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Abstract

Given a sufficiently large population satisfying certain statistical regularities, we
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tion and identify the welfare-maximizing social alternative, even if we only have very
noisy data about individual utility functions and interpersonal utility comparisons,
and even if the individuals can be strategically dishonest.
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1 Introduction

Utilitarianism may be philosophically attractive, but as a practical method for making
collective decisions, it faces at least four major problems.

(Pr1) Interpersonal comparisons of utility are problematic. Even if we accept that such
interpersonal comparisons are meaningful in principle, it is not clear how precise
interpersonal comparisons could be made in practice.

(Pr2) It is difficult for the social planner to obtain accurate information about the voters’
utility functions. (It is not generally feasible to obtain a precise utility assessment
from every voter for every possible social alternative.)

(Pr3) Due to epistemic failures, a voter may have incorrect beliefs about the long-term
consequences of various policy alternatives. Furthermore, people fail to correctly
predict their own future utility level, even in apparently straightforward decision
problems (Loewenstein and Schkade, 1999). Indeed, there is ample empirical evi-
dence that people’s beliefs about their own past, present, and future happiness are
surprisingly unreliable, and subject to systematic biases, errors, and illusions (Kah-
neman et al., 1999). For instance, Sen (1985, Ch.1, p.15) suggests that poor or
oppressed people sometimes become “habituated” to their miserable circumstances,
and hence overstate their level of well-being. In short: voters do not even correctly
perceive their own utility functions.

(Pr4) Voters may strategically misrepresent their utility functions, in order to manipulate
the outcome.

However, in this paper, we will show that these problems almost disappear in large popu-
lations of voters satisfying certain mild statistical assumptions. In Section 2, we show that
averaging utility data (even noisy or miscalibrated data) from a large population of voters
will yield a good approximation of utilitarianism with high probability, despite problems
(Pr1)-(Pr3). However, this result assumes that the utility-measurement errors associated
with different voters are independent random variables. In Section 3, we show that the
same conclusion holds for correlated random errors. In Section 4, we address the issue of
strategic voting; we introduce a variant of the Groves-Clarke pivotal voting mechanism and
show that it simultaneously solves problems (Pr1)-(Pr4) in a sufficiently large population.

Related literature. Lerner (1944, pp.29-32) was perhaps the first to deploy statistical
aggregation to obviate the technical difficulties of utilitarianism. Under the plausible as-
sumption that all people have diminishing marginal utility for wealth, Lerner argued that,
even in a state of total ignorance about the precise structure of people’s cardinal utility
functions, an egalitarian distribution of wealth would maximize the expected aggregate
utility for society, because the expected utility gains of the poor under such a wealth redis-
tribution would more than cancel the expected utility losses of the rich. Lerner’s original
argument was obscure and generated much confusion; it was later clarified by Breit and
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Culbertson Jr. (1970).1 For Lerner’s argument to work, his vague hypothesis of “total
ignorance” about individual utility functions must be formalized in terms of quite specific
assumptions about the probability distribution of the utility functions. The results of this
paper can be seen as an extension of this approach.

2 Basic model

First we will fix some notation that will be maintained throughout the paper. Let R denote
the set of real numbers. Let A denote a finite set of social alternatives, and let A := |A|.
Let I be a set of voters, and let I := |I|. (We will typically suppose that I is very
large.) For every i in I, let ui : A−→R be a cardinal utility function for voter i, and let
ci > 0 be a “calibration constant”, which we will use to make cardinal interpersonal utility
comparisons. We suppose that the functions ci ui and cj uj are interpersonally comparable
for all voters i and j in I. In other words, for any alternatives a, b, c, and d in A, if
ci ui(b) − ci ui(a) = cj uj(d) − cj uj(c), then the welfare that voter i gains in moving from
alternative a to alternative b is exactly the same as the welfare that voter j gains in moving
from c to d. We would therefore like to maximize the utilitarian social welfare function
UI : A−→R defined by

UI(a) :=
1

I

∑
i∈I

ci ui(a), for every alternative a in A. (1)

Let argmaxA(UI) denote the set of alternatives in A which maximize UI —we will refer to
these as utilitarian optima.2 A utilitarian social planner wants to find a utilitarian opti-
mum, but she may not have enough information to do this, because of the aforementioned
problems (Pr1)-(Pr3). We will formalize her informational problems with two assumptions:

(U1) The interpersonal calibration constants {ci}i∈I are unknown. The social planner re-
gards {ci}i∈I as independent (but not necessarily identically distributed) real-valued
random variables.3 There is a constant σ2

c > 0 such that, for every voter i in I, the
random variable ci has a variance less than σ2

c , and an expected value of 1.

(U2) The utility functions {ui}i∈I are not precisely observable. Instead, for each i in
I, the planner can only observe the function vi := ui + εi, where εi : A−→R is a
random “error” term. For each alternative a in A, the random errors {εi(a)}i∈I are
independent.4 They are not necessarily identically distributed, but they all have an
expected value of 0, and variance less than or equal some constant σ2

ε > 0.

Finally, the random variables {ci}i∈I are independent of the random functions {εi}i∈I .
1See also Lerner (1970), Breit and Culbertson Jr. (1972), McCain (1972), and McManus et al. (1972).
2Note that technically, UI and its maximizer(s) depend on the specific profile of utility functions {ui}i∈I .

For simplicity, we have chosen not to indicate this explicitly in our notation.
3Presumably, ci > 0 for all i ∈ I. But we do not need to assume this to prove our results.
4Note that we do not assume that, for a fixed voter i in I, the random errors εi(a) and εi(b) are

independent for different alternatives a and b in A.
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Assumption (U1) encodes problem (Pr1), while (U2) encodes both (Pr2) and (Pr3). Note
that, while we assume that {vi}i∈I and {ci}i∈I are random variables, we make no assump-
tions about the mechanism generating the underlying profile of utility functions {ui}i∈I .
These utility functions might be fixed in advance, or they might themselves be generated
by some other random process.5 If they are randomly generated, then we do not need to
assume that {ui}i∈I are identically distributed, or assume that the random variables ui(a)
and ui(b) are independent for a given voter i in I and distinct alternatives a and b in A.
However, we will assume the utility profile {ui}i∈I satisfies two boundedness conditions:

(U3) There is a constant M > 0 such that
1

I

∑
i∈I

ui(a)2 < M2 for every a in A.

(U4) There is a constant ∆ > 0 such that maxA(UI) − UI(a) > ∆ for every a 6∈
argmaxA(UI).

6

The constant ∆ in condition (U4) is the minimum “social welfare cost” of failing to choose a
utilitarian optimum. Condition (U3) is clearly satisfied if |ui(a)| < M for every alternative
a in A and every voter i in I. Alternately, suppose that, for each a in A, the utility
values {ui(a)}i∈I are independent, identically distributed random variables drawn from a
distribution with finite variance. If I is large, then the Law of Large Numbers says that
(U3) will hold with very high probability.

For every alternative a in A, we define the “observed” social welfare function

VI(a) :=
1

I

∑
i∈I

vi(a), for every alternative a in A. (2)

Thus, VI is based on observable data (the functions {vi}i∈I), and does not require the true
values of the utility functions {ui}i∈I or the interpersonal calibration constants {ci}i∈I .
Therefore, the social planner can compute VI , and identify the alternatives in A which
maximize VI . Our first result says that, if the population is sufficiently large, then VI is
a good approximation of UI , so that any social alternative which maximizes VI will also
maximize the value of UI , with very high probability.

Theorem 1 For every voter i in I, let ui : A−→R be a utility function. Suppose that the
profile {ui}i∈I satisfies conditions (U3) and (U4), and suppose {ci}i∈I, {εi}i∈I and {vi}i∈I
are randomly generated according to rules (U1) and (U2). Define UI and VI as in equations

(1) and (2). Then lim
I→∞

Prob

[
argmax
A

(VI) ⊆ argmax
A

(UI)

]
= 1.7

We can refine this result in three ways. First, we can drop condition (U4). Second, and
relatedly, instead of demanding that a maximizer of VI exactly maximizes UI , we could

5In this case, the results in this paper should be interpreted as statements which hold for any specific
realization of these random utility functions.

