

This paper is also related to the literature on social and economic networks (for an

3Recall that communication is costless, so communication deviations need not to be punished as long as
they do not affect continuation play.

6



overview of the networks literature, see Goyal, [17], and Jackson, [20]). Networks in which

a player’s payoff depends on his own and his neighbor’s actions have been studied among

others by Galeotti and al. ([15]) and Bramoullé and Kranton ([6]). However, this literature

does not account for repeated games in general.

The paper is organized as follows. The model is introduced in Section 2. In Section 3, I

discuss the assumption on payoff functions. The main result is stated in Section 4. Section 5

establishes the sufficiency of Condition DN: for that purpose, I construct a communication

protocol which aims at identifying the deviator when a deviation occurs; I then construct a

perfect Bayesian equilibrium. Section 6 establishes that the folk theorem fails if Condition

DN is not satisfied. Finally, Section 7 develops some extensions and raises open questions.

2 The setup

Consider a repeated game played on a fixed network where players interact only with their

neighbors. This is described by the following data:

- a finite set N = {1, . . . , n} of players (n ≥ 3);4

- for each player i ∈ N , a non-empty finite set Ai of actions (with ]Ai ≥ 2);

- an undirected graph G = (N,E) in which the vertices are the players and E ⊆ N ×N
is a set of links. Let N (i) = {j 6= i : ij ∈ E} be the set of player i’s neighbors. Since

G is undirected, the following holds: i ∈ N (j)⇔ j ∈ N (i);

- for each player i ∈ N , a payoff function of the form gi :
∏

j∈N (i)∪{i}A
j → R, i.e. player

i’s stage payoff depends on his own and his neighbors’ actions only;

- finally, a non-empty finite set M i of player i’s messages. I assume that the cardinality

of M i is large, the specification of the set M i is given in Section 5.

I use the following notations: A =
∏

i∈N A
i, N−i = N \ {i}, AN (i)∪{i} =

∏
j∈N (i)∪{i}A

j,

aN (i) = (aj)j∈N (i) and g = (g1, . . . , gn) denote the payoff vector.

Throughout the paper, the graph G is assumed to be connected. Indeed, since interaction

is local, players in different connected components do not interact with each other. Therefore,

I model different connected components as different games.

In addition, I introduce costless communication. Players are able to communicate both

privately and publicly. First, each player can send different messages to distinct players.

Second, players can make public announcements to all players or to a subset of players only.

4The 2-player case reduces to perfect monitoring, see Footnote 6 in Section 3.
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For instance, if a player i makes a public announcement to a subset S of players, then the

list S is certifiable, that is: each player s in S knows that all members in S received the same

message (this is common knowledge among the players in S), although he does not know the

messages received by players who are not in S. Let M i be a non-empty finite set of player i’s

messages. Let mi
t(j) represent the private message sent by player i to player j ∈ N at stage

t, and mi
t(S) the public message sent by i at stage t to players in S ⊆ N (hence, mi

t(N) is a

public announcement to all players).

The repeated game unfolds as follows. At every stage t ∈ N∗:

(i) simultaneously, players choose actions in their action sets and send messages to all

players, either publicly or privately as described above.

(ii) Let at = (ait) be the action profile at stage t. At the end of stage t, each player i ∈ N
observes his stage payoff gi(ait, a

N (i)
t ). A player cannot observe the actions chosen by

others, even by his neighbors.

Hence, both interaction and monitoring possibilities are given by the network G. In addition,

I assume perfect recall and that the whole description of the game is common knowledge.

For each stage t, denote by H i
t the set of player i’s private histories up to stage t, that is

H i
t = (Ai × (M i)N

−i × (M j)j∈N−i × {gi})t, where {gi} is the range of gi (H i
0 is a singleton).

An element of hit is called an i-history of length t. An action strategy for player i is denoted

by σi = (σit)t≥1 where for each stage t, σit is a mapping from H i
t−1 to ∆(Ai) (where ∆(Ai)

denotes the set of probability distributions over Ai). A communication strategy for player i

is denoted by φi = (φit)t≥1 where for each stage t, φit is a mapping from H i
t−1 to ∆((M i)N

−i
).

Note that a player may deviate from σi or from φi, thus I shall distinguish between action and

communication deviations accordingly. A behavior strategy of a player i is a pair (σi, φi). Let

Σi be the set of player i’s action strategies and Φi his set of communication strategies. I denote

by σ = (σi)i∈N ∈
∏

i∈N Σi the players’ joint action strategy and by φ = (φi)i∈N ∈
∏

i∈N Φi

their joint communication strategy. Let Ht be the set of histories of length t that consists of

the sequences of actions, payoffs and messages for t stages. Let H∞ be the set of all possible

infinite histories. A profile (σ, φ) defines a probability distribution, Pσ,φ, over the set of plays

H∞, and I denote Eσ,φ the corresponding expectation. I consider the discounted infinitely

repeated game, in which the overall payoff function of each player i in N is the expected sum

of discounted payoffs. That is, for each player i in N :

γiδ(σ, φ) = Eσ,φ

[
(1− δ)

∞∑
t=1

δt−1git(a
i
t, a
N (i)
t )

]
,

where δ ∈ [0, 1) is a common discount factor. Let Gδ(G, g) be the δ-discounted game.
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The solution concept is perfect Bayesian equilibrium (PBE from now on). While there is

no agreed upon definition of what restrictions this involves after histories off the equilibrium

path, this plays no role in my construction, and any definition will do. The reader is referred

to the definition given by Gibbons (Chapter 4 in [?]).5 In fact, I only specify strategies after

private histories along which only unilateral deviations, if any, have taken place. In addition,

the construction has the property that, after such histories, the specified play is optimal no

matter what beliefs a player holds about his opponents’ play, provided that the beliefs are such

that: for every player i ∈ N , if player i observes a private history compatible with a history

along which no deviation has taken place (respectively along which only unilateral deviations

have taken place), then player i believes that no deviation has taken place (respectively only

unilateral deviations have taken place). Plainly, this suffices to ensure optimality. Given that

play after other histories (i.e., histories that involve simultaneous deviations) is irrelevant, the

partial strategy and beliefs that I define can be completed in any arbitrary fashion. Details

are given in Section 5.2.

Let Eδ(G, g) its associated set of PBE payoffs. For each a ∈ A, I denote g(a) =

(g1(a1, aN (1)), . . . , gn(an, aN (n))) and g(A) = {g(a) : a ∈ A}. Let co g(A) be the convex

hull of g(A), which is the set of feasible payoffs. Player i’s (independent) minmax level is

defined by:6

vi = min
xN (i)∈

∏
j∈N (i) ∆(Aj)

max
xi∈∆(Ai)

gi(xi, xN (i)).

I normalize the payoffs of the game such that (v1, . . . , vn) = (0, . . . , 0). I denote by IR∗(G, g) =

{g = (g1, . . . , gn) ∈ Rn : ∀i ∈ N, gi > 0} the set of strictly individually rational payoffs.

Finally, let V ∗ = co g(A) ∩ IR∗(G, g) be the set of feasible and strictly individually rational

payoffs.

The aim of this paper is to characterize the networks G for which a folk theorem holds,

that is: each feasible and strictly individually rational payoff is a PBE payoff for all discount

factors close enough to one. In the next section, I display and motivate the class of payoff

functions I consider.

5Fudenberg and Tirole ([14]) give a definition for games with observable actions, which my game does
not have. A recent definition for general games, including games with imperfect monitoring, is given by
González-Dı́az and Meléndez-Jiménez ([16]).

6It is sometimes possible here to drive equilibrium payoffs below this bound, see Section 7.
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3 A class of payoff functions

The following example is taken from [23]. It shows that a necessary condition for a folk

theorem is that the payoff functions are sufficiently rich to enable players to detect deviations.

Example 3.1. Consider the 5-player game played on the following network:

Figure 3:

•3 •4

•5

•1
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G1

The action sets of the players are A1 = A2 = A3 = {C,D} and A4 = A5 = {0, 1}. The payoff

functions of players 1, 2 and 3 are given by the following matrices (player 2 chooses the row,

player 1 the column, and player 3 the matrix):

3 plays C

2 \ 1 C D
C 1,0,2 0,0,2
D 1,2,0 0,6,0

3 plays D

2\ 1 C D
C 0,0,6 1,0,6
D 0,2,0 1,6,0

In addition, the payoff functions of players 4 and 5 are g4(a3, a4, a5) = a4 + a5 − 1 and

g5(a1, a4, a5) = 2a4 + a5 − 1. Notice that intV ∗ 6= ∅. The minmax level of each player

i ∈ N is vi = 0. Therefore, the payoff vector (1, 1, 1, 1, 2) is feasible and strictly individually

rational. Notice also that the only way the get this payoff vector is that player 2 chooses

between C and D with probability 1
2
-1

2
, that players 1 and 3 choose action D, and that players

4 and 5 choose action 1. Moreover, playing 1 is a dominant strategy for both players 4 and

5.

However, (1, 1, 1, 1, 2) is not a Nash equilibrium payoff of the repeated game: for any

discount factor δ ∈ [0, 1), either player 1 or player 3 has an incentive to deviate by choosing

between C and D with probability 1
2
-1

2
. The key argument is that both deviations induce

the same distribution of signals for player 2. First, player 2’s payoff is 1 if players 1 and

3 take the same action, 0 otherwise. Hence, the deviations of players 1 and 3 induce the
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same distribution of payoffs for player 2, and that for every strategy (possibly mixed) of the

non-deviating players.7 Hence, player 2 cannot infer the identity of the deviator from the

observation of his payoffs. Second, neither player 4 nor player 5 has relevant information

on the actions chosen by players 1 and 3. As a consequence, player 2 cannot identify the

deviator. In addition, player 2 cannot punish both players 1 and 3: punishing player 1

requires player 2 to play C, in which case player 3 can get a payoff of 6.8. On the contrary,

punishing player 3 requires player 2 to play D, in which case player 1 can get a payoff of 6.

As a consequence, either “player 1 always plays C and D with probability 1
2
-1

2
and pretends

that player 3 does” is a profitable deviation for player 1, or “player 3 always plays C and D

with probability 1
2
-1

2
and pretends that player 1 does” is a profitable deviation for player 3.9

Therefore, the outcome (1, 1, 1, 1, 2) is not a Nash equilibrium payoff of the repeated game

and the folk theorem fails.

