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Abstract

In order to assess causality between binary economic outcomes, we consider the es-
timation of a bivariate dynamic probit model on panel data that has the particulary to
account the initial conditions of the dynamic process. Due to the untractable form of the
likelihood function that is a two dimensions integral, we use an approximation method :
the adaptative Gauss-Hermite quadrature method as proposed by Liu and Pierce (1994).
For the accuracy of the method and to reduce computing time, we derive the gradient of
the log-likelihood and the hessian of the integrand. The estimation method has been im-
plemented using the d1 method of Stata software. We made an empirical validation of our
estimation method by applying on simulated data set. We also analyze the impact of the
number of quadrature points on the estimations and on the estimation process duration.
We then conclude that when exceeding 16 quadrature points on our simulated data set,
the relative differences in the estimated coefficients are around 0.01% but the computing
time grows up exponentially.
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Introduction

Testing Granger causality has generated a large set of paper in the literature. The larger part
of this literature concerns the case where we have continuous dependent variables. For binary
outcomes, there is also a way to consider the causality problem. As described by Adams, Mc-
Fadden and alii (2003) for a vector of dependant variables, the one order Granger causality can
be analyse as a probability conditional independence given a set of exogenous variables and the
first order lagged dependent variables. And for a binary outcome in the dependent vector, one
can use a probit probability that implies the use of latent variable.
For panel data case, as the one way fix effects model estimated on a finite sample has necessar-
ily inconsistent estimators (Heckman, 1981), the random effect model is used. Due to the fact
that we aim to test for one order Granger causality, lagged dependent variables are included as
explanatory variables. For the first wave of the panel, we do not have previous values for the
dependent variables, and treating them casually or as exogenous leads to inconsistent estimators
(Heckman 1981). So we specify an other equation for initial conditions as described by Alessie
(2004). The equation is allowed to have different explanatory variables and different idiosyn-
cratic error terms from the dynamic equation.
This specification leads to a likelihood function with an untractable form that is a two dimensions
integral with a large set of parameters to be estimated. The estimation of this likelihood func-
tion requires the use of numerical approximation of integral function such as maximum simulated
likelihood (see Gouriéroux and Monfort 1993 for more details) or Gauss-Hermite quadrature (for
more details see Naylor and Smith 1982, Liu and Pierce 1994, Jackel 2005).
In this paper, we discuss on the problem of testing Granger causality with a bivariate dynamic
probit model taking into account the initial condition. The organization of this paper is the fol-
lowing one. In section 1 we explain the causality test method for bivariate probit model in panel
data. In section 2, we describe the estimation method available when the likelihood function has
an untractable form (two dimensions integral in our case). Section 3 presents the calculation
of the gradient with respect to the model parameters and the calculation of the hessian matrix
with respect to the random effects vector. In section 4, we present a robustness analysis of our
selected estimation method by doing some simulations1.

1 Testing causality with a bivariate dynamic probit model

This section aims to describe causality test method in the case of binary variables. We start by
presenting the general approach in time series before introducing panel data case. We end this
section by a discussion on the initial condition problem.

1For each section, specifics notations are down at the beginning of the section. Otherwise, in general f(x)|x=a

denote the value of the function or the matrix f at the point a. When not specify, |a| denote the integer part of
the scalar a.
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1.1 Testing causality : general approach

Causality concept was introduced by Granger (1969) as a better predictability of a variable Y by
the use of it lag values, the lag value of an other variable Z and some controls X. In his paper,
Granger (1969) distinguishes instantaneous causality that means Zt is causing Yt (if Zt include
in the model it improves the predictability of Yt than if not) from lag causality that means
lag values of Z improve the predictability of Yt. In this section, we rule out the instantaneous
causality and deal with lag causality of one period.
The one period Granger causality can be rephrase in terms of conditional independence. Without
lost of generality, we present the univariate case for time series. Let’s Yt and Zt denote some
dependent variables and Xt denote a set of controls variables. One period Granger non-causality
from Z to Y is the conditional independence of Yt from Zt−1 conditionally to Xt and Yt−1. More
clearly, Granger non-causality from Z to Y is :

f(Yt|Yt−1, Xt, Zt−1) = f(Yt|Yt−1, Xt) (1)

Note that the same kind of relationship can be written for Granger non-causality from Y to Z.
As Yt and Zt are binary outcome variables, we can use latent variables (Y ∗ and Z∗ respectively)
and make the assumption that Y and Z have positive outcomes (equals to 1) if their latent
variable is positive. The latent variables are defined as follows :
For the left term of the equation 1 (f(Yt|Yt−1, Xt, Zt−1)) :

Y ∗t = Xtβ1 + δ11Yt−1 + δ12Zt−1 + ε1t
Z∗t = Xtβ2 + δ21Yt−1 + δ22Zt−1 + ε2t

For the right term of the equation 1 (f(Yt|Yt−1, Xt)) :

Y ∗t = Xtβ1 + δ11Yt−1 + ε1t
Z∗t = Xtβ2 + δ21Zt−1 + ε2t

where (
ε1

ε2

)
 N(0,Σε) with Σε =

(
1 ρε
ρε 1

)
To fit the joint distribution of Y and Z conditionally to X (meaning that we estimate a

bivariate model), we need to analyze four available situations that are (Y = Z = 1), (Y = Z = 0),
(Y = 1;Z = 0) and (Y = 0;Z = 1). For each of these situations, we have :

P

(
Yt = 1, Zt = 1|Xt

)
= P

(
ε1t>−Xtβ1 − δ11Yt−1 − δ12Zt−1, ε

2
t>−Xtβ2 − δ21Yt−1 − δ22Zt−1

)
P

(
Yt = 0, Zt = 0|Xt

)
= P

(
ε1t < −Xtβ1 − δ11Yt−1 − δ12Zt−1, ε

2
t < −Xtβ2 − δ21Yt−1 − δ22Zt−1

)
P

(
Yt = 1, Zt = 0|Xt

)
= P

(
ε1t>−Xtβ1 − δ11Yt−1 − δ12Zt−1, ε

2
t < −Xtβ2 − δ21Yt−1 − δ22Zt−1

)
P

(
Yt = 0, Zt = 1|Xt

)
= P

(
ε1t < −Xtβ1 − δ11Yt−1 − δ12Zt−1, ε

2
t>−Xtβ2 − δ21Yt−1 − δ22Zt−1

)
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As we can see, by supposing q1
t = 2Yt − 1 and q2

t = 2Zt − 1, we can rewrite the probabilities
above as :

P

(
Yt, Zt|Xt

)
= Φ2

(
q1
t (Xtβ1 + δ11Yt−1 + δ12Zt−1), q2

t (Xtβ2 + δ21Yt−1 + δ22Zt−1), q1
t q

2
t ρε

)
where Φ2() stands for the bivariate normal c.d.f.