6Most of our results involve taking a limit as I→∞. The constants M and ∆ appearing in (U3) and
(U4) are then assumed to be independent of I.

7Here, the constants M and ∆ in conditions (U3) and (U4) are to be held constant as I→∞.
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entertain the possibility that it only almost maximizes UI —something which would be
almost as good, for practical purposes. Third, we can estimate how large the population
needs to be in order to achieve such “almost-maximization” with a certain probability. To
achieve these refinements, we need some more notation. For any utility profile {ui}i∈I , if
UI is as in equation (1), then let

U∗I := max {UI(a) ; a ∈ A} (3)

be the optimum utilitarian social welfare. Let δ > 0 represent a “social suboptimality
tolerance”, and let p > 0 represent the probability that this tolerance will be exceeded (the
planner wants both of these to be small). For any values of δ and p, we define

I(δ, p) := 4A
M2 σ2

c + σ2
ε

p δ2
. (4)

Our next result says that, for any population larger than I(δ, p), any VI-maximizing so-
cial alternative will produce a social welfare within δ of the theoretical optimum, with
probability at least 1− p.

Theorem 2 Suppose {ui}i∈I, {ci}i∈I, {εi}i∈I and {vi}i∈I satisfy (U1), (U2) and (U3).
Define UI, VI, and U∗I as in equations (1), (2), and (3). For any δ > 0 and any p ∈ (0, 1),
if I ≥ I(δ, p), then for any a∗V in argmaxA(VI), we have Prob [UI(a

∗
V ) < U∗I − δ] < p.

For example, suppose |A| = 6, and for every alternative a in A, suppose the utilities
{ui(a); i ∈ I} are independent, uniformly distributed random variables ranging over
some interval of length at most 10, contained within the interval [−9, 9] (with perhaps
different subintervals of [−9, 9] for different alternatives in A). Let M := 5; then for a
large population of voters, condition (U3) will be satisfied with very high probability.8

Suppose σ2
c = 1 and σ2

ε = 5, and let δ := 0.2 (i.e. 1.1% of the total utility range) and
p := 0.01. Then I(δ, p) = 1 800 000. Thus, for a polity of two million voters, Theorem 1
says that, with 99% probability, the VI-maximal alternative will yield a UI-value within
1.1% of the theoretical optimum U∗I .

A remark on the informational assumptions. There are at least four methods by
which the planner could acquire the data {vi}i∈I posited in assumption (U2). The first and
most obvious method is through verbal surveys, interviews, or polls (e.g. with questions
of the form, “On a scale of 1 to 100, how happy would you be with each of the following
outcomes?”). To fix a quantitative scale, we might formulate such questions in terms
of “willingness to pay” (e.g. “How much money would you pay to obtain each of the
following outcomes?”) or some other “willingness to sacrifice” (e.g. “What percent of
your income would you give up?”, “How many hours would you work?”, “How many days
would you go without food?”). Since utility is presumably a nonlinear function of these

8Proof: The variance of any such uniform distribution is at most 8 1
3 < 9, and the square of its mean is

at most 42 = 16. Thus, its second moment will be at most 9 + 16 = 25 = 52.
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variables, we could get more accurate estimates by eliciting preferences over lotteries over
these variables (assuming von Neumann-Morgenstern preferences). Of course, all of these
methods are vulnerable to strategic misrepresentation (which is only partially mitigated
if the sacrifices in question are actual and not merely hypothetical); we will address this
issue in Section 4.

In addition to deliberate misrepresentation, surveys and other verbal methods may
suffer from involuntary misreporting, due poor communication, cognitive biases, and/or
problem (Pr3). So a second approach is to estimate an individual’s utility by examining
physiological data such as her blood pressure, muscle tension, pupil dilation, EEG, EKG
and/or MRI patterns, and/or blood concentrations of dopamine, endorphin, epinephrine,
and cortisol. Such data could be used to estimate people’s actual utility levels (e.g. to
detect correlations between utility and various socioeconomic, health, and/or lifestyle fac-
tors), but it could also be used to estimate an individual’s utility for various hypothetical
scenarios (e.g. by measuring her physiological responses to visual portrayals or verbal
vignettes of these scenarios). This approach has been extensively investigated in the hedo-
nic psychology literature (Kahneman et al., 1999, Part V), but it is still speculative, and
unlikely to be feasible for a large population.

A third approach is to predict a population’s utility response to hypothetical social
alternatives with a mathematical model, perhaps informed by data collected using the two
previous approaches. For example, suppose we had empirical data about the utility levels of
a large population of individuals (e.g. estimated using verbal surveys and/or physiological
measurements), along with putative causal variables such as their income, consumption
of various private and public goods, health status, occupation, lifestyle, leisure activities,
social situation, and place of residence, as well as fixed demographic variables such age,
gender, family status, and ethnic background. For each value of the fixed demographic
variable, we can construct the utility function (in terms of the putative causal variables)
which best fits the empirical data.9 We could then use this ensemble of utility functions
to predict the utility response this population to a hypothetical perturbation of the status
quo (e.g. a policy which shifts the equilibrium of the economy by some specified vector.)
Such predictive utility models are indispensable when the decision has important long-term
consequences, such as in environmental policy.

Finally, we can obtain utility information from individuals by asking them to vote. Al-
though seemingly crude, this method can sometimes be surprisingly effective at estimating
the utilitarian social welfare function (Pivato, 2014a,b).

Clearly, all of these methods are prone to considerable error, and provide little insight
into interpersonal comparisons. This is the reason for the random variables {ci}i∈I and
{εi}i∈I in assumptions (U1) and (U2). As should be clear from this informal discussion, we
consider {ci}i∈I and {εi}i∈I as random variables from the perspective of the social planner,
not from the perspective of some third party. We suppose that the planner has already
obtained as much information as is feasible about the utility functions of the voters (e.g.
through surveys, mathematical models, etc.), and that {ci}i∈I and {εi}i∈I represent the

9For this curve-fitting problem to be well defined, we would need to make some assumptions about the
functional form of the utility function —e.g. that it is Cobb-Douglas, CES, logarithmic, etc.
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residual uncertainty in her utility estimates, given all this information. Thus, Theorems
1 and 2 and the later theorems in this paper describe the planner’s probability estimates,
based on her information.

It is for this reason that we can assume without loss of generality that the random
variables {εi(a); i ∈ I and a ∈ A} all have zero expected value; if some εi(a) had nonzero
expected value ε (from the planner’s perspective), then she could correct her estimate of
vi(a) by adding ε to it, leaving a residual error with zero expected value. Likewise, we
can assume that {ci}i∈I all have expected value 1; if there was some i in I such that
E[ci] = ci 6= 1, then the planner could replace vi with ṽi := ci vi, which we could regard as
an estimate of the underlying utility function ũi := ci ui, with random error ε̃i := ci εi (so
that ṽi = ũi + ε̃i). If we replace ci with c̃i := ci/ci, then we would have c̃i ũi = ci ui (so the
sum (1) would be unchanged), but E[c̃i] = 1, as desired.

Of course, the social planner may be systematically wrong in her estimates. For exam-
ple, due to some hidden bias or error in her methodology, she might systematically under-
estimate the preference intensities (as reflected in {ci}i∈I) of some demographic group (e.g.
low-income women). In this case, her estimates of the utilitarian social welfare function
would be systematically incorrect. While this is possible, it is outside the scope of our
model. We have assumed that the planner has already incorporated all information which
is available to her. So if there is some remaining bias in her estimates, then this bias must
be detectable only through information which is somehow not available to the planner
—even in principle —yet which is available to some neutral third party. To be credible,
a critique based on such “hidden bias” would need to explain how such information could
remain hidden from the planner, yet be available to another observer.