On the other hand, let g1, g2, g3 and g4 remain unchanged, and assume that player 5’s

payoff is the following:

g5(a1, a4, a5) =

2a4 + a5 − 1 if a1 = C

2a4 + a5 − 1 + ε if a1 = D

with ε > 0. Player 5 is now able to detect player 1’s deviations. Therefore, if player 2

detects either player 1’s or player 3’s deviation, he can obtain from player 5 the name of

the deviator (player 5 clears player 1 if he does not detect any deviation, and clears player

3 otherwise). However, player 5 could lie about the identity of the deviator. I circumvent

this issue by requiring a deviating player to confess thereafter. Hence, if player 5 lies, then

the initial deviator, say player 1, confesses, and player 3 claims his innocence. A majority

rule then gives the name of the deviator. For a large enough discount factor, it is possible

to construct a perfect Bayesian equilibrium with payoff vector (1, 1, 1, 1, 2) (see Section 5 for

the construction). �

The previous example shows that if a deviation of a player i does not alter all his neighbors’

payoffs, then it may possible for some feasible and strictly individually rational payoffs not

to be (Nash) equilibrium payoffs of the repeated game.10 Hence, it is not possible to get a

7Following the terminology of Aumann and Maschler (1966, re-edited in 1995, [3]), this is a jointly con-
trolled lottery over player 2’s payoffs.

8Formally, this argument does not rule out that there exists a strategy that trades off punishing the two
players in a way that drives both of their payoffs below 1; however, it is not hard to show that this is already
too much to ask; the details can be found in Section 6.

9These arguments are formally developed in Section 6.
10For a similar phenomenon, see [24].

11



folk theorem for all payoff functions g. I introduce the following assumption.11

Assumption PAYOFFS (P) . For each player i ∈ N , each neighbor j ∈ N (i), every

actions bj, cj ∈ Aj such that bj 6= cj, ai ∈ Ai, aN (i)\{j} ∈ AN (i)\{j}:

gi(ai, aN (i)\{j}, bj) 6= gi(ai, aN (i)\{j}, cj).

Example 3.2. The following payoff functions satisfy Assumption P:

- for each player i in N , let Ai ⊂ N and gi(ai, aN (i)) = f
(∑

j∈N (i)∪{i} a
j
)

with f strictly

monotone;

- for each player i in N , let Ai ⊂ R and gi(ai, aN (i)) =
∑

j∈N (i) a
j − ai (this game can be

seen as a generalized prisoner’s dilemma for n players);

- firms’ profits in Cournot games;

- more generally, for each player i in N , let Ai ⊂ R and gi strictly monotone with respect

to each argument.

In the next section, I introduce a necessary and sufficient condition on the networks for

a folk theorem to hold.

4 The main result

Theorem 4.1. The following statements are equivalent:

1. For each payoff function g that satisfies Assumption P and such that the interior of V ∗

is nonempty, for any payoff v in V ∗, there exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1),

v is a PBE vector payoff of the δ-discounted game.

2. The graph G is such that, for every pair of players i, j ∈ N , i and j have different set

of neighbors (Condition DN for Different Neighbors), that is:

∀i, j ∈ N, N (i) \ {j} 6= N (j) \ {i}. (DN)

Assume that Condition DN is satisfied, that Assumption P holds, and that V ∗ is of full

dimension. Then, for any v ∈ V ∗, it is possible to construct a PBE with payoff v for a

discount factor close to one. I construct this strategy in Section 5. Intuitively, Condition DN

11This assumption implies that the two-player case reduces to perfect monitoring.
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makes it possible to construct a communication protocol that enables players to identify the

deviator when a (unilateral) deviation occurs.

In addition, Condition DN prevents the network from having too many links, since it

may lead to less information. The idea is that too many links increase the likelihood for two

players to have the same neighbors, which violates Condition DN. If two players have the

same neighbors, their deviations may not be distinguishable, and I exhibit particular payoff

function for which the folk theorem fails (see Section 6 for the general proof). In particular,

the folk theorem fails for complete networks: for some payoff functions satisfying Assumption

P, the issue is that a deviation of any player is detected when then network is complete, but

every player suspects everybody, and identification of the deviator may not be possible. This

is an obstacle for a folk theorem to hold, see Section 6 for details.

Now, I show some properties of the networks satisfying Condition DN. First, I display

some examples of graphs that satisfy Condition DN (Figure 4), and some that do not (Figure

5). Notice that Condition DN is not monotonic with respect to the number of links, contrary

to connectivity. For instance, both G9 and G10 are 2-connected, whereas only G9 satisfies

Condition DN. Also, neither G3 nor G4 are 2-connected, whereas only G3 satisfies Condition

DN.

Figure 4: Networks satisfying DN Figure 5: Networks not satisfying DN
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Remark 4.2. Assume that the network G is connected and satisfies Condition DN. It is then

easy to see that a player cannot be the unique neighbor of several players: for every players

j and j1 such that N (j1) = {j}, and every ` ∈ N (j) so that ` 6= j1, player ` has at least two

neighbors. One can then easily check that a tree12 satisfies Condition DN if and only if the

distance between any two terminal nodes is greater than or equal to three. Hence, no star

satisfies Condition DN.

Going back to Figures 4 and 5, the distance between two terminal nodes in G7 is at least

three, whereas the distance between nodes 4 and 5 in G8 (or between 6 and 7) equals two.

5 Sufficiency of Condition DN

In this section, I assume that the network G satisfies Condition DN of Theorem 4.1, namely:

for any pair of players i, j in N , i and j have at least one different neighbor. Take a payoff

function that satisfies Assumption P and such that intV ∗ is non-empty (this is assumed

throughout this section). I take a point v = (v1, . . . , vn) in V ∗ and I construct a PBE of the

repeated game (σ∗, φ∗) with payoff v for a large enough discount factor.

First of all, notice that each player i detects an action deviation from a pure action profile

if and only if he observes a change in his stage payoff (Assumption P). Therefore, there is an

action deviation from a pure action profile of some player k at stage t if and only if all the

12Recall that a tree is a connected graph without cycles, and that the distance in a graph between two
nodes i and j is the length of the shortest path from i to j (the reader is referred to [9] for usual definitions
of graph theory).
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neighbors of player k detect it stage t. Nevertheless, player k’s neighbors may not be able to

identify the deviator.

I first introduce a communication protocol which identifies the deviator when there is a

deviation (Section 5.1). Then, I construct the equilibrium strategy (Section 5.2), and prove

the equilibrium property (Section 5.3).

5.1 Identifying a deviator

In this section, I construct a communication protocol which identifies the deviator when there

is a deviation. Then, I exhibit some properties of this protocol.

5.1.1 Construction of the communication protocol

Here, I assume that the players coordinate on playing a sequence on pure actions, āt =

(āit)i∈N at each stage t > 0, and as long as no deviation is detected, on sending the message

m̄t(N) = (m̄i
t(N)), where for each player i ∈ N , m̄i

t(N) = N (i) ∪ {i}. This message means

that player i did not deviate, and did not detect any action deviation at stage t− 1. Hence,

according to player i, his neighbors and himself are innocent regarding any possible action

deviation at stage t− 1. From now on, I assume that the network G is such that Condition

DN holds, and that g satisfies Assumption P.

We aim at identifying the deviator when a deviation occurs. Like in Example 3.1, it

is not always possible to punish several players, and the identification of the deviator may

therefore be needed. Nevertheless, for the family of networks that satisfy Condition DN,

it is not always possible to identify the deviator. Take for instance a player k who has a

single neighbor `. It may be impossible for players i 6= k, ` to differentiate between the two

following deviations:

- player k deviates in action at stage t and does not confess any deviation regarding

stages t and t+ 1;

- player ` deviates in communication at stage t+ 1 and claims that player k deviated at

stage t.

These deviations still have to be punished, otherwise either player ` or player k might have

an incentive to deviate. Yet, this is not an obstacle for a folk theorem to hold. Indeed, no

player is a neighbor of both players k and `, hence it is possible to minmax both players k

and `: while being minmaxed, player ` is prescribed to minmax player k. Therefore, if one

of these deviations occurs, players only have to know that the deviator is either k or `.
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I then construct a communication protocol, that is: a profile of communication strategies

and an output rule for each player. In my context, the communication protocol starts as soon

as there is a (unilateral) deviation (either from āt, or from m̄t(N)), and does not stop before

players find out the identity of the deviator (at least when it is an action deviation), or at

least a subset of two players, k and `, containing the deviator when the situation described

above appears.

Each player i ∈ N starts the protocol every time he detects a deviation from (ā, m̄(N)).

Players may start the communication protocol at different stages. Indeed, consider the

situation where there is an action deviation of some player j at stage t. Player j’s neighbors

start the protocol at the end of stage t, whereas other players may not start it before the

end of stage t + 1, when they receive messages from player j’s neighbors. I now construct

the communication protocol.

The message space. All players communicate using the same finite set of messages M̃ =

2N , with N the set of players.

The strategy of player i. Player i always takes the action āit when he performs the

protocol.13 I denote by φ̃i his communication strategy during the communication protocol,

which consists in announcing sets of innocents publicly to all players as follows:

- if player i detects an action deviation at stage t, then he announces m̃i
t+1(N) = N \N (i)

at stage t+ 1: player i claims that all his neighbors are suspects regarding a deviation

at stage t; or, in other words, that all other players, including himself, are innocent.

- If player i deviates in action at stage t, then he announces m̃i
t+1(N) ⊇ N−i at stage

t+ 1: player i confesses at stage t+ 1 that he deviated at stage t.

The output rule. Denote by X i
t+1 ⊂ N player i’s set of suspected players at stage t + 1

regarding a possible deviation at stage t. For each player i in N , the set X i
t+1 is computed

as follows.

(i) Only announcements of the form mj
t+1(N) = N (j) ∪ {j}, mj

t+1(N) = N \ N (j) or

mj
t+1(N) = N−j for each player j ∈ N are taken into account. Other announcements

are disregarded: in particular, private messages are ignored. Notice also that player i

takes into account his own announcement mi
t+1(N).

(ii) For every player j such that ]N (j1) ≥ 2 for each j1 ∈ N (j):

13In the construction of the equilibrium strategy in the next section, player i keeps playing the action
corresponding to the phase of the game, instead of playing āit (see Section 5.3).
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• if there exist at least two players j1 and j2 such that j1 6= j2, j ∈ mj1

t+1(N) and

j ∈ mj2

t+1(N), then j /∈ X i
t+1 (i.e. j is cleared);

• otherwise, j ∈ X i
t+1 (i.e. j is identified as suspect).

(iii) For every pair of players k and ` such that N (k) = {`}:

• if there exist at least two players k1 and k2 such that k1 6= k2, k ∈ mk1

t+1(N) and

k ∈ mk2

t+1(N):

– if there exist at least two players `1 and `2 such that `1 6= `2, ` ∈ m`1

t+1(N)

and ` ∈ m`2

t+1(N), then ` /∈ X i
t+1 (i.e. ` is cleared);

– otherwise, ` ∈ X i
t+1 (i.e. ` is identified as suspect);

• otherwise, {k, `} ⊆ X i
t+1 (i.e. both k and ` are identified as suspects).

I now introduce an example to show how this protocol works.

Example 5.1. Consider the 4-player game played on the following network:

•3•2•1 •4

for which Condition DN is satisfied. In addition, take a payoff function g for which Assump-

tion P holds.