Then testing Granger non-causality in this specification is testing δ12 = 0 for Z is not causing
Y and testing δ21 = 0 for Y is not causing Z.

1.2 Testing causality : Panel data case

For panel data case, two major approaches can be used. The first one is to consider that
causal effect is not the same for all individuals in the panel (Weinhold, 2000). This approach
is useful when individuals are heterogeneous or when the causal effect is not homogenous. The
specification for latent variables are :

Y ∗it = Xtβ1 + δ11,iYi,t−1 + δ12,iZi,t−1 + η1
i + ζ1

it

Z∗it = Xtβ2 + δ21,iYi,t−1 + δ22,iZi,t−1 + η2
i + ζ2

it

Where (η1
i , η

2
i )
′ denote the individual random effects which are zero mean covariance matrix Ση

and (ζ1
it, ζ

2
it)
′ denote the idiosyncratic shocks which are zero mean and covariance matrix Σζ with

Ση =

(
σ2

1 σ1σ2ρη
σ1σ2ρη σ2

2

)
and Σζ =

(
1 ρζ
ρζ 1

)
In this approach, testing Granger non-causality is equivalent to test δ12,i = 0, i = 1, ..., N for Z
is not causing Y and to test δ21,i = 0, i = 1, ..., N for Y is not causing Z.
The second approach (that is on use in this paper) is to suppose the causal effects, if it exists,
is the same for all individuals in the panel. With the same notation that the previous case, the
latent variables are :

Y ∗it = Xtβ1 + δ11Yi,t−1 + δ12Zi,t−1 + η1
i + ζ1

it

Z∗it = Xtβ2 + δ21Yi,t−1 + δ22Zi,t−1 + η2
i + ζ2

it

Then testing Granger non-causality is equivalent to test δ12 = 0 for Z is not causing Y and to
test δ21 = 0 for Y is not causing Z.

1.3 Dealing with initial conditions

For the first wave of the panel (initial condition), due to the fact that we do not have data
for the previous state on Y and Z (no values for Yi,0 and Zi,0) we are not able to evaluate
P (Yi1, Zi1|Yi,0, Zi,0, Xi). By ignoring it in the individual overall likelihood, we ignore the data
generation process for the first wage of the panel. This means that we suppose the data gen-
erating process of the first wave of the panel to be exogenous or to be in equilibrium. These
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assumptions hold only if the individual random effects are degenerated. If not, the initial con-
dition (the first wave of the panel) are explained by the individual random effects and ignoring
it leads to inconsistent parameter estimates (Heckman, 1981).

The solution proposed by Heckman (1981) for the univariate case and generalized by Alessie
(2004) is to estimate a static equation for the first wave of the panel (meaning that we do
not introduce lagged dependent variables). In this static equation, the random effects are a
linear combination of the random effects in the next wave of the panel and idiosyncratic error
terms may have different structure from the idiosyncratic error terms in the dynamic equation.
Formally, the latent variables for the first wave of the panel are defined as follows :

Y ∗i,1 = X1
i γ1 + λ11η

1
i + λ12η

2
i + ε1i

Z∗i,1 = X2
i γ2 + λ21η

1
i + λ22η

2
i + ε2i

Where (ε1i , ε
2
i )
′ denote the idiosyncratic shocks which are zero mean and covariance matrix Σε

with Σε =

(
1 ρε
ρε 1

)
.

As η1 and η2 are individual random effects respectively on Y and Z, λ12 and λ21 can be interpreted
as the influence of the Y random individual effects (respectively Z random individual effects)
on Z (respectively on Y ) at the first wave of the panel.

2 Estimation methods

Due to the fact that the likelihood function has an untractable form (an integral function), it is
impossible to estimate this likelihood by usual methods. We then deal with numerical integration
methods that are numerical approximation method for an integral. In this section we describe
two major methods and argue for one of them to estimate our likelihood function.

2.1 Gauss-Hermite quadrature method

Gauss-Hermite quadrature is a numerical approximation method use to close the value of an
integral function. The default approach is relative to an univariate integral of the form :∫

R
f(x)exp(−x2)dx (2)

With the Gaussian factor exp(−x2). But without this factor, one can use the Gauss-Hermite
quadrature by using a straightforward transformation that is to multiply and divide the integrand
f(x) by a Gaussian factor exp(−x2). Then the integral above can be approximated using :∫

R
f(x)exp(−x2)dx =

Q∑
q=1

wq ∗ f(xq) (3)
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Where xq, q = 1, ..., Q are nodes from the Hermite polynomial and wq, q = 1, ..., Q are corre-
sponding weights.

This approximation supposes that the integrand can be well approximated by an 2Q + 1
order polynomial and that the integrand is sampled on a symmetric range centered in zero. So,
for suitable results, these two assumptions may be taken into account.

For the first one, finding best number of quadrature point can be achieve numerically. For the
accuracy of the approximation, it is required to choose the best number of quadrature points.
To do this, one can start with a number q̄ of quadrature points and increase it and see if it
significantly changes the result, and repeat this process until convergence in terms of overall
likelihood value variation and estimated coefficients variation. But it is also important to take
into account the fact that increasing number of quadrature point also increase computing time.
An example of the impact of number of quadrature points on estimated results is given in section
5.