Faster convergence. Theorem 2 shows that the population size I that is required to
ensure a welfare loss less than δ with probability 1−p has growth rate O(A/pδ2) as p, δ→0
and A→∞. This estimate arises from Chebyshev’s inequality. If we strengthen hypotheses
(U1) and (U2), then we can obtain a bound on I that grows much more slowly. For
example, suppose there are constants C > 0 and E > 0 such that |ci| ≤ C and |εi(a)| < E
for all i ∈ I and a ∈ A. Let M be as in hypothesis (U3), and let B := M C + E. Then
using Hoeffding’s inequality in place of Chebyshev’s, we get a variant of Theorem 1 where

I(δ, p) =
8B2

δ2
log

(
2A

p

)
. (5)

For example, let A := 6, M = 5 and δ = 0.2 as in the earlier example, and suppose C = 1
and E = 5. Then I(δ, p) = 20 000 log(2A/p). Thus, for p = 0.01, we have I(δ, p) ≈ 142 000.
So one hundred fifty thousand voters are enough to ensure a 99% probability that the VI-
maximizing alternative has a UI-value within 1.1% of the theoretical optimum. Note that
(5) grows much more slowly than (4) as A→∞ and p→0. We would also get a formula
very similar to (5) if {ci}i∈I and {εi(a)}a∈A were independent normal random variables.

Almost-sure convergence. Theorems 1 and 2 follow from the fact that, for any δ > 0,

lim
I→∞

Prob [‖UI − VI‖∞ > δ] = 0, where ‖UI − VI‖∞ := max
a∈A
|UI(a)− VI(a)| .
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This is a statement about convergence in probability. With stronger hypotheses, it is
possible to establish a similar result for convergence almost surely. To do this, let vi :=
ui + εi as in assumption (U2), but now instead suppose:

(U2*) For each alternative a in A, the random errors {εi(a)}i∈I are independent and
identically distributed, with expected value zero (but possibly infinite variance).

An application of Kolmogorov’s Strong Law of Large Numbers yields the following result.

Theorem 3 Suppose that ci = 1 for all i ∈ I, while the random errors {εi}i∈I satisfy
condition (U2*), and define UI and VI as in equations (1) and (2). Then for each a ∈ A,

lim
I→∞

‖UI − VI‖∞ = 0, with probability 1. (6)

Let U∗I be as in equation (3), and define U †I := min{UI(a); a ∈ argmax
A

(VI)}. Then

lim
I→∞

(
U∗I − U

†
I

)
= 0, with probability 1. (7)

In equation (7), the expression U∗I − U †I is the maximum “social welfare loss” that the
social planner risks if she chooses a social alternative which maximizes the observed social
welfare function VI . The limit (7) says that, as the population size becomes very large,
this maximum social welfare loss is almost certain to vanish.

However, Theorem 3 delivers too much and not enough at the same time. On the one
hand, almost-sure convergence is actually stronger than the convergence in probability that
we need in order to be confident of obtaining close-to-optimal policies. On the other hand,
the “identically distributed” part of hypothesis (U2*) may be somewhat implausible, under
some circumstances. Also, Theorem 3 assumes away problem (Pr1).10 A third shortcoming
of Theorem 3 is that it says nothing about the speed of convergence. If the population is
“big enough”, then VI and UI are essentially the same. But how big is “big enough”?
Theorem 2 gives a precise answer to this question.11

3 Correlated voters

One obvious weakness of the model in Section 2 is the assumption that {ci}i∈I and {εi}i∈I
are independent random variables. This may not be entirely realistic, because people

10To extend Theorem 3 to cover (Pr1), we must replace (U1) with the assumption (U1*): “The ran-
dom variables {ci}i∈I are independent and identically distributed, and furthermore, their distribution is
symmetric about 1.” We must also replace (U3) with the assumption (U3′) from Section 3. We can then
extend Theorem 3 to obtain the limits (6) and (7) under hypothesis (U1*), (U2*), and (U3′).

11We do have an asymptotic estimate on the rate of convergence in Theorem 3. The Law of the Iterated
Logarithm says that, with probability 1, there is some I0 such that ‖UI − VI‖∞ <

√
2 log[log |I|]/|I| for

all I with |I| ≥ I0. However, I0 itself is a random variable (it depends on the particular realization of the
random error functions {εi}i∈I), so it cannot be known in advance. Hence, for practical purposes, this
asymptotic convergence rate is not very useful.
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belonging to the same social group might have similar characteristics, leading to correlation
amongst their preference intensities and measurement errors. For example, suppose we
estimated people’s utility functions using physiological data. It is quite possible that
members of different demographic groups (e.g. different age groups, different genders, etc.)
might exhibit, on average, different physiological responses for the same utility function.
Alternately, suppose we tried to elicit utility data using a verbal questionnaire. Since
members of different subcultures have slightly different understandings of the language,
they may respond to the same survey questions in slightly different ways. Of course, a
well-designed utility-measurement technology would recognize and correct for such group-
specific biases. But it is still possible that some residual bias will remain, and this would
lead to a correlation of measurement errors within each social group.

To obtain results comparable to Theorems 1 and 2, we need some constraints on the
covariance of the random errors. For any I ∈ N and any I × I matrix S = [si,j]

I
i,j=1, let

‖S‖1 :=
I∑

i,j=1

|si,j|. (8)

For all I ∈ N, let SI be a set of real-valued I × I matrices. (The covariance matrices for
our random variables will be drawn from these sets.) We will assume that

lim
I→∞

σI = 0, (9)

where, for all I ∈ N, we define σI := sup{‖S‖1/I
2; S ∈ SI}.

As in Section 2, we will suppose that, for each i in I, the planner can only observe a
function vi := ui + εi, where εi : A−→R is a random “error” term. For every alternative a
in A, let ε(a) := [εi(a)]i∈I , an I-dimensional vector of these random errors. (The entries
are not necessarily identically distributed.) Likewise, if {ci}i∈I are the interpersonal
comparison coefficients from Section 2, then the planner regards c := [ci]i∈I as another I-
dimensional random vector. (Again, the entries are not necessarily identically distributed.)
We now replace assumptions (U1)-(U3) with the following:

(U1′) The covariance matrix of c is an element of SI .12

(U2′) For every alternative a in A, the covariance matrix of ε(a) is an element of SI .

(U3′) There is some constant M > 0 such that |ui(a)| ≤M for every i in I and a in A.

We must also supplement these with:

(U0′) For every a in A, the covariance matrix of ε(a) and c is an element of SI .13

12Recall: If X and Y are two real-valued random variables with expected values X and Y , then
their covariance is defined cov(X,Y ) := E

[
(X −X)(Y − Y )

]
. If X = (X1, . . . , XI) is an I-dimensional

random vector, then its covariance matrix is the symmetric, positive definite, I × I matrix S where
si,j = cov(Xi, Xj).

13If X = (X1, . . . , XI) and Y = (Y1, . . . , YI) are I-dimensional random vectors, then cov(X,Y) is the
the I × I matrix S where si,j = cov(Xi, Yj).
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For example, if c and ε(a) are independent (as we assumed in Section 2), then assumption
(U0′) is satisfied as long as SI contains the zero matrix. Likewise, assumptions (U1) and
(U2) from Section 2 are just special cases of (U0′)-(U2′) (let SI be the set of all non-
negative diagonal matrices with entries bounded by max{σ2

c , σ
2
ε}). Note that, like (U2),

assumption (U2′) does not require the random error vectors ε(a) and ε(b) to be independent
or identically distributed for a 6= b. The dependency structure between ε(a) and ε(b) is
arbitrary. The covariance matrix of ε(a) describes the pattern of correlations we expect
to see in the society I with respect to utility-measurement errors concerning alternative
a. We do not assume that all societies exhibit the same pattern of correlations for all
social decision problems. Two societies of the same size may exhibit different patterns of
correlations on the same social decision (e.g. because they have a different demographic
structure, or a different patchwork of overlapping subcultures). The set SI represents the
set of possible patterns of correlations we could expect to see for any possible social decision,
in any possible society of size I. For any S ∈ SI , the ratio ‖S‖1/I2 measures, roughly,
the average amount of correlation between citizens in a society described by matrix S.14

Thus, the limit (9) says that the average correlation between citizens becomes smaller as
their societies become larger. For example, suppose there are constants J ∈ N and ς > 0
such that, for every I ∈ N and every S ∈ SI , each row of S has at most J nonzero entries,
and each has magnitude at most ς (i.e. any person in any society can be correlated with
at most J other people, and each correlation can have strength at most ς). Then the limit
(9) is satisfied. Or more generally, suppose there is some constant K > 0 such that the
absolute sum of each row in S is at most K, for every I ∈ N and every S ∈ SI (i.e. any
person can be correlated with as many other people as she wants, but she has a fixed
“covariance budget” which she must distribute amongst them). Then again the limit (9) is
satisfied. The next result says that the conclusion of Theorem 1 still holds in this setting.