1. Assume first that player 2 deviates in action at some stage t and, for simplicity, does

not deviate in communication at stage t (but possibly at stage t + 1). Hence, each

player i, except possibly 2, announces publicly m̄i
t(N) = N (i) ∪ {i} at stage t. At

stage t + 1, players 1 and 3 should start the protocol, and stick to actions ā1
t and

ā3
t respectively. In addition, strategies φ̃1

t+1 and φ̃3
t+1 prescribe to announce publicly

m1
t+1(N) = N \ N (1) = {1, 3, 4} and m3

t+1(N) = N \ N (3) = {1, 3} respectively.

Player 4 starts the protocol at the end of stage t + 1 only, and should announce

m4
t+1(N) = m̄4

t+1 = {3, 4}. Finally, player 2 should announce {1, 3, 4} publicly to

all players at stage t + 1. Under unilateral deviations, players 1, 3 and 4 appear in

the public announcements at stage t + 1 of at least two different players, hence each

player i clears players 1, 3 and 4. Moreover, player 2 appears in at most one public

announcement, therefore each player i identifies player 2 as the deviator.

2. Consider now the case in which there is no action deviation at stage t but a communi-

cation deviation of player 2 at stage t+1 who announces m2
t+1(N) = N \N (2) = {2, 4}

publicly to all players (recall that private messages are not taken into account in the
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strategy constructed). Under φ∗, players 1, 3 and 4 announce respectively {1, 2},
{2, 3, 4} and {3, 4} publicly to all players at stage t + 1 since by assumption there

is no action deviation at stage t. Hence, X i
t = {1, 2} for each player i in N . The two

following cases are then possible.

- Player 2 also deviates in action at stage t+ 1. At stage t+ 2, players 1, 2, 3 and

4 should announce respectively {1, 3, 4}, {1, 3, 4}, {1, 3} and {3, 4} publicly to all

players. Even if one player deviates at stage t + 2, each player clears players 1, 3

and 4 and identifies player 2, hence X i
t+2 = {2} for each player i.

- Player 2 does not deviate in action at stage t+1. Then there is no action deviation

at stage t+ 1 under unilateral deviations.

3. Suppose now that player 1 deviates in action and, for simplicity, does not deviate in

communication at stage t. At stage t + 1, players 1, 2, 3 and 4 should announce re-

spectively {2, 3, 4}, {2, 4}, {2, 3, 4} and {3, 4} publicly to all players. Therefore, the

name of player 1 appears in at most one public announcement, whereas the names of

players 2, 3 and 4 are in at least two distinct players’ public announcements. Hence,

X i
t+1 = {1, 2} for each player i.

4. Assume now that there is no action deviation at stage t, and that player 1 deviates in

communication at stage t+ 1 by announcing m1
t+1(N) = N−1 = {2, 3, 4} publicly to all

players: player 1 lies when he confesses his action deviation at stage t. At stage t+ 1,

the public announcements of players 2, 3 and 4 are respectively {1, 2, 3}, {2, 3, 4} and

{3, 4}, hence X i
t = {1, 2} for each player i in N .

5. Finally, suppose that there is no action deviation at stage t, and that player 1 deviates

in communication at stage t+1 by announcing publicly m1
t+1(N) = N\N (1) = {1, 3, 4}.

The public announcements of players 2, 3 and 4 at stage t+ 1 are respectively {1, 2, 3},
{2, 3, 4} and {3, 4}. All players appears in at least two messages, hence X i

t = ∅ for each

player i. Each player deduces that there was no action deviation at stage t, and that

player 1 deviates in communication at stage t+ 1. �

5.1.2 Properties of the communication protocol

I now exhibit some properties of the communication protocol constructed in the previous

section. All the proofs are in the appendix. With a slight abuse of notation, I call φ̃i the
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communication strategy of player i which consists in sending the message m̄i(N) when not

performing the protocol, and to send messages according to the strategy prescribed by the

communication protocol otherwise. The next lemma proves that, if a player who has more

than two neighbors deviates in action at some stage t, then he is identified as suspect, and

all other players are cleared at stage t+ 1.

Lemma 5.2. Consider a connected network G that satisfies Condition DN, and suppose that

Assumption P holds. For each player j such that ]N (j) ≥ 2, if j deviates in action at some

stage t and if all players, except possibly a deviator, follow φ̃ at stages t and t + 1, then

X i
t+1 = {j} for each player i ∈ N .

Notice that there may be a deviation from a player d 6= j at stage t + 1. Yet, in that case,

player j does not deviate at stage t + 1 under unilateral deviations. The next lemma shows

how the protocol works when a player k has a single neighbor `.

Lemma 5.3. Consider a connected network G that satisfies Condition DN, and suppose that

Assumption P holds. For every players k and ` such that N (k) = {`}, if:

(a) either k deviates in action at stage t;

(b) or, there is no action deviation at stage t, mk
t+1 = mk

t+1(N) and mk
t+1(N) ⊇ N−k (i.e.

player k confesses publicly to all players);

(c) or, there is no action deviation at stage t, m`
t+1 = m`

t+1(N) and m`
t+1(N) ⊇ N \ N (`)

(i.e. player ` claims publicly that he detected a deviation at stage t);

and if all players, except possibly a deviator, follow φ̃ at stages t and t+1, then X i
t+1 = {k, `}

for each player i ∈ N .

The next lemma shows that no communication deviation other than those of Lemma 5.3

can induce the identification of an innocent player as a deviator.

Lemma 5.4. Consider a connected network G that satisfies Condition DN, and suppose that

Assumption P holds. For each player k in N , if there is no action deviation at stage t, and

if player k deviates in communication at stage t+ 1 in such a way that:

- either N (k) = {`}, and mk
t+1 6= mk

t+1(N) or mk
t+1(N) /∈ {N−k,N (k) ∪ {k}};

- or there exists k′ such that N (k′) = {k}, and mk
t+1 6= mk

t+1(N) or {N \ N (k),N (k) ∪
{k}} /∈ mk

t+1(N);

- or mk
t+1 6= mk

t+1(N) or mk
t+1(N) 6= {N (k) ∪ {k}};

and if all players, except possibly a deviator, follow φ̃ at stage t+ 1, then X i
t+1 = ∅ for each

player i ∈ N .
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5.2 The equilibrium strategy

Take a payoff v ∈ V ∗. In this section, I construct the PBE strategy, denoted (σ∗, φ∗), with

payoff v (the proof of the equilibrium property is in Section 5.3). More precisely, I construct a

restriction of the PBE strategy to a particular class of private histories; namely, the histories

along which only unilateral deviations from (σ∗, φ∗), if any, have taken place. Formally, I

denote by H i
t(U |(σ∗, φ∗)) the set of private histories for player i such that: either no deviation

(from (σ∗, φ∗)) has occurred, or only unilateral deviations have taken place. That is to say,

for any history in H i
t(U |(σ∗, φ∗)), no multilateral deviation has occurred. Similarly, denote

by Ht(U |(σ∗, φ∗)) the set of total histories along which only unilateral deviations, if any, have

taken place.

I define now, for every history in Ht(U |(σ∗, φ∗)), a strategy profile which can be decom-

posed into four phases. First, there is a stream of pure action profiles that yields the desired

payoff. This is how the game starts off and how it unfolds as long as no player deviates.

Second, there is a communication phase (the communication protocol previously described)

in case of a deviation, whose purpose is to inform the deviator’s neighbors of the deviator’s

identity. Third, there is a punishment phase, and finally, a reward phase.

Before constructing the equilibrium strategy, notice that deviations from the equilibrium

strategy are of two kinds: action and communication deviations. Since communication is cost-

less, communication deviations have to be punished only if they affect continuation payoffs.

In the strategy profile I construct, communication deviations that do not affect continua-

tion payoffs are not punished. More precisely, if a player starts sending spurious messages

although no player has deviated in action, and if in addition all players learn that there was

no action deviation–i.e. all players are cleared by the communication protocol–then the de-

viator is not punished. On the other hand, for some communication deviations without any

action deviation, it may not be possible for some players to be aware that there was no action

deviation: in this case, punishments of several players take place in my construction. In any

case, a player can deviate both in communication and in action, and is then punished (action

deviations always lead to the deviator’s punishment). Now, I construct the four phases of

the strategy, then I specify the beliefs (Section 5.2.5).

5.2.1 Phase I: equilibrium path

For each player i in N and each stage t > 0, choose āit ∈ Ai such that

(1− δ)
∞∑
t=1

δt−1git(ā
i
t, ā
N (i)
t ) = vi.
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This is possible when δ ≥ 1 − 1
n

(existence is proved by Sorin, Proposition 4 p.151 in [32]).

Moreover, Fudenberg and Maskin (1991) prove that for every ε > 0, there exists δε < 1 such

that for all δ ≥ δε and every v ∈ V ∗ such that vi ≥ vi for all i, the deterministic sequence of

pure actions āt can be constructed so that the continuation payoffs at each stage are within

ε of v (Lemma 2 p. 432 in [13]).14

During this phase, player i should play action āit at stage t. Moreover, at every period,

player i should announce m̄i
t(N) = N (i)∪{i} publicly to all players. This message means that

player i did not deviate and did not detect any action deviation at stage t− 1.15 According

to player i, his neighbors and himself are innocent regarding any possible action deviation

at stage t− 1. Player i then announces his set of innocents publicly to all players at stage t,

denoted I it , made of himself and his neighbors: I it = N (i) ∪ {i}.

5.2.2 Phase II: communication phase

Player i ∈ N enters phase II each time he detects a unilateral deviation from (σ∗, φ∗). For

instance, in phase I, player i enters phase II at the end of stage t either when he detects an

action deviation at stage t, or when he receives a public message different from m̄j
t(N) =

N (j) ∪ {j} from some player j ∈ N−i at stage t (only public announcements are taken into

account here). During this phase, player i performs the communication protocol constructed

in Section 5.1.

Remark 5.5. From Lemmas 5.2, 5.3 and 5.4, it turns out that if a player j deviates in action

at some stage t, then he is identified as deviator, and can be punished. Either he is the

unique suspect, or he has a single neighbor who also is suspected, in which case both can be

punished. Moreover, for any pair of players k and ` such that N (k) = {`}, and if there is

no action deviation at stage t, both k and ` are identified under communication deviations

(b) and (c) of Lemma 5.3; for all other communication deviations, everybody is cleared. For

the latter case, all players know that there was no action deviation at stage t, thus only a

communication deviation at stage t+1. That is why no player has to be punished since there

is no impact on continuation payoffs. Only players k’s and `’s communication deviations that

are indistinguishable with player k’s action deviation have to be punished.

During phase II, players should stick to the action strategy they were playing in the

previous phase. For instance, if players are following the equilibrium path at stage t when

they detect some deviation, they should enter the communication phase and keep playing

14If it was not the case, some player would prefer to deviate from ā, even if doing so caused his opponents
to minmax him thereafter.