For the problem of suitable sampling range, the solution of using the adaptative Gauss-
Hermite quadrature was proposed by Naylor and Smith (1982) and by Liu and Pierce (1994). In
this approach, in fact of using exp(−x2) as a gaussian factor to multiply and divide the integrand,
they use a gaussian density φ(µ, σ) of mean µ and variance σ2. That means (see Naylor and
Smith, 1982) : ∫

R

f(x)φ(x, µ, σ)

φ(x, µ, σ)
dx =

Q∑
q=1

w∗qf(x∗q) (4)

Then the sampling range is transformed and the new nodes are x∗q = µ +
√

2σxq and weights

are w∗q =
√

2σwqexp(x
2
q). For Naylor and Smith (1982), one can choose the normal density with

posterior mean and variance equal respectively to µ and σ. For the implementation, we can start
with µ = 0 and σ = 1 and at each iteration of the likelihood maximization process, calculate
the posterior weighted mean and variance of the quadrature points and use them to calculate
the nodes and weights for the next iteration. For Liu and Pierce (1994), one can choose µ to be
the mode of the integrand and σ to be the square of the hessian of the log of integrand taken in
the mode.

σ =

(
− δ2

δx2
log(f(x))|x=x̂

)−1/2

(5)

For the multivariate integral case, the same approach is used. Without lost of generality,
we discuss the bivariate case that can be apply to others multivariate cases. The function to
approximate is written as follows : ∫

R2

f(x, y)dxdy (6)

With the assumption of independence between x and y (that can be overcome by using a Cholesky
decomposition x

′
= x and y

′
= ρx

′
+ y, see Naylor and Smith (1982) or Jackel (2005) for more

6



precision on these Cholesky transformation or other transformations that can lead to similar
results) the integral above can be approximated by :∫

R2

f(x, y)φ(x, µ, σ)φ(y, µ, σ)

φ(x, µ, σ)φ(y, µ, σ)
dxdy =

Q∑
q1=1,q2=1

w∗q1w
∗
q2
f(x∗q1 , y

∗
q1

) (7)

And in this case, the nodes and weights are derived as follows :(
x∗q1
y∗q1

)
= x̂+

√
2 ∗
(
− δ2

δx2
log(f(x, y))|x,y=x̂

)−1/2

∗
(
xq1
yq1

)
(8)

and (
w∗q1
w∗q2

)
= 2 ∗

∣∣∣∣− δ2

δx2
log(f(x, y))|x,y=x̂

∣∣∣∣−1/2

∗
(
wq1exp(x

2
q1

)
wq2exp(x

2
q2

)

)
(9)

Where |A| denote the determinant of the matrix A.

Jackel (2005) also suggests that for the nodes with low weights (when contributions to the
integral value are not significative) we can prune the range from those nodes in order to save
calculation time. That means to set a scalar τ =

w1w|(Q+1)/2|
Q

and drop all nodes with weights
lower than this scalar.

2.2 Maximum simulated likelihood method

Maximum Simulated Likelihood method was introduced by Gouriéroux and Monfort (1993) as a
solution to maximization problems that have an integral as objective function. In this approach,
the likelihood function is supposed to be defined as :

f(x, y) =

∫
R2

f ∗(x, y, u1, u2)g(u1, u2)du1du2 (10)

where g(u1, u2) is a probability distribution function, f ∗(x, y, u1, u2) is called simulator and
denotes the function from which the mean value at some draws u1 and u2 gives an approximation
of the overall likelihood. Without lost of generality, we only define the two dimensions case that
can be generalized to fewer or larger dimensions integral. For this kind of likelihood function,
Gouriéroux and Monfort (1993) proposed as simulator the function f ∗(x, y, u1, u2) with u1 and
u2 drawn from the same probability distribution function g (the probability distribution function
of the individual random effects). Then the overall likelihood function can be approximated by
:

f(x, y) =
1

D

D∑
d=1

f ∗(x, y, u1d, u2d) (11)

Where D denotes the number of draws.
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To implement this method, we start by simulating a bivariate normal draw N(0, I2) and we
give them the (u1, u2) covariance matrix structure. Then we calculate the value of the simulator
at these transformed draws and we repeat D times. The overall likelihood is the mean of the
simulator value at each transformed draw. At each iteration, once the random effects covariance
matrix is calculated, we apply it to the simulated first normal draws to transform them in draws
of the random effects and use them to calculate the likelihood. This process is repeated until
convergence.

The simulated likelihood estimator is consistent and asymptotically equivalent to the likeli-
hood estimator (Gouriéroux and Monfort, 1993) if the number of draws tend to infinity faster
than

√
N .

2.3 GHQ or MSL : what method to choose ?

As described above, they are two major methods to estimate our likelihood function. To choose
which method to implement, we deal with the accuracy and the computing time requirement.
For our estimations, we choose the adaptative Gauss-Hermite quadrature proposed by Liu and
Pierce (1994) for three main reasons.

• Our dataset is an unbalanced panel data with 10,311 individuals observed in mean over
26 years, that leads 272,465 observations. Due to the fact that the simulated likelihood
method requires that the number of draw D be larger than the square of the number of
observations, we do not use it to avoid waste of time in computing process.

• The Gauss-Hermite quadrature requires that we find the best number of quadrature Q
that is the one for whom the integrand can be well approximated by an 2Q + 1 order
polynomial. If Q is small, that reduces computing time. For our estimations, that are
achieved in general for Q between 8 and 14. It means that at each iteration, for the
likelihood value calculation, we do a weighted sum of between 82 = 64 and 142 = 196
terms.

• Using the Gauss-Hermite quadrature method reduces computing time but this computing
time remains very long if the integrand is not sampled at the suitable range (meaning
that the adaptative method has not been used). And in this case, the maximization
process spends between two and three weeks before achieve convergence on an Intel Core
i7 computer at 3.4 GHz with 8 GB of RAM memory. By applying the adaptative Gauss-
Hermite quadrature, the computing time is significatively reduced and then, we spend
between two and three days for achieving convergence on the same computer.

3 Chosen method requirements

In this section we describe some requirements of the selected method that is the adaptative
Gauss-Hermite Quadrature. The first one is the fact that the adaptative Gauss-Hermite quadra-
ture requires to derive the hessian of the log of the integrand (Liu and Pierce, 1994). The second
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one is that we derive the gradient of the overall likelihood function in order to use Stata’s d1
method (see Gould et alii, 2010) for more accuracy and more speed in the calculations.

