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Abstract

Given a large enough population of voters whose utility functions satisfy certain
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1 Introduction

As a theory of social justice, utilitarianism is quite appealing. But as a practical criterion
for collective choice, it has serious shortcomings. To apply the utilitarian criterion, we not
only need accurate information about the cardinal utility functions of all individuals in
society; we must also know how to make cardinal interpersonal comparisons between these
utility functions. These informational problems are compounded by two other factors.
First, a person may strategically misrepresent her utility. Second, she may inadvertently
misperceive her own utility function, either through lack of self-knowledge, or because she
does not fully understand the long-term consequences of the policies under consideration.
For these reasons (among others), collective decisions are almost never made by trying
to explicitly ascertain the utility functions of the members of society (e.g. via a survey).
Instead, collective decisions are usually made by voting.

A scoring rule is a particular kind of voting rule where each voter assigns a “score” to
each alternative (with some constraints), and the alternative with the highest aggregate
score wins. Well-known scoring rules include the Borda rule, the plurality and anti-plurality
rules, evaluative (or “range”) voting, and approval voting. Since they involve maximizing
a sum, scoring rules seem like a sort of “ersatz utilitarianism”. We will show that this is
more than just a superficial formal resemblance. If the probability distribution of utility
functions in a large society satisfies certain conditions, then we will show that a well-chosen
scoring rule has a very high probability of selecting the alternative which maximizes the
utilitarian social welfare function. For a sufficiently large population, this probability can
be made arbitrarily close to certainty. Thus, with the right scoring rule, we can realize the
utilitarian ideal, despite the informational problems described above.

The remainder of this paper is organized as follows. Section 2 considers evaluative
voting. Section 3 considers approval voting. Section 4 considers rank scoring rules, such
as the Borda rule or the plurality rule. Each section introduces one or more scenarios
(described by hypotheses concerning the probability distribution of utility functions), and
then, for each scenario, gives an asymptotic probability result. Appendix A reviews some
results from Pivato (2014b) that are used in the other proofs. Appendix B contains the
proofs of all the results in the paper.

Related literature. The results in this paper are complementary to those in Pivato
(2014a,b). Like the present paper, Pivato (2014a) considers conditions under which ordi-
nal voting rules maximize the utilitarian social welfare function (SWF) in a large popula-
tion. But whereas this paper focuses on scoring rules, Pivato (2014a) focuses on Condorcet
consistent rules such as the Copeland rule or an agenda of pairwise majority votes. Mean-
while, Pivato (2014b) considers a broader problem: how can we compute (and maximize)
the utilitarian SWF when we have only very imprecise information about people’s utility
functions and the correct system of interpersonal utility comparisons, and when people
can be strategically dishonest? Under plausible conditions, Pivato (2014b) shows that, in
a large population, we can accurately estimate the utilitarian SWF despite these difficul-
ties. Indeed, this can be done in a strategy-proof way, using a modified version of the
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Groves-Clarke pivotal mechanism.
We will evaluate ordinal voting rules from a utilitarian perspective. This approach was

pioneered by Rae (1969), Taylor (1969) and Weber (1978). Rae and Taylor assumed that
all voters had equal preference intensities over a dichotomous choice, given by independent,
identically distributed (i.i.d.) random {0, 1}-valued utility functions. In this setting, they
showed that simple majority vote maximized the expected value of the utilitarian SWF,
amongst all anonymous voting rules.1 Weber (1978) considered a setting with many al-
ternatives, and variable preference intensities. Assuming that the voters’ utilities for the
different alternatives were independent, uniformly distributed (i.u.d.) random variables,
he sought the voting rule which maximized the expected value of the utilitarian SWF in
a large population. He showed that the Borda rule was the optimal rule in the class of
rank scoring rules.2 The results in Section 4 can be seen as a major generalization of this
early insight. In the case of exactly three alternatives, Weber (1978) also showed that
the approval voting rule slightly outperforms the Borda rule; we will study the utilitarian
efficiency of approval voting in Section 3.

Shortly after Weber’s foundational work, Bordley (1983, 1985a) and Merrill (1984)
used computer simulations to estimate the expected value of the utilitarian SWF for var-
ious voting rules. Bordley (1985b, 1986) computed utilitarian-optimal weighted majority
voting schemes for dichotomous decisions with correlated voters. But there was no further
utilitarian analysis of voting rules for the next twenty years.

Starting in 2005, a literature emerged on the utilitarian analysis of federal representa-
tive assemblies. Most of these papers focussed on dichotomous decisions, and assumed that
the utility functions of the citizens were i.i.d. random variables. They asked: which voting
rule will maximise the expected value of the utilitarian SWF?3 First, Beisbart et al. (2005)
computationally compared the performance of seven benchmark rules, while Barberà and
Jackson (2006) gave an exact formula for the utilitarian-optimal weighted majority rule
in terms of the distribution of utility functions found within each state. Next, Beisbart
and Bovens (2007) and Bovens and Hartmann (2007) investigated the consequences of
different population-based weighting formulas with a mixture of theoretical analysis and
computational results. Laruelle and Valenciano (2008, Ch.3; 2010, §7) provided a utilitar-
ian rational for the classic Penrose “square root” weighting formula. Macé and Treibich
(2012) and Koriyama et al. (2013) derived analytical results in scenarios where voters have
non-separable preferences over a series of dichotomies.4 In contrast to all the previously
mentioned papers, Fleurbaey (2009) and Beisbart and Hartmann (2010) considered models

1In fact, Rae and Taylor were interested in maximizing “responsiveness”: the probability that the out-
come agrees with the preference of a random individual. But if all voters have equal preference intensities,
then maximizing “responsiveness” is equivalent to maximizing the utilitarian SWF. See also Badger (1972),
Curtis (1972), Schofield (1972), Straffin (1977), and Dubey and Shapley (1979) for extensions of the Rae-
Taylor theorem. Riley (1990) appears to have independently intuited some of the same conclusions. But
he did not give any formal proofs.