15Recall that, at each stage, messages are sent before observing stage payoffs. This assumption can be
relaxed: with a slight modification, the strategy construction is still valid for the case in which messages are
sent after the observation of stage payoffs.
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āt+1 at stage t + 1. This part of the strategy is thereby purely communicative. Notice that

player i may start the protocol in phase I, phase III or phase IV.

I now describe how the transition is made from phase II to another phase. Denote by

plan {j} (respectively {k, `}) the punishment phase (phase III) in which player j (respectively

players k and `) is minmaxed. The transition rule to another phase is the following:

- if X i
t+1 = ∅, then keep playing according to the current action phase and use the

corresponding communication strategy;

- if X i
t+1 = {j} for some player j ∈ N such that ]N (j) ≥ 2 and ]N (j1) ≥ 2 for each

j1 ∈ N (j), then start plan {j};

- if either X i
t+1 = {`} or X i

t+1 = {k, `}, with N (k) = {`}, then start plan {k, `};

- otherwise, play an arbitrary Nash equilibrium of the one-shot game (history incompat-

ible with unilateral deviations).

Remark 5.6. Assume N (k) = {`}. Player ` may prefer plan {`} to plan {k, `}, or the

opposite. That is the reason why the transition rule prevents plan {`} to happen: if player `

is identified as a suspect, then players start plan {k, `} in order to minmax both, no matter

whether player k is also suspected. Moreover, the identification is such that player ` is always

suspected when player k is, so that plan {k} never occurs either.

The next example takes up Example 5.1 to show how this transition rule works.

Example 5.7. Consider the 4-player game of Example 5.1 played on the following network:

•3•2•1 •4

for which Condition DN is satisfied. In addition, take a payoff function g for which Assump-

tion P holds.

1. Assume first that player 2 deviates in action at some stage t and, for simplicity, does

not deviate in communication at stage t (but possibly at stage t + 1). From Example

5.1, each player i identifies player 2 as the deviator. The transition rule prescribes

players to enter phase III in order to minmax both players 1 and 2 (plan {1, 2}).

2. Assume now that there is no action deviation at stage t, and that player 2 deviates in

communication at stage t+ 1 by announcing m2
t+1(N) = N \N (2) = {2, 4} publicly to

all players. Then, X i
t = {1, 2} for each player i in N . Players then start plan {1, 2}.
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The reason for this joint punishment is that players 3 and 4 do not differentiate between

the histories “player 1 deviates in action at stage t and in communication at stage t+ 1

since he does not confess” and “player 1 deviates neither in action at stage t nor in

communication at stage t+ 1 and player 2 deviates in communication at stage t+ 1”.

The two following cases are then possible.

- If player 2 also deviates in action at stage t + 1, then X i
t+2 = {2} for each player

i. Nevertheless, players also start plan {1, 2}.

- If player 2 does not deviate in action at stage t + 1, then there is no action devi-

ation at stage t + 1 under unilateral deviations. Players keep playing plan {1, 2}
until a new possible deviation.

3. Assume now that player 1 deviates in action and, for simplicity, does not deviate in

communication at stage t. Then, X i
t+1 = {1, 2} for each player i. Again, players 3 and

4 cannot differentiate between this deviation of player 1 and the deviation of player 2

described in the previous case. Therefore, all players start plan {1, 2}.

4. Assume now that there is no action deviation at stage t, and that player 1 deviates

in communication at stage t + 1 by announcing m1
t+1(N) = N−1 = {2, 3, 4} publicly

to all players: player 1 lies when he confesses his action deviation at stage t. Then,

X i
t = {1, 2} for each player i in N . Again, all players start plan {1, 2}.

5. Finally, assume that there is no action deviation at stage t, and that player 1 deviates in

communication at stage t+ 1 by announcing publicly m1
t+1(N) = N \N (1) = {1, 3, 4}.

Then, X i
t = ∅ for each player i: each player deduces that there was no action deviation

at stage t, and that player 1 deviates in communication at stage t + 1. However,

communication being costless, my construction does not require to punish player 1.

The transition rule prescribes all players to keep playing according to the phase in

which the game is and to use the corresponding communication strategy. �

This concludes the description of the communication phase.

5.2.3 Phase III: punishment phase

First case: plan {j}. Consider the situation in which each player enters a punishment

phase in order to minmax player j. Notice first that only player j’s neighbors are able to pun-

ish him. Besides, since minmax strategies might be mixed, minmaxing players’ deviations
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might be undetectable: players may not know the sequences of pure actions their neigh-

bors should play. For that reason, announcements are added in the construction. Players’

strategies during phase III, denoted σ̂ and φ̂, are as follows.

During this phase, each player’s communication strategy is twofold:

(i) first, at each stage s, each player i in N announces his set of innocents I is publicly to

all players (as in phase I). For instance, I is = N (i) ∪ {i} belongs to player i’s public

announcement at stage s if player i does not detect any action deviation at stage s− 1.

(ii) In addition, each player i reveals his pure action ais publicly to all players at each stage

s. With these announcements, all players know the pure actions each player should

have played at each stage s. This enables the players to detect deviations and start

phase II if needed.

Recall that players choose actions and messages simultaneously at each stage, hence

player j has not received his opponents’ announcements when he chooses his action and

sends his messages. Therefore, player j is indeed punished when minmax strategies are

mixed.

A message of any player i during phase III has then the following form: for each stage s in

phase III, mi
s(N) = (I is, a

i
s).

Action strategies of the players are as follows. At each stage s ≥ t + 2 during phase III

(the length of phase III, denoted T (δ), is adapted in Section 5.2.4):

- each player i ∈ N (j) plays according to his minmax strategy against j, denoted (P i
j )

(recall that P i
j can be a mixed strategy). Denote by P (j) = (P i

j )i∈N (j) the profile of

minmax strategies of player j’s neighbors against him. For any strategy (σj, ψj) of

player j:

γjδ(σ
j, P (j), ψj, (φi)i∈N (j)) ≤

∞∑
t=1

(1− δ)δt−1vj

≤ 0,

where φi is an arbitrary communication strategy of a minmaxing player i ∈ N (j).

- Player j commits to play an arbitrary pure action P j during his punishment, hence his

deviations are detectable. In particular, player j is supposed to play P j even if a player

i ∈ N (j) deviates by privately reporting to player j the sequence of pure actions he

will play during plan {j}. Hence, player j cannot use this information to get a higher
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payoff. If he deviates from P j, then player j only lengthens his punishment (see Section

5.3).

- The actions of other players m 6= i, j are arbitrary. Recall that each player m should

announce publicly the pure action chosen at each stage, hence his deviations are de-

tectable.

During phase III, each player i in N starts the communication phase at some stage s if:

- either player i detects an action deviation at stage s−1, i.e. his payoff at stage s−1 is

not the one he would get if all his neighbors would have played the pure actions they

announce at stage s− 1;

- or, there exists ĩ ∈ N (j) ∩ N (i) such that aĩs−1 is not in the support of P ĩ(k) (this

deviation is regarded as an action deviation);16

- or, there exists a player m ∈ N such that Ims 6= N (s) ∪ {s}.

If player i never starts phase II (or if all players are cleared), then player i goes to phase

IV at the end of the punishment phase, hence at stage t+ 2 + T (δ).

Second case: plan {k, `}. Consider now the situation in which two players k and `, with

N (k) = `, are minmaxed from stage t+ 2 on. It means that either player k or player ` have

been identified as suspect at the end of stage t+ 1.

Remark 5.8. The strategy constructed in phase II is such that, whenever the state is {k, `},
it must be the case that N (k) = {`} without loss of generality (see Lemmas 5.2, 5.3 and 5.4

in Section 5.3). In this case, phase III is such that both k and ` are punished. It is possible

since each player has to punish only one suspect among k or `.

Each player’s communication strategy during phase III is the same as for the first case.

However, action strategies differ and are as follows. At each stage s ≥ t+ 2 during phase III:

- each player i ∈ N (`), including player k, plays according to his minmax strategy against

`, denoted (P i(`)) (recall that P i(`) can be a mixed strategy).

- Player ` plays according to his minmax strategy against k, P `(k).

- The actions of other players m 6= i, k, ` are arbitrary. As explained above, each player

m should still announce publicly the pure action chosen at each stage.

Each player i in N starts phase II at some stage s if:

16Notice that one can have i = j.
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- either player i detects an action deviation at stage s− 1, i.e. his payoff at stage s− 1

is not the one he would get if all his neighbors would have played the pure action they

announced at stage s− 1;

- or there exists ĩ ∈ N (`) ∩N (i) such that aĩs−1 is not in the support of P ĩ(`);17

- or i ∈ N (`) and a`s−1 is not in the support of P `(k);

- or there exists a player m such that Ims 6= N (s) ∪ {s}.

If player i never starts phase II (or if all players are cleared), then player i goes to phase IV at

the end of the punishment phase, hence at stage t+ 2 +T (δ). This concludes the description

of the punishment phase.

In the next section, I define a reward phase such that players k’s and `’s continuation

payoffs after the punishment phase vary according to their realized payoff during phase III

(see Section 5.2.4). Therefore, they are indifferent between the pure actions in the support

of their minmax strategies. In particular, they cannot benefit from a minmaxing player

reporting privately his sequence of pure actions.

5.2.4 Phase IV: reward phase

The aim of this phase is twofold.

(i) In order to provide each minmaxing player (who is not minmaxed himself) with an

incentive to play his minmax strategy in phase III, an additional bonus ρ > 0 is added

to his average payoff. If the discount factor is large enough, the potential loss during

the punishment is compensated by the future bonus.

(ii) Moreover, to induce each minmaxing player to draw his pure actions according to

the right distribution of his minmax strategy, I add a phase so that his payoff in the

continuation game varies with his realized payoff in a way that makes him indifferent

between the pure actions in the support of his minmax strategy. As in Fudenberg and

Maskin ([12, 13]), it is convenient to require that any feasible and strictly individually

rational continuation payoff must be exactly attained. Otherwise, a minmaxing player

might not be exactly indifferent between his pure actions in the support of his minmax

strategy.

The possibility of defining such rewards relies on the full dimensionality of the payoff set

(recall that intV ∗ 6= ∅). I use the insights of Fudenberg and Maskin (1986). The main

17Notice that one can have i = ` and ĩ = k, or the reverse.
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difference here relates to the case where two players, k and `, are simultaneously minmaxed

during the punishment phase: the rewards are then adapted so that neither k nor ` are

rewarded of an additional ρ > 0 during the reward phase (otherwise, they might have an

incentive to deviate when minmaxing another player j 6= k, `). Moreover, all players who

were not minmaxed during the punishment phase are rewarded of an additional ρ > 0, even

if they were not minmaxing during the punishment phase. The formal construction of these

rewards is now given.