3.1 Gradient vector calculation

The gradient of the overall log-likelihood function has been calculated to speed up the maximiza-
tion process. This will allow us to use the Stata’s d1 method that requires the implementation
of the gradient vector in addition to the overall log-likelihood.
Using the Liu and Pierce adaptative Gauss-Hermite quadrature method, the overall likelihood
function is given by (we use the same notation that those used in section 2) :

Li =

Q∑
k=1,j=1

w∗kw
∗
jΦ2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Ti∏
t=2

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)φ(ηi,Ση)

∣∣∣∣
η1i=x∗k,η

2
i=x∗j

(12)

To get the gradient vector, the log-likelihood above must be derive with respect to 13 parameters
that are : β̄1 = (β1, δ11, δ12)′ , β̄2 = (β2, δ21, δ22)′, γ1, γ2, λ11, λ12, λ21, λ22, σ1, σ2, ρη, ρζ , and ρε.
Let’s lkj denote :

lkj = Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Ti∏
t=2

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)φ(ηi,Ση)

∣∣∣∣
η1i=x∗k,η

2
i=x∗j

Then the first order derivatives with respect to each α of the 13 parameters is given by :

∂log(Li)

∂α
=

Q∑
k=1,j=1

∂lkj/∂α

Li

With respect to β̄1 the first order derivative is :

∂lkj
∂β̄1

= lkj

Ti∑
t=2

q1
itφ(q1

ith̄it)Φ1(
q2itw̄it−q2itρζ h̄it√

1−ρ2ζ
)

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

With respect to β̄2 the first order derivative is :

∂lkj
∂β̄2

= lkj

Ti∑
t=2

q2
itφ(q2

itw̄it)Φ1(
q1ith̄it−q1itρζw̄it√

1−ρ2ζ
)

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

With respect to γ1 the first order derivative is :

∂lkj
∂γ1

= lkj

q1
i0φ(q1

i0h
0
i )Φ1(

q2i0w
0
i−q2i0ρεh0i√

1−ρ2ε
)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

With respect to γ2 the first order derivative is :

∂lkj
∂γ2

= lkj

q2
i0φ(q2

i0w
0
i )Φ1(

q1i0h
0
i−q1i0ρεw0

i√
1−ρ2ε

)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)
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With respect to λ11 the first order derivative is :

∂lkj
∂λ11

= lkj

q1
i0x
∗
kφ(q1

i0h
0
i )Φ1(

q2i0w
0
i−q2i0ρεh0i√

1−ρ2ε
)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

With respect to λ12 the first order derivative is :

∂lkj
∂λ12

= lkj

q1
i0x
∗
jφ(q1

i0h
0
i )Φ1(

q2i0w
0
i−q2i0ρεh0i√

1−ρ2ε
)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

With respect to λ21 the first order derivative is :

∂lkj
∂λ21

= lkj

q2
i0x
∗
kφ(q2

i0w
0
i )Φ1(

q1i0h
0
i−q1i0ρεw0

i√
1−ρ2ε

)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

With respect to λ22 the first order derivative is :

∂lkj
∂λ22

= lkj

q2
i0x
∗
jφ(q2

i0w
0
i )Φ1(

q1i0h
0
i−q1i0ρεw0

i√
1−ρ2ε

)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

With respect to σ1 the first order derivative is :

∂lkj
∂log(σ1)

= lkj ∗
(
− 1 +

(x∗k/σ1)2 − ρηx∗kx∗j/(σ1σ2)

1− ρ2
η

)
With respect to σ2 the first order derivative is :

∂lkj
∂log(σ2)

= lkj ∗
(
− 1 +

(x∗j/σ2)2 − ρηx∗kx∗j/(σ1σ2)

1− ρ2
η

)
With respect to ρη the first order derivative is :

∂lkj

∂log(1+ρη
1−ρη )1/2

= lkj ∗
(
ρη −

ρη((x
∗
k/σ1)2 + (x∗j/σ2)2)− (1 + ρ2

η)x
∗
kx
∗
j/(σ1σ2)

1− ρ2
η

)
With respect to ρζ the first order derivative is :

∂lkj

∂log(
1+ρζ
1−ρζ

)1/2
= lkj

Ti∑
t=2

q1
itq

2
itφ(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

With respect to ρε the first order derivative is :

∂lkj

∂log(1+ρε
1−ρε )

1/2
= lkj

q1
i0q

2
i0φ(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Remarks :
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• For σ1, σ2, ρη, ρζ , and ρε, we used some transformations on parameters to insure that in
the maximization process, all σ remain positive and all ρ between −1 and 1 at all iteration.
For σ we use exponential transformation then in the derivation, we derive with respect to
log(σ). For ρ we use arctangency transformation (i.e. exp(2ρ)−1

exp(2ρ)+1
) then in the derivation, we

derive with respect to log

(
1+ρ
1−ρ

)1/2

.

• To easily derive a bivariate normal probability with zero mean, variance one and correlation
ρ, we can transform it into an integral that integrand is a product of an univariate normal
density and an univariate normal probability as follows :

Φ2(x, y, ρ) =

∫ y

−∞
φ(v)Φ

(
x− ρv√

1− ρ2

)
dv =

∫ x

−∞
φ(u)Φ

(
y − ρu√

1− ρ2

)
du.