Theorem 4 For every voter i in I, let ui : A−→R be a utility function. Suppose that
the profile {ui}i∈I satisfies conditions (U3′) and (U4), and suppose {ci}i∈I, {ε(a)}a∈A and
{vi}i∈I are randomly generated according to rules (U0′)-(U2′). Define UI and VI as in

equations (1) and (2). Then lim
I→∞

Prob

[
argmax
A

(VI) ⊆ argmax
A

(UI)

]
= 1.15

As in Section 2, we can refine this result by computing the size of the population necessary
to ensure that a VI-maximizer almost maximizes UI , with a some specified probability.
Let M be as in assumption (U3′). For any δ > 0 and any probability p ∈ (0, 1), the limit
equation (9) implies that, if I is large enough, then we have

σI ≤ p δ2

4A (M + 1)2
. (10)

14This is not exactly true, because the diagonal entries of the matrices in (U1′) and (U2′) are variances.
But if I is large, then the sum of diagonals is dominated by the sum of the off-diagonal covariance terms.

15Here, as usual, the constants M and ∆ in conditions (U3′) and (U4) are to be held constant as I→∞.
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Let Ĩ(δ, p) be the minimum value of I satisfying the inequality (10).16 The next result
plays a role similar to Theorem 2.

Theorem 5 Suppose {ui}i∈I, {ci}i∈I, {ε(a)}a∈A and {vi}i∈I satisfy (U0′)-(U3′). Define
UI, VI, and U∗I , as in equations (1), (2), and (3). For any δ > 0 and any p ∈ (0, 1), if

I ≥ Ĩ(δ, p), then for any a∗V in argmaxA(VI), we have Prob [UI(a
∗
V ) < U∗I − δ] < p.

As we have noted, assumptions (U1) and (U2) are special cases of (U0′)-(U2′). Thus, if
we replace (U3) with (U3′) in Theorems 1 and 2, then they become corollaries of Theorems
4 and 5. One possible shortcoming of Theorems 4 and 5 is that the boundedness assumption
(U3′) is more restrictive than (U3). But if we strengthen (U1′) to (U1), and strengthen
(U0′) to the assumption that c and ε(a) are independent (as in Section 2), then we can
weaken (U3′) to (U3) and still have the same conclusions.17

One might also worry that assumptions (U0′)-(U2′), while certainly much weaker than
independence, still restrict the amount of correlation between the variables. An alternative
approach, which avoids this concern, is to identify the elements of I with points on a grid
(representing, e.g. geographic locations) and suppose that the random variables {εi(a)}i∈I
form a stationary random field on this grid, for each a ∈ A.18 We must also assume that
{ci}i∈I and {ui}i∈I are independent stationary random fields on this grid.19 Then variants
of Theorems 1 and 3 can be obtained, using the Birkhoff Ergodic Theorem in place of the
Law of Large Numbers. However, it is more difficult to obtain a convergence speed result
like Theorem 2 in this “grid” model. Furthermore, a grid is perhaps not the best way to
model interpersonal correlations.

4 Strategyproof implementation

The results of Sections 2 and 3 address problems (Pr1)-(Pr3), but not (Pr4) —that is,
the problem of strategic misrepresentation of utility functions. We will now present a
mechanism which also deals with this last problem: a variant of the Groves-Clarke Pivotal
Mechanism (Clarke, 1971; Groves, 1973).20 To do this, we must make more specific as-
sumptions about the voters’ utility functions. We will suppose that each voter’s utility is

16To provide a precise formula for Ĩ(δ, p), analogous to formula (4), we would need more specific as-
sumptions about the families SI of admissible covariance matrices posited in assumptions (U0′)-(U2′). In

the “covariance budget” example, we have σI = K/I; thus we obtain Ĩ(δ, p) = 4KA (M + 1)2/δ2 p.
If (c, ε) was a multivariate normal random variable, then (10) could be replaced with the inequality

σI ≤ δ2/8 (M + 1)2 ln(2A/p). Then we would have Ĩ(δ, p) = 8K (M + 1)2 ln(2A/p)/δ2 in the covariance

budget example. So for normal random variables, Ĩ(δ, p) grows very slowly as A→∞ and p→0.
17Indeed, in this case, we can redefine ‖S‖1 as

∑I
i,j=1 si,j in equation (8), which makes the limit condition

(9) much easier to achieve.
18To be precise, the “grid” here is the group Z2. In fact, we could use any amenable group.
19Alternately, if ci = 1 for all i ∈ I, then {ui}i∈I could be arbitrary.
20Pivato (2013) develops another variant of the pivotal mechanism, which is in some ways similar to the

one presented here. But the purpose of that variant was not to approximately implement utilitarianism;
it was to be politically “equitable”, by giving poor voters roughly the same influence as rich voters.
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a function of both her net wealth and the social alternative which is chosen. For any voter
i in I, let ûi : A−→R be her cardinal utility function over the social alternatives, and let
u$i : R−→R be her cardinal utility over net wealth levels. We will assume that her combined
utility function Ui : A×R−→R is additively separable —that is, Ui(a, wi) = ûi(a)+u$i (wi),
for any social alternative a in A and any net wealth level wi in R. We also assume that the
social alternative itself has no effect on the net wealth of the voters, so that the two coor-
dinates a and wi can be treated as independent variables.21 Finally, we suppose that these
utility functions admit one-for-one cardinal interpersonal comparisons.22 Thus, we want
to find the social alternative in A which maximizes the utilitarian social welfare function
ÛI defined by

ÛI(a) :=
∑
i∈I

ûi(a) for all a in A. (11)

The problem is to elicit the true values of ûi(a) from strategically dishonest voters. The
Groves-Clarke Pivotal Mechanism solves this problem by asking each voter to declare the
monetary price r she would be willing to pay (in the form of a so-called “Clarke tax”) to
obtain a given policy alternative a. The mechanism is designed such that it is a dominant
strategy for each voter to reveal her true willingness-to-pay; thus, we can use u$i (r) to
estimate the true value of ûi(a).