Choose (v1
r , . . . , v

n
r ) ∈ intV ∗ such that for each player i ∈ N , vi > vir. Since V ∗ has full

dimension, there exists ρ > 0 such that for each player j such that ]N (j) ≥ 2 and ]N (j1) ≥ 2

for every j1 ∈ N (j), the following holds:

vr(j) = (v1
r + ρ, . . . , vj−1

r + ρ, vjr , v
j+1
r + ρ, . . . , vnr + ρ) ∈ V ∗,

and for every players k and ` such that N (k) = {`}:

vr(k, `) = (v1
r + ρ, . . . , vk−1

r + ρ, vkr , v
k+1
r + ρ, v`−1

r + ρ, v`r +
ρ

2
, v`+1
r + ρ, . . . , vnr + ρ) ∈ V ∗.18

For each player i in N , let wi(d) be player i’s realized discounted average payoff during phase

III when punishing player d in N . Denote by ḡi player i’s greatest one-shot payoff, that is:

ḡi = max
ai,(aj)j∈N (i)

gi(ai, aj).

Lemma 5.9. For every ε > 0 small enough, there exists δ∗ > δε
19 such that for all δ > δ∗,

there exists an integer T (δ)20 (if several take the smallest) such that for every pair of players

i and d:

(1− δ2)ḡi + δT (δ)+3vir < vir − ε, (1)

(1− δ2)ḡi + δT (δ)+3vir < (1− δT (δ)+2)wi(d) + δT (δ)+2(vir + ρ), (2)

(1− δ2)ḡi + δT (δ)+3vir < (1− δ2)wi(d) + δ2(vir + ρ). (3)

18This element exists since intV ∗ 6= ∅. Notice that the non-equivalent utilities condition introduced by
Abreu, Dutta and Smith ([1]) is not sufficient to ensure that vr(k, `) exists and lies in V ∗.

19Recall that δε is defined in Section 5.2.1 such that for every ε > 0, there exists δε < 1 such that for all
δ ≥ δε and every v ∈ V ∗ such that vi ≥ v for all i, the deterministic sequence of pure actions āt can be
constructed so that the continuation payoffs at each stage are within ε of v.

20Recall that T (δ) is the length of phase III.
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Proof. Choose ε > 0 such that, for every players i and d, ε < mini v
i
r and

−wi(d) <
vir − ε
vir

(
ρ− wi(d)

)
. (4)

This is possible since ρ > 0. Now, I can rewrite Equation (4) as follows:

0 <

(
vir − ε
vir

)
ρ−

(
1− vir − ε

vir

)
wi(d).

Then, there exists x ∈ (0, 1) such that xvir < vir − ε and xvir < (1− x)wi(d) + x(vir + ρ) (take

x close to but lower than vir−ε
vir

). Then, I choose δ∗ close to one and δT (δ) close to x as ε tends

to zero (notice that x is close to 1 as ε tends to zero). The left hand side of Equations (1),

(2) and (3) tends to xvir as ε tends to zero and Equations (1) and (2) directly follow. The

right hand side of Equation (3) tends to vir + ρ
2

as ε tends to zero and Equation (3) follows

directly since ρ > 0. As a consequence, δ∗ exists.

Define now, for every pair of players i and d:

zi(d) =

wi(d)1−δT (δ)

δT (δ) , if i ∈ N (d),

0, otherwise.

Finally, let at(j, δ, (z
i(j))i∈N (j)) and at(k, `, δ, (z

`(k)), (zi(`))i∈N (`)) be deterministic sequences

of pure actions that result in the following payoffs:

(vjr , (v
i
r + ρ− zi(j))i 6=j) ∈ V ∗, (5)

(vkr − zk(`), v`r − z`(k), (vir + ρ− zi(`))i 6=k,`) ∈ V ∗, (6)

and whose continuation payoffs are within ε of (5) and (6) respectively.

Lemma 5.10. The sequences at(j, δ, (z
i(j))i∈N (j)) and at(k, `, δ, (z

`(k)), (zi(`))i∈N (`)) exist

for ε close to zero and δ close to one.

Proof. Consider a sequence (εn, δn) such that εn tends to zero and δn tends to one as n tends

to infinity. By construction, T (δ) is the smallest integer satisfying equations (3), (4) and

(5), and δT (δ) is close to vir−ε
vir

. Hence, δ
µ(δn)
n is close to one for n sufficiently large, which

implies that zi(j) = wi(j)1−δµ(δn)
n

δ
µ(δn)
n

tends to zero as n tends to infinity. As a consequence, for

n sufficiently large, ρ−zi(j) > 0 and the payoffs in (8) are in V ∗ and bounded away from the

axes by at least εn. By Lemma 2 in Fudenberg and Maskin (page 432 in [13]), this implies

that for n sufficiently large, there exists δ̄ close to one (and greater than δ∗ > δε) such that,
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for every δ > δ̄, there exists a sequence of pure actions at(j, δn, (z
i(j))i∈N) with payoffs (8)

and whose continuation payoffs are within εn of (8). Similar arguments apply to prove that

at(k, `, δ, (z
`(k)), (zi(`))i∈N (`)) exists.

The strategy σi∗ for any player i in phase IV is then the following. On one hand, if only

player j is minmaxed in phase III, player i starts playing at(j, δ, (z
i(j))i∈N)at stage t+3+T (δ)

until a new possible deviation. On the other hand, if both players k and ` are minmaxed in

phase III, then player i starts playing at(k, `, δ, (z
`(k))i∈N (k), (z

i(`))i∈N (`)) at stage t+3+T (δ)

until a new possible deviation.

Intuitively, these rewards are such that, if plan {j} or plan {k, `}, with N (k) = {`},
is played, each player i 6= k, ` has an incentive to play his minmax strategy against j due

to the additional bonus of ρ thereafter. In addition, players k and ` have no incentive to

deviate during plan {k, `}, otherwise they would only lengthen their punishment, postponing

positive payoffs (recall that by construction plans {k} and {`} are never played). Finally,

when punishing any player d in N , each minmaxing player i has no incentive to draw the

sequence of pure actions according to another distribution, whose support is included in the

support of P i(d): any expected advantage that player i gets from playing some pure action

in phase III is subsequently removed in phase IV.

For each player i ∈ N , φ∗ is the same as before: when a player i does not detect any

deviation at stage t, then he should send the message mi
t+1 = N (i) ∪ {i}. When a player i

detects a deviation, he starts phase II.

Finally, notice that play after histories that involve simultaneous deviations is irrelevant.

Hence, the partial strategy that I define can be completed in any arbitrary fashion. This

concludes the construction of (σ∗, φ∗). The next section specifies the beliefs.

5.2.5 Specification of the beliefs

A belief assessment is a sequence µ = (µit)t≥1,i∈N with µit : H i
t → ∆(Ht): given a private

history hi of player i, µit(h
i) is the probability distribution representing the belief that player

i holds on the full history. An assessment is an element ((σ, φ), µ) where (σ, φ) is a strategy

profile and µ a belief assessment.

I consider a restricted set of beliefs, which is strictly included in the set of total histories

Ht. I call this set of beliefs B = (Bi)i∈N . Namely, for each player i in N , every belief in

Bi only assigns positive probability to histories that differ from equilibrium play, (σ∗, φ∗),

in as much as, and to the minimal extent which, their private history dictates that it does.

Formally, for every player i in N and every history hit ∈ H i
t , I denote by Ht[h

i
t] ⊂ Ht the set

of total histories for which the projection on H i
t is hit. A total history ht in Ht[h

i
t] is said to
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be compatible with private history hit of player i. Now, for every player i in N and every

history hit ∈ H i
t , let Ht[h

i
t](U |(σ∗, φ∗)) ⊆ Ht[h

i
t] be the set containing all the total histories

that are compatible with hit and included in Ht(U |(σ∗, φ∗)).21 Formally, for each player i in

N and every history hit ∈ H i
t :

Ht[h
i
t](U |(σ∗, φ∗)) = Ht[h

i
t] ∩Ht(U |(σ∗, φ∗)).

The set of beliefs Bi is then the following:

Bi =

{
(µit)t≥1 : ∀t ≥ 1, ∀hit ∈ H i

t , h
i
t ∈ H i

t(U |(σ∗, φ∗))⇒ suppµit(h
i
t) ⊆ Ht[h

i
t](U |(σ∗, φ∗))

}
,

where supp stands for the support of µit(h
i
t). In other words, the beliefs of the players are such

that, if they observe a history compatible with either no deviation or unilateral deviations,

then they assign probability one to the fact that the total history is in Ht(U |(σ∗, φ∗)) and is

compatible with hit.

In the next section, I show that for every µ ∈ B, ((σ∗, φ∗), µ) is a PBE with payoff v∗.

5.3 The equilibrium property

I now prove the following proposition, which implies the sufficiency part of Theorem 4.1.

Proposition 5.11. Assume that G is such Condition DN holds, that g satisfies Assumption

P, and that intV ∗ 6= ∅. Then, for every v ∈ V ∗, there exists δ̄ ∈ (0, 1) such that for

all δ ∈ (δ̄, 1), the assessment ((σ∗, φ∗), µ), for each µ ∈ B, is a PBE with payoff v in the

δ-discounted game.

Proof. Assume that G is such that Condition DN holds, that g satisfies Assumption P, and

that intV ∗ 6= ∅. Take v ∈ V ∗, δ̄ (defined in Section 5.2.4), and consider δ > δ̄. Recall

that δ̄ > δε so that the sequence of pure actions āt defined in Section 5.2.1 exists and the

continuation payoffs are within ε of v.

Since, play after histories that involve multilateral deviations is irrelevant, consider the

strategy (σ∗, φ∗) constructed in the previous sections for all private histories in H i
t(U |(σ∗, φ∗)),

for each player i in N . Take a belief assessment µ in B. I now prove that ((σ∗, φ∗), µ) is a

PBE.

Take first a player j such that ]N (j) ≥ 2 and ]N (i) ≥ 2 for each i ∈ N (j). By Lemma 5.4,

player j’s communication deviations do not change continuation strategies, provided player

21Recall that Ht(U |(σ∗, φ∗)) is the set of total histories along which only unilateral deviations, if any, have
taken place.
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j does not deviate in action (recall that the deviation which consists in falsely reporting his

pure actions during phase III is regarded as an action deviation). Henceforth, I focus on

player j’s action deviations. Assume that player j stops playing action ājt at some stage t

during phase I and then conforms; without loss of generality, let t = 1. Lemmas 5.2 and 5.3

imply that player j is identified as the deviator at stage t+ 1 = 2 by all players and the state

becomes {j}. Player j is thus minmaxed at stage t + 2 = 3 during T (δ) periods. Player j’s

discounted expected payoff is then no more than:

(1− δ)
2∑
t=1

δt−1ḡj + (1− δ)
∑

t>T (δ)+3

δt−1vjr = (1− δ2)ḡj + δT (δ)+3vjr .

Since δ > δ̄ > δ∗, Equation (1) ensures that this is less than vjr − ε which is a lower bound

for player j’s continuation payoff for conforming from date t on.