• Given the transformation above, the first order derivatives of Φ2(x, y, ρ) with respect to x
and y are respectively given by :

∂Φ2(x, y, ρ)

∂x
= φ(x)Φ

(
y − ρx√

1− ρ2

)
∂Φ2(x, y, ρ)

∂y
= φ(y)Φ

(
x− ρy√

1− ρ2

)
3.2 Hessian matrix calculation

For the requirement of the adaptative Gauss-Hermite quadrature method, we need to derive the
Hessian matrix of the log of the integrand function with respect to the random effects vector. In
this section, φ(x) denotes the univariate normal density function, φ(x, y, ρ) denote the bivariate
normal density with correlation ρ, Φ1(x) denote the univariate normal probability function, and
Φ2(x, y, ρ) denote the bivariate normal probability function with correlation ρ.
The individual likelihood function is defined as follows :

Li =

∫
R2

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Ti∏
t=2

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)φ(ηi,Ση)dη

1
i dη

2
i (13)

Where

q1
it = 2y1

it − 1 ∀ i, t
q2
it = 2y2

it − 1 ∀ i, t
h0
i = Z1

i γ1 + λ11η
1
i + λ12η

2
i

w0
i = Z2

i γ2 + λ21η
1
i + λ22η

2
i

h̄it = X1
itβ1 + δ11hi,t−1 + δ12wi,t−1 + η1

i

w̄it = X2
itβ2 + δ21hi,t−1 + δ22wi,t−1 + η2

i

11



where the log of the integrand is

log(g(η1
i , η

2
i )) = log

(
Φ2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

∏Ti
t=2 Φ2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)g(ηi,Ση)

)
. We derive

from this function the Hessian matrix by calculating − δ2

δ(η1i )2
log(g(η1

i , η
2
i )), − δ2

δ(η2i )2
log(g(η1

i , η
2
i ))

and − δ2

δη1i δη
1
i
log(g(η1

i , η
2
i )).

The first order derivatives are given by :

− ∂

∂ηi
log(g) = −Φ

′
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

−
Ti∑
t=2

Φ
′
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

Φ2(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

+
η1
i /σ

2
1 − ρη2

i /(σ1σ2)

1− ρ2
η

With respect to η1
i we have :

Φ′2η1i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε) = q1

i0λ11φ(q1
i0h

0
i )Φ1(

q2
i0w

0
i − q2

i0ρεh
0
i√

1− ρ2
ε

)

+q2
i0λ21φ(q2

i0w
0
i )Φ1(

q1
i0h

0
i − q1

i0ρεw
0
i√

1− ρ2
ε

)

Φ′2η1i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ) = q1

itφ(q1
ith̄it)Φ1

(
q2
itw̄it − q2

itρζ h̄it√
1− ρ2

ζ

)

And with respect to η2
i we have :

Φ
′

2η2i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε) = q1

i0λ12φ(q1
i0h

0
i )Φ1(

q2
i0w

0
i − q2

i0ρεh
0
i√

1− ρ2
ε

)

+q2
i0λ22φ(q2

i0w
0
i )Φ1(

q1
i0h

0
i − q1

i0ρεw
0
i√

1− ρ2
ε

)

Φ
′

2η2i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ) = φ(q2

itw̄it)Φ1

(
q1
ith̄it − q1

itρζw̄it√
1− ρ2

ζ

)
The second order derivatives are given by :

− ∂2

∂(η1
i )

2
log(g) = −

Φ
′′

2η1i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)Φ2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

(14)

+
Φ
′2
2η1i

(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

−
Ti∑
t=2

(Φ
′′

2η1i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)Φ2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

Φ2
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

−
Φ
′2
2η1i

(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

Φ2
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

)
+

1

σ2
1(1− ρ2

η)
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− ∂2

∂(η2
i )

2
log(g) = −

Φ
′′

2η2i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)Φ2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

(15)

+
Φ
′2
2η2i

(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

−
Ti∑
t=2

(Φ
′′

2η2i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)Φ2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

Φ2
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

−
Φ
′2
2η2i

(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

Φ2
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

)
+

1

σ2
2(1− ρ2

η)

− ∂2

∂η1
i δη

2
i

log(g) = −
Φ
′′

2η1i η
2
i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)Φ2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

(16)

+
Φ
′

2η1(q
1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)Φ

′

2η2(q
1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

Φ2
2(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

−
Ti∑
t=2

(Φ
′′

2η1i η
2
i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)Φ2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

Φ2
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

−
Φ
′

2η1(q
1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)Φ

′

2η2(q
1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

Φ2
2(q1

ith̄it, q
2
itw̄it, q

1
itq

2
itρζ)

)
− ρη
σ1σ2(1− ρ2

η)

Where

Φ
′′

2η1i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ) = −h̄itΦ

′

2η1i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)− ρζφη1i (q

1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

Φ
′′

2η2i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ) = −w̄itΦ

′

2η2i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)− ρζφη1i (q

1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

Φ
′′

2η1i η
2
i
(q1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ) = q1

itq
2
itρζφη1i (q

1
ith̄it, q

2
itw̄it, q

1
itq

2
itρζ)

Φ
′′

2η1i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε) = (2λ11λ21 − ρε(λ2

11 + λ2
21))φ(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

−λ2
11h

0
iφ(q1

i0h
0
i )Φ1

(
q2
i0w

0
i − ρεq2

i0h
0
i√

1− ρ2
ε

)
−λ2

21w
0
i φ(q2

i0w
0
i )Φ1

(
q1
i0h

0
i − ρεq1

i0w
0
i√

1− ρ2
ε

)

Φ
′′

2η2i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε) = (2λ12λ22 − ρε(λ2

12 + λ2
22))φ(q1

i0h
0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)

−λ2
12h

0
iφ(q1

i0h
0
i )Φ1(

q2
i0w

0
i − ρεq2

i0h
0
i√

1− ρ2
ε

)

−λ2
22w

0
i φ(q2

i0w
0
i )Φ1(

q1
i0h

0
i − ρεq1

i0w
0
i√

1− ρ2
ε

)
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Φ
′′

2η1i η
1
i
(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε) = q1

i0q
2
i0(λ11λ22 + λ12λ21 − ρε(λ11λ12 + λ21λ22)) ∗

φ2(q1
i0h

0
i , q

2
i0w

0
i , q

1
i0q

2
i0ρε)− λ11λ12h

0
iφ(q1

i0h
0
i )Φ1

(
q2
i0w

0
i − ρεq2

i0h
0
i√

1− ρ2
ε

)
−λ21λ22w

0
i φ(q2

i0w
0
i )Φ1

(
q1
i0h

0
i − ρεq1

i0w
0
i√

1− ρ2
ε

)
Then, the Hessian matrix is given by :

H =

(
− δ2

δ(η1i )2
log(g) − δ2

δη1i δη
2
i
log(g)

− δ2

δη1i δη
2
i
log(g) − δ2

δ(η2i )2
log(g)

)
(17)

As described in section 2.1, after having derived this Hessian matrix, we calculate its value at
the mode of the integrand and use it to resample the integrand.