However, the original Groves-Clarke mechanism has three major problems. First, it only
works if voters have quasilinear utility functions —that is, if u$i (wi) is a linear function of
wi. But it is much more likely that u$i is strictly concave (i.e. exhibits diminishing marginal
utility). Second (and relatedly), by measuring utility via willingness-to-pay, the mechanism
implements a weighted utilitarian SWF which gives the greatest weight to the voters having
the lowest marginal utilities for wealth, who are generally the richest voters. So in effect,
it implements a plutocracy.23 Third, strategyproof mechanisms assume that all agents
infallibly deploy their dominant strategies; it is not clear how the mechanism will perform
in a world of fallible and boundedly rational agents.24

To extend the Groves-Clarke pivotal mechanism to the case when u$i is nonlinear, we
will replace the deterministic Clarke tax of the original mechanism with a lottery. Formally,
a lottery is an ordered pair (p; r), where 0 ≤ p ≤ 1 and r ∈ R; this represents a random
event which yields a payoff of r dollars with probability p, and a payoff of 0 dollars with
probability (1 − p). We will suppose that u$i represents i’s von Neumann-Morgenstern
(vNM) preferences on the set of such lotteries. Thus, if voter i’s ex ante wealth level is wi,
then she will prefer lottery (p; r) to lottery (p′; r′), if and only if p

(
u$i (wi + r)− u$i (wi)

)
≥

p′
(
u$i (wi + r′)− u$i (wi)

)
. We will further suppose that each voter’s joint utility over A and

21For the definition of “net wealth”, and a discussion of these assumptions, see “Practicalities” below.
22That is, for any a, b, c, d ∈ A and i, j ∈ I, if ûi(b)− ûi(a) = ûj(d)− ûj(c), then the welfare that i gains

in going from a to b is the same as the welfare that j gains in going from c to d.
23A plutocracy may be Pareto efficient. But it is suboptimal in terms of the utilitarian SWF.
24A fourth problem is that the Clarke tax revenue cannot be redistributed to the voters, or the mechanism

is no longer strategyproof. Instead, the Clarke tax revenue must be destroyed, which introduces an
efficiency loss. But Green et al. (1976) and Green and Laffont (1979) showed that, under reasonable
assumptions, the per capita inefficiency introduced by the Clarke tax goes to zero like 1/

√
I as I→∞.

Thus, for the large-population asymptotic analysis in this paper, the Clarke tax inefficiency is negligible.
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lotteries is additively separable. Thus, if alternative a is chosen and voter i must participate
in the lottery (p; r), then her ex ante utility will be ûi(a) + p u$i (wi + r) + (1− p)u$i (wi).

Suppose a0 is the worst possible social alternative for voter i. By subtracting a constant
from ûi if necessary, we can assume without loss of generality that ûi(a0) = 0. Let a be
some other social alternative in A. In our modified pivotal mechanism, instead of revealing
ûi(a) in terms of her “willingness to pay” for alternative a, voter i will reveal ûi(a) by her
“willingness to gamble”. There will be a large price r that is fixed in advance. Voter i
will be asked to name a probability p (between 0 and 1) such that she would be willing to
participate in the lottery (p,−r) in order to obtain alternative a rather than her worst-case
alternative a0. In our modified pivotal mechanism (see below), her dominant strategy will
be to declare the unique probability ∗pai in [0, 1] such that

ûi(a) = ∗pai di, (12)

where di := u$i (wi)− u$i (wi − r) is the disutility that i would suffer from paying the price
r. If we knew di, then we could compute ûi(a) from ∗pai . By applying this approach for
all voters and all alternatives, the social planner could accurately estimate the utilitarian
social welfare function (11). However, there are still three caveats with this approach.

(i) The fixed price r must be large enough that di ≥ ûi(a), otherwise it is impossible to
find a probability ∗pai ∈ [0, 1] satisfying equation (12).

(ii) The social planner does not know the wealth-utility function u$i , and there is no reliable
way to elicit this information from voter i.

(iii) Due to cognitive errors, bounded rationality, and/or a poor understanding of her
own utility function, voter i may make mistakes when computing or deploying her
dominant strategy, and inadvertently fail to satisfy equation (12).

Each of these caveats necessitates a refinement of our approach. First consider Caveat (i).
Note that equation (12) must be satisfied for every voter and every social alternative. In
other words, r must be large enough that

u$i (wi)− u$i (wi − r) ≥ ûi(a), for all a ∈ A and all i ∈ I. (13)

However, in a society with large inequalities of wealth, a value of r large enough to satisfy
(13) for very wealthy voters (who generally have very small marginal utilities for wealth)
would be a terrifying or even unimaginable amount of money for very poor voters. This
could introduce errors in the probability values pai we obtain from the very poor voters. To
deal with this, we will divide the population I into N subpopulations based on net wealth:
I = I1 tI2 t · · · t IN (where I1 is the poorest group, and IN is the richest in net wealth).
We then specify an increasing sequence r1 < r2 < · · · < rN of prices. Individuals in group
In must gamble over lotteries with price rn. For all i ∈ I, let n(i) ∈ [1 . . . N ] denote the
group to which i belongs. The prices r1, . . . , rn must be large enough that

di := u$i (wi)− u$i (wi − rn(i)) ≥ ûi(a), for all a ∈ A and all i ∈ I. (14)
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However, Caveat (ii) means that we don’t know di, so we cannot compute ûi(a), even if we
have obtained ∗pai satisfying (12). Instead, we will approximate u$i by some “representative”
wealth-utility function u$, which we will apply to all voters.25 That is, for any voter i in
I, we will estimate the utility ûi(a) by the value ui(a) defined by

ui(a) := Di
∗pai , where Di := u$(wi)− u$(wi − rn(i)). (15)

This assumes that voter i will declare the probability ∗pai defined by equation (12). But
Caveat (iii) means that we cannot assume this, even if ∗pai is her dominant strategy. Instead,
we will suppose that she declares some probability pai = ∗pai +εai , where εai is a random error
term. If we define vi(a) := Di p

a
i and εi(a) := Diε

i
a, then we have vi(a) = ui(a) + εi(a),

where ui is as in equation (15).

Our modified pivotal mechanism now works as follows:

1. For every i in I and every a in A, voter i must declare a probability value pai ∈ [0, 1]
for alternative a. We require min

a∈A
pai = 0.

2. For every i in I and a in A, define vi(a) := Di p
a
i , where Di is from equation (15).

3. For every alternative a in A, define V̂I(a) :=
∑
i∈I

vi(a).

4. The social choice a∗ is the alternative in A which maximizes V̂I .

5. Suppose there is some i in I and some b in A such that V̂I(a
∗)− V̂I(b) ≤ vi(a

∗)−vi(b)
(so i is a pivotal voter). Then i must participate in the lottery (pi,−rn(i)), where

pi :=
1

Di

∑
j∈I\{i}

(
vj(b)− vj(a∗)

)
. (16)

(Note that, by construction, 0 ≤ pi ≤ 1.)

We will say that this mechanism is dominant-strategy truth-revealing if, for every voter i
in I, her dominant strategy ∗pai satisfies equation (12) for every a in A. If i deploys this
dominant strategy, then the function vi defined in Step 2 will be equal to the function
ui from equation (15). By modifying the proof for the original Groves-Clarke pivotal
mechanism, it is simple to show that the above mechanism is always dominant-strategy
truth-revealing (see Theorem 6(a) below). But to overcome Caveats (i)-(iii), we will need
some additional assumptions about {u$i }i∈I .

($1) The wealth-utility functions {u$i }i∈I are independent random functions (not neces-
sarily identically distributed). They are independent of {εi}i∈I .

($2) The distributions of {u$i }i∈I are such that condition (14) is satisfied almost surely.

25The representative function u$ could be constructed by estimating the wealth-utility functions of some
statistically representative sample of the population (e.g. using standard gambles) and then averaging.

14



($3) E
[
u$i (w)

]
= u$(w), for all i ∈ I and all w ∈ R.26

We also assume there are constants C,K > 0 such that, for all i ∈ I:

($4) The variance of u$i (wi)− u$i (wi − rn(i)) is less than K ·
(
u$(wi)− u$(wi − rn(i))

)2
.

($5) u$i (wi)− u$i (wi − rn(i)) > C ·
(
u$(wi)− u$(wi − rn(i))

)
, almost surely.

As in Section 2, assumption ($1) means {u$i }i∈I are random from the perspective of the
social planner; this encodes Caveat (ii). Assumption ($2) addresses Caveat (i): it en-
sures that the prices r1, . . . , rN are large enough that all voters can adequately express
the intensity of their preferences, while still satisfying the truth-revealing condition (12).
Assumptions ($3)-($5) say that the wealth-utility functions {u$i }i∈I , while unknown, do
not deviate too wildly from the “representative” wealth-utility function u$.

We now come to the main result of this section. It says that, if all voters in a large
population deploy their dominant strategies in the mechanism (possibly plus some random
error due to Caveat (iii)), then the outcome will maximize the utilitarian social welfare

function ÛI from equation (11), with very high probability. Thus, all of problems (Pr1)-
(Pr4) can be solved simultaneously.