If player j deviates in action during phase III when he is being punished, he obtains at

most zero the stage in which he deviates, and then only lengthens his punishment, postponing

the positive payoff vjr . The case where player j deviates in action in phase III when a player

d /∈ N (j) is being punished is also trivial, since by construction player j’s action is arbitrary

and may be a best-response.

Assume now that player j deviates in action at stage t during phase III when player

d ∈ N (j) is being punished and then conforms. Two cases are possible. Assume first that

player j deviates at stage t by playing an action which is not in the support of his minmax

strategy. By construction, player j is identified as deviator at stage t+1. Player j’s discounted

expected payoff from the beginning of stage t is thus no more than:

(1− δ)
2∑
t=1

δt−1ḡj + (1− δ)
∑

t>T (δ)+3

δt−1vjr = (1− δ2)ḡj + δT (δ)+3vjr . (7)

On the contrary, if he conforms, he gets at least:

(1− δT (δ)−t+2)wj(d) + δT (δ)−t+2(vjr + ρ). (8)

If t = 1, then Equation (2) implies that Equation (8) exceeds Equation (7). If t = T (δ),

it follows from Equation (3) that Equation (8) exceeds Equation (7). Finally, the cases for

which 1 < t < T (δ) follow from Equations (2) and (3) combined.

Second, Phase IV is constructed so that player j is indifferent among all actions in the

support of his minmax strategy during phase III when player i is punished (if player j

conforms during phase IV). Regardless of player j’s actions in this phase, his continuation
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payoff from the beginning of phase III is within ε of:

(1− δ)
T (δ)∑
t=1

δt−1gj(ajt , a
N (j)
t ) + δT (δ)(vjr + ρ− zj(i)) = δT (δ)(vjr + ρ)

Hence, player j has no incentive to deviate in phase III by randomizing according to another

distribution, whose support is included in the support of his minmax strategy.

Finally, if player j deviates in action at stage t during phase IV, his discounted expected

payoff is no more than:

(1− δ)
2∑
t=1

δt−1ḡj + (1− δ)
∑

t>T (δ)+3

δt−1vjr = (1− δ2)ḡj + δT (δ)+3vjr

If player j conforms, his continuation payoff is at least vjr − ε, and so Equation (1) ensures

that deviation is not profitable.

Take now a pair of players k and ` such that N (k) = `. If player k (respectively player

`) deviates only in communication, then either continuation strategies do not change (in the

case in which all players are cleared, see Lemma 5.4), or both players k and ` are minmaxed

(see Lemma 5.3) and similar arguments as for action deviations apply. Moreover, similar

arguments as before (cases in which player j deviates) show that neither player k nor player

` has an incentive to deviate in action during any phase of the game. (Notice that even if

neither player k nor ` obtain a reward after plan {k, `} although they are minmaxing players,

they still have an incentive to play their minmax strategies, otherwise they would lengthen

their punishment, postponing positive payoffs.)

To conclude, notice that the proof of the optimality of (σ∗, φ∗) above does not take into

account the beliefs. Indeed, since µi in Bi, for any history in H i
t(U |(σ∗, φ∗)), each player

i in N believes that there is either no deviation or only unilateral deviations. The partial

strategy (σ∗, φ∗) prevents player i from deviating, no matter what his beliefs (in Bi) are.

Indeed, under µi, player i believes that if he deviates, it will lead either to his punishment,

or to no changes in his continuation payoff (in case of a communication deviate only).

Remark 5.12. One can deduce from the previous proof that the strategy ((σ∗, φ∗), µ) is belief-

free for each history in Ht(U |(σ∗, φ∗)) and for each belief assessment in µ ∈ B. Formally, I

denote by ((σi, φi), µi)|hit player i’s continuation assessment after private history hit. Let also

((σ−i, φ−i), µ−i)|h−it be the profile of continuation assessments of players j 6= i after private

histories hjt . The assessment ((σ∗, φ∗), µ) satisfies the following: for every ht ∈ Ht(U |(σ∗, φ∗)),
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every µ ∈ B and every i ∈ N :

((σi, φi), µi)|hit ∈ BR

((
(σ−i, φ−i), µ−i

)
|h−it

)
,

where BR stands for the best-reply function of player i. In other words, ((σ∗, φ∗), µ) is such

that, for every player i, every private history hit ∈ H i
t(U |(σ∗, φ∗)), every µi ∈ Bi:

((σi, φi), µi)|hit ∈ BR

((
(σ−i, φ−i), µ−i

)
|h−it

)
,

for every µ−i ∈ B−i and every h−it ∈ H−it (U) that are possible given the monitoring structure.

6 Necessity of Condition DN

Condition DN of Theorem 4.1 is necessary for the folk theorem to hold.

Proposition 6.1. Assume that G does not satisfy Condition DN. Then, there exists a payoff

function g such that: Assumption P holds, intV ∗ 6= ∅, and there exists a feasible and strictly

individually rational payoff v ∈ V ∗ such that v is not a Nash equilibrium payoff of the repeated

game.

The proof builds on the arguments developed in [23] (Section 3 page 720), and is thus

relegated to Appendix A. Intuitively, when Condition DN is violated, there exists a player i,

two of his neighbors j and k, and two deviations of j and k such that: for any action profile

(possibly mixed), both j’s and k’s deviations induce the same distribution over player i’s

payoffs, and the same distribution over the messages received by player i.22 The payoffs are

constructed so that there exists a feasible and strictly individually rational payoff which is

not jointly rational (in the sense of Renault and Tomala in [30]; see Example 3.1 therein for

a similar phenomenon).

7 Concluding remarks

In this section, I introduce some extensions of the model, and state some open problems.

Strict incentives to confess. Part of the equilibrium strategy constructed in Section 5

is weakly dominated. Indeed, a player who deviates at some stage t is required to confess at

stage t+ 1. Nevertheless, it is possible to make the players have strict incentives to confess,

22Following the terminology of Fudenberg, Levine and Maskin ([11]), pairwise identifiability fails.

33



by adjusting accordingly the reward in phase IV: indeed, the reward phase can be such that a

player who deviates, and confesses publicly his deviation after that, obtains a bonus of ρ
2
> 0

during phase IV. Hence, a player who deviates has a strict incentive to confess. In addition,

this bonus is strictly lower than ρ, otherwise a minmaxing player might have an incentive to

deviate. Indeed, a minmaxing player’s realized payoff during phase III may be less than if

he would get his minmax level instead. However, a minmaxing player has still no incentive

to deviate, otherwise he would loose ρ
2

at each stage during phase IV.

Correlated minmax. In some repeated games with imperfect monitoring, it is possible

to drive equilibrium payoffs below the independent minmax, see Renault and Tomala ([29])

for illuminating examples. It is the case here: Theorem 4.1 remains unchanged if I rather

consider correlated minmax, defined as follows:

w̄i = min
xN (i)∈∆(AN (i))

max
xi∈∆(Ai)

gi(xi, xN (i)).

To prove Theorem 4.1 in that case, I adapt the strategy constructed in Section 5 in the

following way. The idea is that players can correlate their actions when punishing player k

(respectively players k and `) in phase III, without revealing information to the minmaxed

player(s). For that, define QN(k)(k) ∈ ∆(AN (k)) (respectively QN(`)(`) ∈ ∆(AN (`))) a cor-

related strategy that realizes the minimum in w̄k (respectively w̄`). Choose a player j 6= k

(respectively j 6= k, `). At the beginning of phase III, I add a stage in which player j draws

i.i.d. sequences of pure actions according to QN(k)(k) (respectively QN(`)(`) when both play-

ers k and ` are minmaxed)23 for the minmaxing players for T (δ) periods. Player j announces

the sequences publicly to all players except k (respectively player `). Deviations of player j

are punished as before, and the reward phase makes player j indifferent between the pure

actions actually played by him and his neighbors (recall that the reward phase is based on

player j’s realized payoff).

Private communication An alternative model would be to consider private announce-

ments, i.e. the list of receivers of a message is not certifiable. The construction requires the

possibility for the players to make public announcements in two cases only.

(i) First, if there exists a player k such that N (k) = {`}, then players k and ` have to

make public announcements in phase II of the construction. Otherwise, a communi-

cation deviation of player k (respectively player `) could be to send spurious messages

23Notice that if N (k) = {`}, and both players k and ` are minmaxed, there is no need to correlate in order
to punish player k since only player ` is a neighbor of k.
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to a subset of players only. With the possibility of public communication, the strategy

constructed in Section 5 ignores such deviations. If public communication is not al-

lowed, this implies a lack of common knowledge of the deviation’s date, and there may

be a coordination failure with some players starting phase III whereas other do not.

(ii) Second, public announcements are crucial in the punishment phase (phase III). Other-

wise, some communication deviations may entail a coordination failure, since players

could have different informations on the pure actions chosen by their opponents (recall

that pure actions are announced in phase III).

Otherwise, only private communication is required. Hence, the following corollary holds:

Corollary 7.1. Assume that players are only allowed to communicate privately with each

other (no certifiability). If Condition DN holds, and if each player has more than two neigh-

bors, then the folk theorem holds with minmax levels in pure strategies (and PBE as solution

concept).

The proof is a straightforward application of the proof of Theorem 4.1.

Folk theorem without discounting. Condition DN of Theorem 4.1 is also the necessary

and sufficient condition for a folk theorem to hold if I consider uniform (sequential) equilibria

of the undiscounted repeated game (see [10] and [33]). Namely, every feasible and individually

rational payoff is a uniform (sequential) equilibrium payoff for any payoff function g that

satisfies Assumption P if and only if Condition DN holds. Moreover, in that case, public

announcements are not required, and players can be only allowed to send private messages

(coordination in cases (i) and (ii) above is not required). In addition, it is possible to restrict

communication along the network: the necessary and sufficient conditions for a folk theorem

to hold are known (but are different from Condition DN) if (i) only private communication

is allowed (no public announcements) and (ii) I consider Nash equilibrium of the repeated

game or uniform sequential equilibrium for the undiscounted case ([23]). If communication

is restricted along the network, finding conditions for a folk theorem to hold is an open

problem for (i) public announcements and (ii) sequential equilibria of repeated games with

discounting.

35



Appendix

A Proof of Proposition 6.1

A.1 Proof

Take a network G such that Condition DN does not hold. It implies that there exists two

players j and k in N , who have the same neighbors: N (j) \ {k} = N (k) \ {j}. For brevity, I

focus on the case where players j and k are not neighbors. The proof can be easily extended

to the case where j and k are neighbors.