4 Robustness analysis based on simulations

This section aims to insure that the implemented method gives suitable results. We consider that
the implemented method give us suitable results if for a given relationship between variables, by
applying the estimation method on these variables we find approximatively the same coefficients.
To reach this goal, we perform a robustness analysis on the estimation method. This robustness
analysis is an empirical one based on simulations. We use two different approaches for that.

The first approach is to simulate bivariate binary variables by specifying a relationship be-
tween some explanatory variables (it means that we fix coefficients of explanatory variables) and
estimate this relationship with the implemented method in order to compare the results with
the relationship specified before. In the second approach, we introduce new variables (that were
not used in the data generating process) when estimating the relationship with the implemented
method and compare the new results with the first ones. The implemented method is robust
when it is able to correctly estimate the relationship specified even if we introduce other variables
and also to estimate non significant coefficients to those other variables. Finally, the method we
make use of to check for the robustness is the same that in Miranda (2011).

As the estimation method implemented is a numerical approximation method, the results
will depend on the selected number of quadrature points. We deal with the incidence of number
of quadrature points on results in the last part of this section. For a better analysis of the results
we also add the standard errors of each estimated coefficients.

4.1 Simulated relationship between real variables

In this section, we use variables from the French SIP (Santé et Itinéraire Professionnel) survey
data set and we simulate error terms and a relationship between some selected variables. The
subset of the database use for this section is an unbalanced panel of 1202 individuals with total
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waves per individual between 5 and 10 waves.

We fix the error terms parameters as σ1 = 2.1, σ2 = 3.1, ρη = 0.7, ρζ = 0.5 and ρε = 0.4.

We simulate idiosyncratic errors vectors ζ = (ζ1, ζ2)′ and ε = (ε1, ε2)′ as bivariate normal
variables with zero mean, variance equal to 1 and covariances respectively equal to ρζ and
ρε. We also simulate individual random effects as bivariate normal variables with zero mean,
covariance equals to ρη and variance equals to σ2

1 for the first component of the random effects
vector and equals to σ2

2 for the second component of the random effects vector. It has been done
as follows :

ε1 = rnormal()

ε2 = rnormal() ∗
√

1− ρ2
ε + ρεε1

ζ1 = rnormal()

ζ2 = rnormal() ∗
√

1− ρ2
ζ + ρζζ1

As individuals effects are time invariant, we simulate η as follows :

η1 = rnormal(0, σ1) if date = 1

η2 = rnormal(0, σ2) ∗
√

1− ρ2
η + ρη

σ2

σ1

η1 if date = 1

η1 = η1[1] if date 6= 1

η2 = η2[1] if date 6= 1

Where rnormal(µ, σ) denote the random normal density with mean µ and standard deviation
σ and rnormal() denote the random normal density with mean zero and standard deviation 1.

For the initial condition, the simulated relationship is :

y∗1 = −0.2 + 0.3illness− 0.2unemployment+ 0.4η1 − 0.5η2 + ε1

y∗2 = 2− 0.2illness− 0.08age+ 0.3η1 + 0.5η2 + ε2

y1 = I(y∗1 > 0)

y2 = I(y∗2 > 0)

For t>1, we specify the following relationship :

y∗1t = 1.9 + 0.3y1,t−1 + 0.1y2,t−1 − 0.05Malet − 0.2unemploymentt + η1 + ζ1t

y∗2t = −0.4− 0.1y1,t−1 + 0.4y2,t−1 + 0.05Malet − 0.5densityt + η2 + ζ2t

y1t = I(y∗1t > 0)

y2t = I(y∗2t > 0)

Estimation results for 16 quadrature points are displayed in table 1. For all equations, we
give the coefficients that are used in the DGP and those that are estimaed by our program. As
we can see, all the coefficients from the DGP are very closed from the estimates ones.
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Table 1: Simulated data set estimation’s results
Equation 1 Equation 2

DGP Estimated coef. DGP Estimated coef.

(1) (2) (1’) (2’)

DynamicEquation

y1−1 0.3 0.2195∗∗∗
(0.05)

−0.1 −0.0051
(0.0567)

y2−1 0.1 0.1267∗∗
(0.0513)

0.4 0.4926∗∗∗
(0.061)

Gender = Male −0.05 −0.0554
(0.0521)

0.05 0.073
(0.0594)

Medical density − − 0.5 0.5687
(1.1111)

Unemployment rate −0.2 −0.1682∗∗∗
(0.0269)

− −

Intercept 1.9 2.3113∗∗∗
(0.2667)

−0.4 −0.4677
(2.122)

Initial Conditions

Illness before prof. life 0.3 0.3032∗∗∗
(0.0283)

−0.2 −0.1624∗∗∗
(0.0221)

Age − − −0.08 −0.093∗∗∗
(0.0202)

Unemployment rate −0.2 −0.144∗∗
(0.057)

− −

Intercept −0.2 −0.7331
(0.6194)

2 2.6757∗∗∗
(0.4591)

λ1 0.4 0.2581∗∗∗
(0.0651)

0.3 0.2660∗∗∗
(0.0463)

λ2 −0.5 −0.5168∗∗∗
(0.0753)

0.5 0.7022∗∗∗
(0.0598)

Covariancematrix structure

DGP Estimated coef.

(4) (5)

σ1 2.1 2.4399∗∗∗
(0.1034)

σ2 3.1 2.7649∗∗∗
(0.1365)

ρη 0.7 0.7188∗∗∗
(0.0212)

ρζ 0.5 0.5290∗∗∗
(0.0419)

ρε 0.4 0.6972∗∗∗
(0.1378)

Estimated standard deviations for estimated coefficients are given within parenthesis.
∗ ∗ ∗: significant at the 1% level.
∗∗: significant at the 5% level.