Theorem 6 Let {ûi}i∈I be arbitrary utility functions over A, and let {u$i }i∈I be any set
of wealth-utility functions satisfying condition (14) (e.g. via ($2)). Then:

(a) The mechanism described by Steps 1 to 5 is dominant-strategy truth-revealing.

Now suppose {u$i }i∈I satisfy conditions ($1)-($5), while {ûi}i∈I satisfy conditions (U3) and
(U4) from Section 2.27 For all i ∈ I, let vi := ui + εi, where ui is from equation (15) and
{εi}i∈I is a set of random error functions satisfying condition (U2).28 Then:

(b) If V̂I is as in Step 3 of the mechanism, while ÛI is as in equation (11), then

lim
I→∞

Prob

[
argmax
A

(V̂I) ⊆ argmax
A

(ÛI)

]
= 1.

(c) Let Û∗I := maxA(ÛI). For any δ > 0 and p ∈ (0, 1), let I(δ, p) be as in equation

(4). If I ≥ I(δ, p), then for any a∗V in argmaxA(V̂I), Prob
[
ÛI(a

∗
V ) < Û∗I − δ

]
< p.29

If we replace assumption (U2) by assumption (U2′) from Section 3, then it is straightfor-
ward to obtain versions of Theorem 6(b,c) with correlated random errors, as in Theorems
4 and 5. We leave the details to the reader.

26In fact, we only need E[u$i (wi) − u$i (wi − rn(i))] = u$(wi) − u$(wi − rn(i)), but it is simpler to state
the more general condition.

27Here, as usual, the constants M and ∆ in conditions (U3) and (U4) are to be held constant as I→∞.
28In other words, each voter deploys her dominant strategy from part (a), plus a random error.
29Part (c) actually does not require hypothesis (U4).

15



Practicalities. We have supposed that voter i’s utility is a function both of the social
alternative and her net wealth wi. Here, by i’s “net wealth”, we mean the real value of
Ai − Li + Yi − Xi, where Ai = i’s assets, Li = i’s liabilities, Yi = expected net present
value of i’s future wages, and Xi = expected net present value of i’s future subsistence
costs (e.g. minimal food, shelter and medical care for i and dependents). To construct the
partition I = I1 t I2 t · · · t IN , and to compute Di in formula (15), the social planner
must estimate wi. In practice, the terms Yi and Xi are impossible to compute. But for
practical purposes, one could approximate Yi −Xi by (yi − xi)/dr, where yi is i’s current
wages, xi is current subsistence costs, and dr is the discount rate. The values of Ai, Li, yi
and xi can all be estimated fairly accurately using i’s tax records; based on this, the social
planner can estimate wi.

We also assumed that voter i’s joint utility function Ui is additively separable (i.e.
Ui(a, wi) = ûi(a) + u$i (wi)), and that the social alternatives have no effect on i’s net
wealth, so that a and wi can be treated as independent variables. These assumptions are
quite restrictive. If the social alternative a involve wealth transfers from rich to poor voters
(either in cash, or in publicly provided goods and services), then Ui will generally not be
separable. More subtly, many policy decisions shift the equilibrium price of goods in the
economy. Thus, a could influence i’s wealth-utility function, which again would violate
separability. Similarly, a and wi are not generally independent variables: if a involves
taxes or cash transfers, then it will directly affect wi. It could also affect wi indirectly,
by shifting the economic equilibrium, and thus, changing the market value of i’s assets or
labour, or the purchasing power of her money. (See Pivato (2013) for further discussion.)

These issues arise because we have used money as the yardstick for utility (via the
stochastic Clarke tax). We could obviate them by denominating the Clarke tax in a non-
monetary unit of value, such as hours of unpaid community service. But just as people
have different marginal utilities for money, they have different marginal utilities for time,
due to their differing opportunity costs. Thus, the mechanism would have to estimate
these opportunity costs, by taking into account factors such as each voter’s effective hourly
wage and number of dependent family members.

5 Conclusion

According to conventional wisdom, utilitarianism may be appealing in theory, but is totally
impossible to achieve in practice. The results of this paper suggest the opposite conclusion:
utilitarianism is not merely possible, but actually fairly easy to achieve —at least as long as
we are willing to tolerate a small amount of inefficiency, and as long as we have a sufficiently
large population conforming to certain statistical regularities (e.g. hypotheses (U1), (U2),
etc.). It is an empirical question whether real societies exhibit these regularities. If the
results of these empirical investigations are affirmative, then “statistical” utilitarianism is
indeed feasible. But is it desirable? This is a question of political philosophy.

Acknowledgements. I am grateful to Ori Heffetz, Christophe Muller, and Clemens
Puppe for helpful discussions and comments on earlier versions of this paper. I also thank

16



Gustaf Arrhenius, Miguel Ballester, Marc Fleurbaey, and the other participants of the June
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Appendix: Proofs

Let ‖UI − VI‖∞ := max
a∈A
|UI(a)− VI(a)|. Theorem 1 will follow from Theorem 2, which,

in turn, will follow from the next result.

Proposition A1 Let UI and VI be as in Theorem 2, and let δ > 0 and p ∈ (0, 1). If
I ≥ I(δ, p), then Prob

[
‖UI − VI‖∞ > δ

2

]
< p.

Proof. For all a ∈ A, the quantity UI(a)−VI(a) is a random variable. We will first compute
its expected value and the variance of its distribution.

Claim 1: For all a ∈ A, E[UI(a)− VI(a)] = 0.

Proof. For all a ∈ A,

UI(a)− VI(a)
(�)

1

I

∑
i∈I

ci ui(a)− 1

I

∑
i∈I

vi(a)

(‡)

1

I

∑
i∈I

ci ui(a)− 1

I

∑
i∈I

(
ui(a) + εi(a)

)
=

1

I

∑
i∈I

(
(ci − 1)ui(a)− εi(a)

)
, (A1)

where (�) is by defining equations (1) and (2), and (‡) is by assumption (U2). Thus,

E[UI(a)− VI(a)] =
1

I

∑
i∈I

E
[
(ci − 1)ui(a)− εi(a)

]
=

1

I

∑
i∈I

(
E[(ci − 1)ui(a)]− E[εi(a)]

)
(∗)

1

I

∑
i∈I

(
ui(a) · E[ci − 1] + 0

)
(†)

1

I

∑
i∈I

ui(a) · 0 = 0.

as desired. Here, (∗) is because ui(a) is a constant and E[εi(a)] = 0 for all i ∈ I, while
(†) is because E[ci] = 1 for all i ∈ I, by assumption (U1). 3 Claim 1

Claim 2: For all a ∈ A, var[UI(a)− VI(a)] ≤ M2 · σ2
c + σ2

ε

I
.
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Proof. For all a ∈ A,

var[UI(a)− VI(a)]
(a)

var

[
1

I

∑
i∈I

(
(ci − 1)ui(a)− εi(a)

)]

=
1

I2
var

[∑
i∈I

(
(ci − 1)ui(a)− εi(a)

)]

(b)

1

I2

∑
i∈I

(
var [(ci − 1)ui(a)] + var [εi(a)]

)
(c)

1

I2

∑
i∈I

(
ui(a)2 · var [ci] + var [εi(a)]

)
≤
(d)

1

I2

∑
i∈I

(
ui(a)2 · σ2

c + σ2
ε

)
=

σ2
c

I

(
1

I

∑
i∈I

ui(a)2

)
+

1

I2

(∑
i∈I

σ2
ε

)
≤
(e)

σ2
c M

2

I
+
σ2
ε

I
,

as desired. Here, (a) is by equation (A1), while (b) is because {εi(a)}i∈I ∪ {ci}i∈I are
all jointly independent random variables, and (c) is because {ui(a)}i∈I are constants.
Finally, (d) is by assumptions (U1) and (U2), while (e) is by (U3). 3 Claim 2

Claim 3: Let q ∈ (0, 1), and suppose I ≥ I(δ, q)/A. Then for all a ∈ A, we have
Prob

[
|VI(a)− UI(a)| > δ

2

]
< q.