Take a player i ∈ N (j). Notice that all other players, m 6= i, j, k are either neighbors

of both j and k, or of none of them. Consider the payoff function for players i, j and k

represented by the following table (where player i chooses the row, player j the column, and

player k the matrix):24

k plays C

i \ j C D
C 1,0,2 0,0,2
D 1,2,0 0,6,0

k plays D

i \ j C D
C 0,0,6 1,0,6
D 0,2,0 1,6,0

I write u(ai, aj, ak) for this payoff vector. Player j’s payoff does not depend on k’s action,

nor does k’s payoff depends on j’s action. Accordingly, I write uj(aj, ai) and uk(ak, ai) in

what follows. To complete the description of g, each player m 6= i, j, k has two actions C and

D such that:

- for each player m such that m /∈ N (j) ∩N (k), player m’s payoff at stage t is:

gm(amt , a
N (m)
t ) = `t

ε

n

for some ε > 0, and `t = ]{` : ` ∈ N (m) ∪ {m} and a`t = C} (`t is the number of m’s

neighbors including himself who play C at stage t);

- for each player m such that m ∈ N (j) ∩N (k), player m’s payoff at stage t is:

gm(amt , a
N (m)
t ) =

1 + `−jkt
ε
n

if aj = ak;

`−jkt
ε
n

otherwise.

24In the case where j and k are neighbors, I assume that if player j plays D it adds ε > 0 to player k’s
payoff, and symmetrically if player k plays D it adds ε > 0 to player j’s payoff. This ensures that Assumption
P holds.
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for some ε > 0, and `−jkt = ]{` : ` ∈ N (m) \ {j, k} ∪ {m} and a`t = C} (`t is the

number of m’s neighbors distinct from j and k, including himself, who play C at stage

t);

- for players i, j and k:

gi(ait, a
N (i)
t ) = ui(ait, a

j
t , a

k
t )− `it

ε

n
,

gj(ajt , a
N (j)
t ) = uj(ajt , a

i
t) + `jt

ε

n
,

gk(akt , a
N (k)
t ) = uk(akt , a

i
t) + `kt

ε

n
,

where `it = ]{` : ` ∈ N (i)\{j, k} and a`t = D}, `jt = ]{` : ` ∈ N (j)\{i} and a`t = D},
`kt = ]{` : ` ∈ N (k) \ {i} and a`t = D} and ui(ait, a

j
t , a

k
t ), u

j(ajt , a
i
t), and uk(akt , a

i
t) are

defined by the matrix above.

This payoff function g has the following properties:25

(i) g satisfies Assumption P;

(ii) intV ∗ 6= ∅;

(iii) vi < 0, vj = 0, and vk = 0;

(iv) C is a dominant strategy for each player ` 6= i, j, k;

(v) the outcome (1, 1, 1) (representing the payoffs of players i, j and k) is in V ∗;

(vi) if a` 6= C for every ` ∈ N (i), then gi(ait, a
N (i)
t ) < 1. Hence, the unique way to obtain

the outcome (1, 1, 1) is that player i chooses between C and D with probability 1
2
- 1

2
,

and that all his neighbors (including players j and k) take action C;

(vii) player i cannot punish both players j and k: player i has to play C in order to minmax

player j, which yields a payoff of 6 for player k; and player i has to choose action D in

order to minmax player k, which yields a payoff of 6 for player j;

(viii) for each player m ∈ N (j) ∩ N (k) (including player i), for every am ∈ {C,D}, and for

every aN (m)\{j,k}, the following properties hold:

gm(am, aN (m)\{j,k}, aj = C, ak = C) = gm(am, aN (m)\{j,k}, aj = D, ak = D),

gm(am, aN (m)\{j,k}, aj = C, ak = D) = gm(am, aN (m)\{j,k}, aj = D, ak = C).

25It is possible to construct a payoff function g which satisfies these properties when players have more
than two actions. This construction is described in the next section (A.2).
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Assume now that (1, 1, 1) is a Nash equilibrium of the repeated game, and let the profiles

σ̄ = (σ̄i, σ̄j, σ̄k, (σ̄m)m 6=i,j,k) and φ̄ = (φ̄i, φ̄j, φ̄k, (φ̄m)m6=i,j,k) be an equilibrium yielding a

payoff of γδ = (1, 1, 1) for players i, j and k. I construct deviations (τ j, ψj) and (τ k, ψk) for

players j and k such that:

(1) both deviations induce the same probability distributions over the sequences of mes-

sages and payoffs received by player i (deviations are indistinguishable).

(2) I will deduce from (1) that: γj(τ j, σ̄−j, ψj, φ̄−j) + γk(τ k, σ̄−k, ψk, φ̄−k) ≥ 3.

The latter equation contradicts that (σ̄, φ̄) is an equilibrium of the repeated game. Indeed,

γj(σ̄, φ̄) + γk(σ̄, φ̄) = 2 and γj(τ j, σ̄−j, ψj, φ̄−j) + γk(τ k, σ̄−k, ψk, φ̄−k) ≥ 3. Therefore, either

(τ j, ψj) is a profitable deviation for player j, or (τ k, σk) is a profitable deviation for player

k. I now construct these deviations. Define (τ j, ψj) as follows (the construction of (τ k, ψk)

is symmetric):

- at each stage, player j chooses between C and D with probability 1
2
-1

2
(instead of C

with probability 1);

- player j uses the communication strategy ψj = φ̄j(hj(τ k, σ−k, ψk, φ−k)), where the

element hj(τ k, σ−k, ψk, φ−k) stands for an arbitrary private history of player j in which

player k plays according to (τ k, ψk), and all other players follow (σ−k, φ−k): player j

follows the equilibrium communication strategy but replaces the true history by the

fictitious one in which player k is the deviator.

Under such a deviation, player i has no way to deduce whether j or k deviated, even when

(σ̄, φ̄) is a mixed strategy. Indeed, for every pure action profile, both player j’s and k’s devia-

tions induce the same payoffs for player i, since g satisfies property (viii). In addition, notice

that player i’s payoff is 1 if j and k choose the same action, and 0 otherwise. Therefore, since

τ j and τ k prescribe to choose C and D with probability 1
2
-1

2
at each stage, (τ j, ψj, σ̄−j, φ̄−j)

and (τ k, ψk, σ̄−k, φ̄−k) induce the same distribution over the payoffs of player i, even if σ̄j and

σ̄k are mixed: player i gets a payoff of 1 or 0 with probability 1
2
-1

2
.26 Hence, no player has

relevant information on the deviator’s identity: each player is either a neighbor of both j and

k, or a neighbor of none of them. Moreover, both deviations induce the same distribution

over the messages received by player i, even when φ̄ is a mixed strategy.27

26These deviations of players j and k also induce the same distribution of payoffs for all players who are
neighbors of both j and k.

27Indeed, player j draws a fictitious history, using φ̄j . If φ̄j is mixed, so is ψj (and similarly for player k’s
deviation).
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As a consequence, at every stage t, for each private history hit of player i:

Pτ j ,σ̄−j ,ψj ,φ̄−j(hit) = Pτk,σ̄−k,ψk,φ̄−k(hit).

Now, I define the following numbers bt and ct:

bt = Pτ j ,σ̄−j ,ψj ,φ̄−j(ait = C) = Pτk,σ̄−k,ψk,φ̄−k(ait = C),

ct = Pτ j ,σ̄−j ,ψj ,φ̄−j(ait = D) = Pτk,σ̄−k,ψk,φ̄−k(ait = D).

Under (τ j, ψj, σ̄−j, φ̄−j), player j’s expected payoff at stage t is then: gjt (τ
j, σ̄N (j)) ≥ 4ct ≥

4(1 − bt). As a consequence, γjδ(τ
j, ψj, σ̄−j, φ̄−j) ≥ 4(1 − δ)

∑+∞
t=1 δ

t−1(1 − bt). Since (σ̄, φ̄)

is a Nash equilibrium of the repeated game, there must exist δ̄ ∈ (0, 1) such that for any

δ ∈ (δ̄, 1), 4(1− δ)
∑+∞

t=1 δ
t−1(1− bt) ≤ 1, so that (1− δ)

∑+∞
t=1 δ

t−1bt ≥ 3
4
. In the same way,

player k’s expected payoff under (τ k, ψk, σ̄−k, φ̄−k) at stage t is: gkt (τ k, σ̄N (k)) ≥ 4bt. Hence,

γkδ (τ k, ψk, σ̄−k, φ̄−k) ≥ 4(1− δ)
∑+∞

t=1 δ
t−1bt. However, there exists δ̄ ∈ (0, 1) such that for any

δ ∈ (δ̄, 1), (1− δ)
∑+∞

t=1 δ
t−1bt ≥ 3

4
, so γkδ (τ k, ψk, σ̄−k, φ̄−k) ≥ 3. This contradicts the fact that

(σ̄, φ̄) is a Nash equilibrium of the repeated game. �

A.2 Payoff function with more than two actions

In this section, I modify the payoff function constructed in Section 6 for games in which play-

ers have more than two actions. For this purpose, I duplicate rows, columns, matrices. . . in

the following manner. For each player p ∈ N , identify Ap with {1, . . . , kp}, where kp = ]Ap.

The payoff functions are the following.

• For each player m 6= i, j, k such that m /∈ N (j) ∩ N (k), player m’s payoff at stage t is

gm(amt , a
N (m)
t ) = `t

ε
n

+ 1∑
p∈N (m)∪{m} kp

.

• For each player m 6= i, j, k such that m ∈ N (j) ∩N (k), player m’s payoff at stage t is:

gm(amt , a
N (m)
t ) =

1 + `−jkt
ε
n

+ 1∑
p∈N (m)\{j,k}∪{m} kp

if aj = ak;

`−jkt
ε
n

+ 1∑
p∈N (m)\{j,k}∪{m} kp

otherwise.
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• Player i’s payoff at stage t is:

gi(ait, a
N (i)
t ) =


ui(ait, a

j
t , a

k
t ) if apt ∈ {1, 2} for each p ∈ N (i),

ui(ait, a
j
t , a

k
t )− 1∑

p∈N (i)∪{i} kp
if ait, a

j
t , a

k
t ∈ {1, 2}, amt ≥ 3 ∀m ∈ N (i) \ {i, j, k},

6− 1∑
p∈N (i)∪{i} kp

otherwise.

• For each player n ∈ {j, k}, player n’s payoff at stage t is:

gn(ant , a
N (n)
t ) =


un(ait, a

j
t , a

k
t ) if apt ∈ {1, 2} for each p ∈ N (n),

un(ait, a
j
t , a

k
t ) + 1∑

p∈N (n)∪{n} kp
if ait, a

j
t , a

k
t ∈ {1, 2}, amt ≥ 3 ∀m 6= i, j, k,

6 + 1∑
p∈N (n)∪{n} kp

otherwise.

It is easy to see that this payoff function satisfies Assumption P, and that all the desired

properties for the proof of necessity in Section 6 hold.

B Proof of Lemma 5.2

Proof. Take a network G that satisfies Condition DN and a player k ∈ N such that ]N (k) ≥
2. Assume that player k deviates in action at stage t. Take any player j 6= k. I first prove

that j is cleared at stage t+ 1 by every player i ∈ N . Two cases are possible.