16



4.2 Simulated relationship with additional variables

In this section, we keep the same DGP than in section 4.1 and we add other variables in
the model that we estimate in order to evaluate the robustness of the estimation method by
the fact that all estimated coefficients for variables in the DGP should remain the same and
the added variables coefficients should not significative. We introduce two variables rural and
nationality (not French) in the dynamic equations of the regression.

Results are in table 2. Columns 1 and 2 in table 2 are the same than corresponding columns in
table 1. We provide in table 2, column 3, the new results with the additional variables in order to
compare with previous estimates2. As we can see in the table 2, the coefficients estimated (using
again 16 quadrature points) for those variables are not significant and all initial coefficients in
the model remain sensibly the same.

4.3 Impact of number of quadrature points on estimated results

As the accuracy of the method depends on the number of quadrature points used for the likeli-
hood calculation, we can try to see how it affects the results when this number increases. For
doing so, we fit the same model with different numbers of quadrature points and we calculate
the relative difference in log-likelihood and in estimated parameters.
We fit some models by using the same simulated relationship between variables as in section 4.1.

The results are displayed in the table 3 for dynamic equations and in the table 4 for initial
conditions equations and errors terms covariance matrix structure.

As we can see from tables 3 and 4, by increasing the number of quadrature points the changes
in results decline and the relative differences are around 0.01% for significant coefficients and
0.1% or at most 1% for non significant coefficients. After 16 quadrature points, the relative dif-
ferences in log-likelihood and in estimated coefficients become fewer as we increase the number
of quadrature points. The estimations with 22 quadrature points are closer to those with 24
quadrature points than the others. So when we increase the number of quadrature points the
changes in estimated coefficients are not significant but the computing time grows up exponen-
tially. For these models, estimation time on an i5 core computer at 2.5 GHz with 6 GB of RAM
memory for the different number of quadrature points are given in table 5.

2We do the same with columns 1’, 2’ of tables 1 and 2 (new results are in column 3’) and with columns 4 and
5 of both tables (new results in column 6).
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Table 2: Simulated data set with added variables estimation’s results
Equation 1 Equation 2

DGP coef. coef. DGP coef. coef.

(1) (2) (3) (1’) (2’) (3’)

DynamicEquation

y1−1 0.3 0.2195∗∗∗
(0.05)

0.2184∗∗∗
(0.05)

−0.1 −0.0051
(0.0567)

−0.0052
(0.0568)

y2−1 0.1 0.1267∗∗
(0.0513)

0.1283∗∗
(0.0513)

0.4 0.4926∗∗∗
(0.061)

0.4944∗∗∗
(0.0612)

Gender = Male −0.05 −0.0554
(0.0521)

−0.0571
(0.0521)

0.05 0.073
(0.0594)

0.0751
(0.0596)

Medical density − − − 0.5 0.5687
(1.1111)

0.5567
(1.1112)

Unemployment rate −0.2 −0.1682∗∗∗
(0.0269)

−0.1698∗∗∗
(0.0269)

− − −

NotFrench − − 0.1246
(0.0956)

− − 0.0015
(0.1076)

rural − − 0.0743
(0.0628)

− − 0.0283
(0.0719)

Intercept 1.9 2.3113∗∗∗
(0.2667)

2.2994∗∗∗
(0.2667)

−0.4 −0.4677
(2.122)

−0.4527
(2.1215)

Initial Conditions

Illness before prof. life 0.3 0.3032∗∗∗
(0.0283)

0.3032∗∗∗
(0.0283)

−0.2 −0.1624∗∗∗
(0.0221)

−0.1627∗∗∗
(0.0221)

Age − − − −0.08 −0.093∗∗∗
(0.0202)

−0.0932∗∗∗
(0.0202)

Unemployment rate −0.2 −0.144∗∗
(0.057)

−0.144∗∗
(0.057)

− − −

Intercept −0.2 −0.7331
(0.6194)

−0.7335
(0.6195)

2 2.6757∗∗∗
(0.4591)

2.6803∗∗∗
(0.4595)

λ1 0.4 0.2581∗∗∗
(0.0651)

0.2582∗∗∗
(0.0653)

0.3 0.266∗∗∗
(0.0463)

0.267∗∗∗
(0.0464)

λ2 −0.5 −0.5168∗∗∗
(0.0753)

−0.5171∗∗∗
(0.0754)

0.5 0.7022∗∗∗
(0.0598)

0.703∗∗∗
(0.0599)

Covariancematrix structure
DGP Estimated coef. Estimated coef.

(4) (5) (6)
σ1 2.1 2.4399∗∗∗

(0.1034)
2.4353∗∗∗

(0.1032)

σ2 3.1 2.7649∗∗∗
(0.1365)

2.763∗∗∗
(0.1366)

ρη 0.7 0.7188∗∗∗
(0.0212)

0.7187∗∗∗
(0.0212)

ρζ 0.5 0.529∗∗∗
(0.0419)

0.5301∗∗∗
(0.0419)

ρε 0.4 0.6972∗∗∗
(0.1379)

0.697∗∗∗
(0.1378)

Estimated standard deviations for estimated coefficients are given within parenthesis.
∗ ∗ ∗: significant at the 1% level.
∗∗: significant at the 5% level.
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Table 3: Impact of the number of quadrature points on estimation results. Part A
DGP Q = 10 Q = 16 Q = 22 Q = 24

Log − likelihood −8212.05 −8211.26 −8301.71 −8301.24

y1 Dynamic equation

y1−1 0.3 0.2754∗∗∗
(0.0489)

0.2195∗∗∗
(0.05)

0.2206∗∗∗
(0.052)

0.2131∗∗∗
(0.0527)

y2−1 0.1 0.1376∗∗∗
(0.0483)

0.1267∗∗
(0.0513)

0.1196∗∗
(0.0554)

0.1010∗
(0.0568)

Gender = Male −0.05 −0.0580
(0.0479)

−0.0554
(0.0521)

−0.0732
(0.058)

−0.0599
(0.0604)

Unemployment rate −0.2 −0.1509∗∗∗
(0.0262)

−0.1682∗∗∗
(0.0269)

−0.1792∗∗∗
(0.0273)

−0.1810∗∗∗
(0.0275)

Intercept 1.9 2.3270∗∗∗
(0.2598)