Proof. For any a ∈ A, we have

Prob

[
|VI(a)− UI(a)| > δ

2

]
<
(∗)

var[UI(a)− VI(a)]

(δ/2)2
≤
(†)

4
M2 · σ2

c + σ2
ε

I δ2
≤
(�)

q,

as desired. Here, (∗) is by Claim 1 and Chebyshev’s inequality, (†) is by Claim 2, and

(�) is because I ≥ I(δ, q)/A = 4
M2 · σ2

c + σ2
ε

q δ2
. 3 Claim 3

Set q = p/A in Claim 3. Then I(δ, p) = I(δ, A q) = I(δ, q)/A. Thus, if I ≥ I(δ, p),
then for any particular a ∈ A, Claim 3 says that Prob

[
|VI(a)− UI(a)| > δ

2

]
≤ q. Since

A = |A|, this implies that

Prob

[
‖UI − VI‖∞ >

δ

2

]
= Prob

(
|VI(a)− UI(a)| > δ

2
for some a ∈ A

)
≤ A·q = p,

as desired. 2
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Remark. If the error vectors {ε(a)}a∈A were all jointly independent, then the events
{|VI(a) − UI(a)| > δ

2
} would be jointly independent (for all a ∈ A). In this case, we

would actually have Prob
[
|VI(a)− UI(a)| > δ

2
for some a ∈ A

]
≤ 1 − (1 − q)A, which

is a tighter estimate. From this, we could deduce that Prob [UI(a
∗
V ) < U∗I − δ] < p

whenever I ≥ Î(δ, p), where Î(δ, p) := 4 (M2 σ2
c + σ2

ε )/δ
2 (1− (1− p

2
)1/A). In general,

Î(δ, p) < I(δ, p). However, if p is close to zero, then Î(δ, p)/I(δ, p) ≈ 1, so we do not obtain
any significant improvement in practice from this much more restrictive independence
hypothesis and the more complicated population bound it yields.

Proof of Theorem 2. Let b∗ ∈ argmaxA(UI); thus, UI(b
∗) = U∗I . Then

0 ≤ U∗I − UI(a∗V ) = UI(b
∗)− UI(a∗V )

= UI(b
∗)− VI(b∗) + VI(b

∗)− VI(a∗V ) + VI(a
∗
V )− UI(a∗V )

≤ UI(b
∗)− VI(b∗) + VI(a

∗
V )− UI(a∗V ),

where the last step is because VI(b
∗)− VI(a∗V ) ≤ 0 because a∗V ∈ argmaxA(VI). Thus, if

U∗I − UI(a∗V ) > δ, then either UI(b
∗)− VI(b∗) > δ

2
or VI(a

∗
V )− UI(a∗V ) > δ

2
. Thus,

Prob [U∗I − UI(a∗V ) > δ] ≤ Prob
(
UI(b

∗)− VI(b∗) > δ
2

or VI(a
∗
V )− UI(a∗V ) > δ

2

)
≤ Prob

(
|VI(a)− UI(a)| > δ

2
for some a ∈ A

)
< p,

where the last inequality is by Proposition A1. 2

Proof of Theorem 1. Let ∆ be as in assumption (U4). Let δ < ∆; then for any a ∈ A, we
have (

UI(a) > U∗I − δ
)
⇐⇒

(
a ∈ argmaxA(UI)

)
.

But Theorem 2 implies lim
I→∞

Prob
(
UI(a) > U∗I − δ for all a ∈ argmaxA(VI)

)
= 1. 2

For any δ > 0 and p ∈ (0, 1), let Ĩ(δ, p) be as defined below inequality (10). Theorems 4
and 5 are a consequence of the following result.

Proposition A2 Let UI and VI be as in Theorem 5, and let δ > 0 and p ∈ (0, 1). If

I ≥ Ĩ(δ, p), then Prob
[
‖UI − VI‖∞ > δ

2

]
< p.

Proof. The proof strategy is very similar to Proposition A1. For all a ∈ A, the quantity
UI(a) − VI(a) is a random variable. We will first compute its expected value and the
variance of its distribution.

Claim 1: For all a ∈ A, E[UI(a)− VI(a)] = 0.

Proof. Same as Claim 1 of Proposition A1. 3 Claim 1
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Let σI be as defined below equation (9).

Claim 2: For all a ∈ A, var[UI(a)− VI(a)] ≤ (M + 1)2 σI .

Proof. Let ScI := [sci,j]i,j∈I be the I × I covariance matrix of the I-dimensional random
vector c, as described in assumption (U1′). Let SaI := [sai,j]i,j∈I be the I× I covariance
matrix of the I-dimensional random error vector ε(a), as described in assumption
(U2′). Finally, let Sc,aI := [sc,ai,j ]i,j∈I be the I × I covariance matrix of c and ε(a), as
described in assumption (U0′). Then

var[UI(a)− VI(a)]
(a)

var

[
1

I

∑
i∈I

(
(ci − 1)ui(a)− εi(a)

)]

(b)

1

I2

(∑
i,j∈I

ui(a)2 sci,j + 2
∑
i,j∈I

ui(a) sc,ai,j +
∑
i,j∈I

sai,j

)

≤
(c)

1

I2

(∑
i,j∈I

ui(a)2 |sci,j|+ 2
∑
i,j∈I

|ui(a)| |sc,ai,j |+
∑
i,j∈I

|sai,j|

)

≤
(d)

1

I2

(∑
i,j∈I

M2 |sci,j|+ 2
∑
i,j∈I

M |sc,ai,j |+
∑
i,j∈I

|sai,j|

)

(e)

1

I2
(
M2 ‖Sc‖1 + 2M ‖Sc,a‖1 + ‖Sa‖1

)
≤
(f)

(M2 + 2M + 1)σI = (M + 1)2 σI ,

as desired. Here, (a) is by equation (A1) from the proof of Proposition A1. (b)
is because {ui(a)}i∈I are all constants, and for any random variables X and Y and
constant u, we have var(uX +Y ) = u2 var(X) + 2u cov(X, Y ) + var(Y ).30 Next, (c) is
by the triangle inequality, (d) is by hypothesis (U3′), (e) is by defining equation (8),
and (f) is by the definition of σI . 3 Claim 2

Claim 3: Let q ∈ (0, 1), and suppose I ≥ Ĩ(δ, A q). Then for all a ∈ A, we have
Prob

[
|VI(a)− UI(a)| > δ

2

]
< q.31

Proof. For any a ∈ A, we have

Prob

[
|VI(a)− UI(a)| > δ

2

]
<
(∗)

var[UI(a)− VI(a)]

(δ/2)2
≤
(†)

4 (M + 1)2 σI
δ2

≤
(�)

q,

as desired. Here, (∗) is by Claim 1 and Chebyshev’s inequality, (†) is by Claim 2, and

(�) is by inequality (10), because I ≥ Ĩ(δ, A q). 3 Claim 3

30If we strengthen (U1′) to (U1), and strengthen (U0′) to the assumption that c and ε(a) are independent,

while weakening (U3′) to (U3), then this formula simplifies to (M2 σ2
c +

∑I
i,j=1 s

a
i,j)/I

2. This leads to the
variant of Theorems 4 and 5 described in footnote 17.

31If (c, ε) was a multivariate normal random variable, then VI(a) − UI(a) would also be normal; then
Claim 3 would hold for the variant of inequality (10) that is mentioned in footnote 16.
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Set q = p/A in Claim 3. Then Ĩ(δ, p) = Ĩ(δ, A q). Thus, if I ≥ Ĩ(δ, p), then for any
a ∈ A, Claim 3 says Prob

[
|VI(a)− UI(a)| > δ

2

]
≤ q. Since A = |A|, this implies that

Prob

[
‖UI − VI‖∞ >

δ

2

]
= Prob

(
|VI(a)− UI(a)| > δ

2
for some a ∈ A

)
≤ A·q = p,

as desired. 2

Proof of Theorems 4 and 5. Theorem 5 follows from Proposition A2 by an argument
identical to the proof of Theorem 2. Then Theorem 4 follows from Theorem 5 by an
argument identical to the proof of Theorem 1. 2

Proof of Theorem 6. (a) Let pi := (pai )a∈A be the vector of probabilities declared by
voter i in Step 1 of the mechanism. We must show that pi is a dominant strategy for
i if and only if pai = ∗pai for all a ∈ A, where ∗pai is defined as in equation (12). The
proof is similar to the analysis of the original Groves-Clarke pivotal mechanism, but
with two important differences. First, in place of a deterministic Clarke tax, we now
have a “stochastic” Clarke tax in Step 5 of the mechanism. Thus, voter i’s payoff must
be understood as her expected utility, prior to the resolution of the uncertainty in Step
5. Second, we must keep track of how the weight factors di and Di affect i’s dominant
strategy, where di and Di are defined by equations (14) and (15), respectively.