(1) Assume first that for each player j1 ∈ N (j), ]N (j1) ≥ 2. Then, each player i in N

clears player j at stage t+ 1. Indeed, the following holds:

- first, if j plays φ∗j at stage t + 1, then j ∈ mj
t+1(N). Indeed, either j ∈ N (k) and

φ̃j prescribes player j to announce publicly N \ N (j) to all players at stage t + 1, so

j ∈ m̃j
t+1(N). Or j /∈ N (k) and player j starts the protocol at the end of stage t+ 1,28

so j is prescribed to announce N (j) ∪ {j} publicly to all players at stage t + 1, so

j ∈ m̄j
t+1(N).

- Second, since Condition DN is satisfied, there exists a player m 6= j, k such that m ∈
N (k) \ {j} 4 N (j) \ {k}. Moreover, if m plays φ∗m at stage t + 1, then j ∈ mm

t+1(N).

28Notice that player j could have started the protocol at the end of stage t if (a) one of his neighbor
deviated at stage t, or (b) if a player who is not his neighbor deviated at stage t − 1, or (c) if player k
deviated also in communication at stage t by sending to j a message different from m̄k

t+1(N). However, in
any case, player j ends this “previous” protocol at the end of stage t, and starts a “new” protocol at the end
of stage t+ 1.
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Indeed, either, m ∈ N (k) and φ̃m prescribes player m to announce N \ N (m) publicly

to all players at stage t + 1, so j ∈ m̃m
t+1(N). Or m /∈ N (k), and φ̄m prescribes player

m to announce N (m) ∪ {m} publicly to all players at stage t+ 1, so j ∈ φ̄m(N).

- Third, if k follows φ∗k at stage t+ 1 , then φ̃k prescribes player k to announce N \ {k}
publicly to all players at stage t+ 1, so j ∈ m̃k

t+1(N).

Since at most one player in {j, k,m} deviates in communication at stage t+ 1, then j /∈ X i
t+1

for each player i ∈ N .

(2) Assume now that there exists j1 ∈ N (j) such that N (j1) = {j}. First,j1 is unique

(see Remark 4.2). Second, G is connected and n ≥ 3, so ]N (j) ≥ 2. Finally, j1 6= k since

]N (k) ≥ 2 by assumption. Hence, j1 is cleared at stage t + 1 by every player i in N (see

(1) above). In addition, with the same reasoning as before, at least two players in {j, k,m}
make public announcements including j to all players at stage t + 1. As a consequence, for

each player i ∈ N , j /∈ X i
t+1.

Finally, I prove that no player i ∈ N clears player k, i.e. k ∈ X i
t+1 for each player i ∈ N .

By construction, k /∈ mj
t+1(N) for any j ∈ N who follows φ∗j. Since at most one player

deviates in communication at stage t+ 1, k ∈ X i
t+1 for each player i ∈ N .

Hence, X i
t+1 = {k} for each player i in N .

C Proof of Lemma 5.3

Proof. Take a connected network G that satisfies Condition DN and suppose Assumption P

holds. Take a pair of players k and ` such that N (k) = {`}.
Assume first that player k deviates in action at stage t. At stage t + 1, players k and `

should announce N−k and N \ N (k) respectively publicly to all players. All other players

j 6= k, ` should announce N (j) ∪ {j} and k /∈ mj
t+1(N) publicly to all players since N (k) =

{`}. As a consequence, the name of k appears in at most one public announcement at stage

t and X i
t+1 ⊇ {k, `} for each player i in N . In addition, no player j 6= k, including player

`, deviates in action at stage t under unilateral deviations. So, each player j 6= k such that

]N (j) ≥ 2 appears in the public announcements of at least two distinct players (among his

two neighbors and himself), and j /∈ X i
t+1 for each player i ∈ N . On the other hand, each

player j 6= k such that ]N (j) = 1 also appears in the public announcements of at least two

distinct players: either j and his single neighbor do not deviate and j appears in both of their

public announcements, or one of them deviates at stage t + 1, which implies that k follows
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φ∗kt+1 and j ∈ mk
t+1(N). As a consequence, each player j 6= k is cleared by all players at stage

t+ 1. Hence, X i
t+1 = {k, `} for each player i in N .

Assume now that there is no action deviation at stage t and that mk
t+1 = N−k. Player

k thus deviates in communication at stage t + 1 and no other player does under unilateral

deviations. It follows that all other players j 6= k announce N (j) ∪ {j} publicly since there

was no action deviation at stage t. As a consequence, each player j 6= k is cleared by at least

two players at stage t+ 1, and player k appears in the public announcement of player ` only.

Henceforth, X i
t+1 = {k, `} for each player i ∈ N .

Finally, assume that there is no action deviation at stage t and that m`
t+1(N) = N \N (`).

Player ` thus deviates in communication at stage t + 1 and no other player does under

unilateral deviations. It follows that all other players j 6= k announce N (j) ∪ {j} publicly

to all players since there was no action deviation at stage t. As a consequence, each player

j /∈ N (`) is cleared by at least two players at stage t + 1. Moreover, for each player j ∈
N (`) \ {k}, ]N (j) ≥ 2. Indeed, if it was not the case, then N (j) = {`} = N (k) which

contradicts Condition DN. Therefore, each player j ∈ N (`) \ {k} also appears in the public

announcements of at least two distinct players at stage t+ 1. Finally, player k appears in his

own public announcement only. As a conclusion, X i
t+1 = {k, `} for every player i in N .

D Proof of Lemma 5.4

Proof. Take a connected network G that satisfies Condition DN, and suppose that Assump-

tion P holds. Take a player k in N and assume that there is no action deviation at stage

t.

Assume first that N (k) = {`} and that k deviates in communication at stage t + 1. If

mk
t+1 6= mk

t+1(N) (k does not make a public announcement to all players), then the message of

player k is ignored. Assume now that mk
t+1 = mk

t+1(N) and {N−k,N (k) ∪ {k}} /∈ mk
t+1(N).

Under unilateral deviations, all other players j 6= k announce N (j) ∪ {j} publicly. Two

cases are then possible. Either N \ N (k) /∈ mk
t+1(N) and mk

t+1(N) is not taken into account

under φ∗ since it implies that player k’s message is different from the kinds of messages

regarded during the communication protocol. Then, X i
t+1 = ∅ for every player i in N . Or,

N \ N (k) ∈ mk
t+1(N). Player k is then cleared by all players since his name is in the public

announcements of k and `. Player ` is also cleared by all players because his name is in at

least two public announcements among his own and his other neighbor than k (since n ≥ 3

and G is connected, ]N (k) ≥ 2). Each other player i is cleared by all players since his name

appears in the public announcements of at least two players among him and his neighbors

(each has at least one neighbor since G is connected). Hence, X i
t+1 = ∅ for every player i in
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N .

Assume now that there exists k′ such that N (k′) = k, and that k deviates in communi-

cation at stage t + 1. If mk
t+1 6= mk

t+1(N), then the message of player k is ignored. Assume

now that mk
t+1 = mk

t+1(N) and that {N \ N (k),N (k) ∪ {k}} /∈ mk
t+1(N). Under unilateral

deviations, all other players j 6= k announce N (j) ∪ {j} publicly to all players. Two cases

are possible. Either N−k /∈ mk
t+1(N) and player k’s public announcement is not taken into

account as before. Or N−k ∈ mk
t+1(N), in which case it is obvious that all players are cleared

(recall that player k has at least two neighbors). In any case, X i
t+1 = ∅ for each player i in

N .

Finally, assume ]N (k) ≥ 2, ]N (j) ≥ 2 for every j ∈ N (k), and that k deviates in

communication at stage t + 1. If mk
t+1 6= mk

t+1(N), then player k’s message is ignored.

Assume now mk
t+1 = mk

t+1(N) and {N (k) ∪ {k}} /∈ mk
t+1(N). Under unilateral deviations,

all other players j 6= k announce N (j)∪{j} publicly to all players. Three cases are possible.

Assume first that N−k ∈ mk
t+1(N). Then all players are cleared by everybody at stage t+ 1,

since player k has at least two neighbors. Second, assume N \ N (k) ∈ mk
t+1(N). Since

player k’s neighbors have more than two neighbors, they are cleared by all players at stage

t+ 1. Obviously, so are players other than k’s neighbors. Third, assume {N−k, N \N (k)} /∈
mk
t+1(N). As before, mk

t+1 is not taken into account. Therefore, in any case, X i
t+1 = ∅ for

each player i in N .
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[16] González-D́ıaz, J., and Meléndez-Jiménez, M. On the notion of perfect bayesian

equilibrium. TOP (2011), 1–16.

[17] Goyal, S. Connections: an Introduction to the Economics of Networks. Princeton

University Press, 2009.

[18] Green, E. J., and Porter, R. H. Noncooperative collusion under imperfect price

information. Econometrica (1984), 87–100.

[19] Hotelling, H. Stability in competition. The Economic Journal 39, 153 (1929), 41–57.

[20] Jackson, M. O. Social and Economic Networks. Princeton Univ Press, 2008.

[21] Kandori, M., and Matsushima, H. Private observation, communication and collu-

sion. Econometrica 66, 3 (1998), 627–652.

[22] Kinateder, M. Repeated games played in a network. Unpublished manuscript .

44



[23] Laclau, M. A folk theorem for repeated games played on a network. Games and

Economic Behavior 76, 2 (2012), 711–737.

[24] Lehrer, E. Lower equilibrium payoffs in two-player repeated games with non-

observable actions. International Journal of Game Theory 18, 1 (1989), 57–89.

[25] Mailath, G. J., and Samuelson, L. Repeated Games and Reputations: Long-Run

Relationships. Oxford University Press, USA, 2006.

[26] Nava, F., and Piccione, M. Repeated games with local monitoring. Unpublished

manuscript .

[27] Obara, I. Folk theorem with communication. Journal of Economic Theory 144, 1

(2009), 120–134.

[28] Radner, R. Repeated partnership games with imperfect monitoring and no discount-

ing. The Review of Economic Studies 53, 1 (1986), 43–57.

[29] Renault, J., and Tomala, T. Repeated proximity games. International Journal of

Game Theory 27, 4 (1998), 539–559.

[30] Renault, J., and Tomala, T. Communication equilibrium payoffs in repeated games

with imperfect monitoring. Games and Economic Behavior 49, 2 (2004), 313–344.

[31] Rubinstein, A. Equilibrium in supergames. Research Memorandum 25 (1977), 1–9.

[32] Sorin, S. On repeated games with complete information. Mathematics of Operations

Research 11, 1 (1986), 147–160.

[33] Sorin, S. Repeated games with complete information. in Handbook of game theory

with economic applications, Aumann, R.J. and Hart, S. (eds) 1 (1992), 71–107.

[34] Tomala, T. Fault reporting in partially known networks and folk theorems. Operations

Research 59, 3 (2011), 754–763.

[35] Wolitzky, A. Cooperation with network monitoring. forthcoming in Review of Eco-

nomic Studies .

45