2.3113∗∗∗
(0.2667)

2.3089∗∗∗
(0.2726)

2.30∗∗∗
(0.2753)

y2 Dynamic equation

y1−1 −0.1 0.0224
(0.0541)

−0.0051
(0.0567)

−0.0136
(0.0594)

−0.0191
(0.0605)

y2−1 0.4 0.5851∗∗∗
(0.0596)

0.4926∗∗∗
(0.0610)

0.4846∗∗∗
(0.0642)

0.4752∗∗∗
(0.0650)

Gender = Male 0.05 0.0570
(0.0542)

0.0730
(0.0594)

0.0817
(0.0650)

0.0725
(0.0673)

Medical density 0.5 1.3305
(1.0685)

0.5687
(1.1111)

0.4874
(1.1357)

0.3549
(1.1473)

Intercept −0.4 −1.7595
(2.040)

−0.4677
(2.1220)

−0.4064
(2.1704)

−0.1492
(2.1936)

Estimated standard deviations for estimated coefficients are given within parenthesis.
∗ ∗ ∗: significant at the 1% level.
∗∗: significant at the 5% level.
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Table 4: Impact of the number of quadrature points on estimation results. Part B
DGP Q = 10 Q = 16 Q = 22 Q = 24

y1 Initial conditions

Illness before prof. life 0.3 0.3005∗∗∗
(0.0278)

0.3032∗∗∗
(0.0283)

0.3022∗∗∗
(0.0282)

0.3026∗∗∗
(0.0284)

Unemployment rate −0.2 −0.1592∗∗∗
(0.0573)

−0.1440∗∗
(0.0570)

−0.1437∗∗
(0.0571)

−0.1431∗∗
(0.0572)

Intercept −0.2 −0.6120
(0.6197)

−0.7331
(0.6194)

−0.7065
(0.6187)

−0.7153
(0.6188)

λ11 0.4 0.2608∗∗∗
(0.0644)

0.2581∗∗∗
(0.0651)

0.2584∗∗∗
(0.0658)

0.2628∗∗∗
(0.0664)

λ12 −0.5 −0.5076∗∗∗
(0.0723)

−0.5168∗∗∗
(0.0753)

−0.5051∗∗∗
(0.0744)

−0.5019∗∗∗
(0.0741)

y2 Initial conditions

Age −0.08 −0.0859∗∗∗
(0.0196)

−0.0930∗∗∗
(0.0202)

−0.0929∗∗∗
(0.0205)

−0.0943∗∗∗
(0.0207)

Illness before prof. life −0.2 −0.1593∗∗∗
(0.0221)

−0.1624∗∗∗
(0.0221)

−0.1648∗∗∗
(0.0225)

−0.1650∗∗∗
(0.0226)

Intercept 2 2.7329∗∗∗
(0.4483)

2.6757∗∗∗
(0.4591)

2.5788∗∗∗
(0.4644)

2.5904∗∗∗
(0.4676)

λ21 0.3 0.2689∗∗∗
(0.0467)

0.2660∗∗∗
(0.0463)

0.2691∗∗∗
(0.0474)

0.2679∗∗∗
(0.0475)

λ22 0.5 0.7136∗∗∗
(0.0607)

0.7022∗∗∗
(0.0598)

0.7008∗∗∗
(0.0625)

0.6932∗∗∗
(0.0626)

Covariance matrix structure

σ1 2.1 2.5202∗∗∗
(0.1053)

2.4399∗∗∗
(0.1034)

2.3920∗∗∗
(0.1047)

2.3898∗∗∗
(0.1051)

σ2 3.1 2.7012∗∗∗
(0.1307)

2.7649∗∗∗
(0.1365)

2.7928∗∗∗
(0.1444)

2.8281∗∗∗
(0.1468)

ρη 0.7 0.7380∗∗∗
(0.0206)

0.7188∗∗∗
(0.0212)

0.7143∗∗∗
(0.0219)

0.7162∗∗∗
(0.0219)

ρζ 0.5 0.5451∗∗∗
(0.0411)

0.5290∗∗∗
(0.0419)

0.5225∗∗∗
(0.0423)

0.5145∗∗∗
(0.0424)

ρε 0.4 0.6550∗∗∗
(0.1394)

0.6972∗∗∗
(0.1378)

0.6996∗∗∗
(0.1381)

0.6944∗∗∗
(0.1371)

Estimated standard deviations for estimated coefficients are given within parenthesis.
∗ ∗ ∗: significant at the 1% level.
∗∗: significant at the 5% level.
∗: significant at the 10% level.

Table 5: Computing time for different number of quadrature points
Quad. points 10 16 22 24

Comp. time (inmin.) 83 190 450 480
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Conclusion

This paper describes the bivariate dynamic probit model with endogenous initial condition start-
ing by justifying the econometric specification of the model, giving the estimation method and
its requirements and ending by presenting a robustness analysis. We calculate derivatives of the
log-likelihood function with respect to the 13 parameters in the model. For the use of the adap-
tative Gauss-Hermite quadrature, we also calculate the hessian matrix with respect to individual
random effects vector.

The implementation has been done using Stata software. We wrote 2 ado-files for this pur-
pose. We use Stata’s d1 method for the maximization process. For the use of this method, we
implement the gradient vector for the 13 parameters and we also implement the hessian matrix
with respect the random effects vector in order to use the adaptative Gauss-Hermite quadrature.
We also wrote two others ado-files for the estimation of the bivariate probit for panel data and
the bivariate dynamic probit without initial condition for panel data. These ado-files are written
using the same method (Stata’s d1 method) with the adaptative Gauss-Hermite quadrature.

Due to the fact that the integration is bi-dimensional, estimation time is very long and still
increasing when the quadrature point or the number of observation or the number of variable
increase. For an estimated model, one should insure that when increasing the number of quadra-
ture point, the computed results don’t change significantly before using them. It means that the
relative difference in the results must be around 0.1% or fewer, and if so, we can conclude that
the results remain stable when increasing the number of quadrature points. And it means that
there is no need to increase the number of quadrature points that will increase computing time
but will not improve significantly the results.
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