For any a ∈ A, define vi(a) := Di p
a
i , as in Step 2 of the mechanism, and let

V̂−i(a) :=
∑

j∈I\{i} vj(a). The vector V−i := (V̂−i(a))a∈A is an aggregate description

of the behaviour of all other voters except i. The outcome of the mechanism (and thus,
i’s expected utility) are entirely determined by pi and V−i. We will say that pi is a best
response for i to a given vector V if it maximizes i’s expected utility when V−i = V.
For any b ∈ A, let Vb := {V ∈ RA; b = argmaxA(V)}.
Claim 1: Fix b ∈ A. Then pi is a best response for i to all V−i ∈ Vb if and only if
paii − pbi = (ûi(ai)− ûi(b))/di, where ai := argmaxA(vi)

Proof. “=⇒” Suppose V−i ∈ Vb; thus, b = argmaxA(V−i). Let’s see how i’s expected
utility depends on the values of paii and pbi . There are two cases.

• If paii − pbi ≥ [V̂−i(b) − V̂−i(ai)]/Di, then vi(ai) − vi(b) ≥ V̂−i(b) − V̂−i(ai), so

V̂ (ai) > V̂ (b), and hence V̂ (ai) > V̂ (c) for all c ∈ A \ {ai}. Thus, the winning
alternative will be ai in Step 4 of the mechanism, and i will pay the stochastic
Clarke tax pi given by formula (16) in Step 5. Thus, her expected utility will be

ûi(ai)− di [V̂−i(b)− V̂−i(ai)]/Di.

• On the other hand, if paii − pbi < [V̂−i(b) − V̂−i(ai)]/Di, then vi(ai) − vi(b) <

V̂−i(b) − V̂−i(ai), so V̂ (b) > V̂ (ai) and hence V̂ (b) ≥ V̂ (c) for all c ∈ A \ {b}.
Thus, the winning alternative will be b in Step 4 of the mechanism, and i will pay
nothing in Step 5. Thus, her expected utility will be ûi(b).
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It follows that a best response depends on whether or not ûi(ai)−di[V̂−i(b)−V̂−i(ai)]/Di ≥
ûi(b). There are two cases:

1. If [ûi(ai)−ûi(b)]/di ≥ [V̂−i(b)−V̂−i(ai)]/Di, then ûi(ai)−di [V̂−i(b)−V̂−i(ai)]/Di ≥
ûi(b), so a best response pi is such that paii − pbi ≥ [V̂−i(b)− V̂−i(ai)]/Di.

2. If [ûi(ai)−ûi(b)]/di < [V̂−i(b)−V̂−i(ai)]/Di, then ûi(ai)−di [V̂−i(b)−V̂−i(ai)]/Di <

ûi(b), so a best response pi is such that paii − pbi < [V̂−i(b)− V̂−i(ai)]/Di.

Suppose pi is a best response for i to all V−i ∈ Vb. Since Case 1 holds whenever
[V̂−i(b) − V̂−i(ai)]/Di ≤ [ûi(ai) − ûi(b)]/di we deduce that pi must satisfy paii − pbi ≥
[ûi(ai) − ûi(b)]/di. Since Case 2 holds whenever [V̂−i(b) − V̂−i(ai)]/Di > [ûi(ai) −
ûi(b)]/di, we deduce that pi must satisfy paii − pbi ≤ [ûi(ai) − ûi(b)]/di. Combining
these observations, we conclude that pi must have paii − pbi = [ûi(ai)− ûi(b)]/di.

“⇐=” Suppose pi is such that paii − pbi = (ûi(ai) − ûi(b))/di. By the analysis in
the proof of “=⇒”, we see that the strategy pi always yields for i at least as good an
expected utility as any other strategy, for any possible V−i ∈ Vb. Thus, pi is a best
response for i to all V−i ∈ Vb. 3 Claim 1

The vector pi is a dominant strategy for i if and only if it is a best response for i to every
vector V−i ∈ RA. By applying Claim 1 for all b ∈ A, we deduce that pi is a dominant
strategy if and only if paii − pbi = (ûi(ai)− ûi(b))/di for all b ∈ A. By simple arithmetic,
we deduce that pai − pbi = (ûi(a)− ûi(b))/di for all a, b ∈ A.

But Step 1 of the mechanism requires that pi must also satisfy min
a∈A

pai = 0. Meanwhile,

we have assumed without loss of generality that min
a∈A

ûi(a) = 0. From this, we deduce

that pai = ûi(a)/di for all a ∈ A. (Such a pi is always possible, because condition (14) is
satisfied by hypothesis.) In other words, pai = ∗pai .

(b) Comparing equations (12) and (15) for all i ∈ I, we see that ûi = ci ui, where ci := di/Di.
If we substitute this into the utilitarian social welfare function in equation (11), we see

that ÛI/I = UI , where UI is the utilitarian social welfare function defined in equation

(1). Thus, ÛI/I satisfies assumption (U4) if and only if UI satisfies (U4).

Claim 2: The set {ci}i∈I satisfies assumption (U1) from Section 2.

Proof. For all i ∈ I, equation (14) defines di := u$i (wi)− u$i (wi − rn(i)). Hypothesis ($1)
implies that {di}i∈I are independent random variables. Furthermore,

E[di] = E[u$i (wi)− u$i (wi − rn(i))] (∗)
u$(wi)− u$(wi − rn(i)) (†)

Di,

for all i ∈ I, where (∗) is by hypothesis ($3), and (†) is by defining formula (15).
Thus, if ci := di/Di, then {ci}i∈I are also independent random variables, such that
E[ci] = 1 for all i ∈ I. Hypothesis ($4) implies that var[di] ≤ K ·D2

i . Thus, var[ci] =
var[di]/D

2
i ≤ K. Thus, setting σ2

c := K, we see that {ci}i∈I satisfies (U1). 3 Claim 2

Claim 3: The set {ui}i∈I defined by equation (15) satisfies condition (U3).
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Proof. By hypothesis, {ûi}i∈I satisfy (U3); thus, there is some M̂ > 0 such that, for all
a ∈ A, we have

1

I

∑
i∈I

ûi(a)2 < M̂2.

Hypothesis ($5) implies ci > C for all i ∈ I. Meanwhile, ui = ûi/ci for all i ∈ I.
Thus,

1

I

∑
i∈I

ui(a)2 =
1

I

∑
i∈I

ûi(a)2

c2i
<

1

I

∑
i∈I

ûi(a)2

C2
<

M̂2

C2
,

for all a ∈ A. Thus, the result follows by setting M := M̂/C. 3 Claim 3

Finally, the random error functions {εi}i∈I satisfy hypothesis (U2). Thus, if we define

VI := V̂I/I, then Theorem 1 implies that

lim
I→∞

Prob

[
argmax
A

(VI) ⊆ argmax
A

(UI)

]
= 1,

where UI is from equation (1). But as we have observed, UI = ÛI/I.

Part (c) follows from Theorem 2 the same way that (b) followed from Theorem 1. 2
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