2Weber called these “weighted ranking rules”.
3Several of these papers also consider maximizing the expected value of the Rawlsian (maximin) SWF.
4This is captured in their model by supposing that the utility function of each state is a concave function

of its frequency of victory in a long series of decisions.
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with correlated voters. In Biesbart and Hartmann’s model, the profile of utility functions
is drawn from a multivariate normal distribution, whereas Fleurbaey’s model is extremely
general; the correlation structure between voters is completely arbitrary.5 Finally, Maaser
and Napel (2014) used computer simulations to find utilitarian-optimal voting weights in
a setting with three or more alternatives arranged on a line (with single-peaked prefer-
ences). The overall message of these papers is that, with i.i.d. voters, the expected value
of utilitarian social welfare is generally maximized by a “degressive” weighted majority
rule, where the weight of a nation is a sub-linear function (e.g. square root) of its popula-
tion.6 With non-independent and/or non-identical voters, the optimal weights can depend
on the correlations and preference intensities.

Aside from Maaser and Napel (2014), these papers only considered dichotomies.7 But
other recent papers have considered three or more alternatives, in the context of direct
democracy. Lehtinen (2007, 2008) used computer simulations to show that strategic voting
often improves the utilitarian efficiency of the Borda rule and approval voting. Caragiannis
and Procaccia (2011) estimated the “distortion” of the plurality, approval, and antiplurality
voting rules —that is, the worst-case ratio between the utilitarian social welfare of the
optimal alternative, and the utilitarian social welfare of the alternative which actually
wins, where the worst case is computed over all possible profiles of “normalized” utility
functions. (A utility function is “normalized” if it is positive and the utilities sum to one.)
Procaccia and Caragiannis were particularly interested in the asymptotic growth rate of this
distortion ratio as the number of voters and/or alternatives becomes large. They showed
that, if voters randomly convert their cardinal utility functions into voting behaviours in a
plausible way, then the expected distortion ratio grows surprisingly slowly. Their intended
application was preference aggregation in a cooperating group of artificially intelligent
agents (e.g. Mars rovers), but their results are also applicable to more traditional social
welfare problems. This approach has recently been extended by Boutilier et al. (2012),
who study the worst-case and average-case performance of randomized social choice rules.

Given a social welfare function W , and the probability distribution of the voters’ car-
dinal utility functions, Apesteguia et al. (2011) asked: what ordinal voting rule maximizes
the expected value of W? If W is the utilitarian SWF, and the voters’ utilities are i.i.d.
random variables, they showed that the W -optimal rule is a rank scoring rule of the kind
we consider in Section 4.8 In particular, if the voters’ utilities are i.u.d. random variables,
then the W -optimal rule is the Borda rule. The results in Section 4 of this paper can be
seen as complementary to those of Apesteguia et al. (2011); while they show that a certain
scoring rule is better, on average, than any alternative voting rule, we show that, in a large

5Fleurbaey (2009) also provides a utilitarian analysis of direct democracy, including a far-reaching
generalization of the Rae-Taylor theorem to a setting where voters may have different preference intensities
and arbitrary correlations.

6There is also a vast literature on voting power in representative assemblies, which reaches similar
conclusions; see e.g. Laruelle and Valenciano (2008) for a survey.

7Fleurbaey (2009;§7) notes that his approach can be applied to any number of issues, because it assigns
a distinct weight to each voter for each binary comparison (proportional to her preference intensity) and
thereby evades the Condorcet paradox. However, his weighting formula is very informationally demanding.

8Apesteguia et al. (2011) also consider the case when W is the maximin or maximax SWF.
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population, it approaches perfect agreement with the utilitarian social choice.
Giles and Postl (2012) conducted a similar investigation for (A,B)-voting rules, a two-

parameter family of rules introduced by Myerson (2002), which includes approval vote as
well as rank scoring rules. Giles and Postl suppose there are three alternatives, whose
utilities for each voter are privately known i.i.d. random variables on the interval [0, 1].
Unlike Apesteguia et al., they focus only on the utilitarian SWF, and they allow strategic
voting. Giles and Postl first characterize the symmetric Bayesian Nash equilibrium (BNE)
for the N -player strategic voting game for any N ≥ 2. Then they numerically compute the
expected value of the utilitarian SWF at the three-player BNE for various (A,B) ∈ [0, 1]2

(where the three players’ utilities are i.i.d. random variables drawn from either a uniform
distribution or a beta distribution on [0, 1]). The results on approval voting in Section 3
of this paper can be seen as complementary to the findings of Giles and Postl (2012), but
extended to an arbitrary number of alternatives and a large number of voters.

Kim (2014) pushes this investigation further. In a setting with three or more alterna-
tives, and voters with independent (but not identically distributed) random utilities, he
characterizes the rules which are ex ante Pareto efficient in the class of ordinal voting rules:
they are “non-anonymous” rank scoring rules (where each voter has perhaps a different
score vector). He further shows that, in a “neutral” environment (i.e. all alternatives
are ex ante interchangeable), such rules are incentive compatible (i.e. truth-revealing in
BNE). Special cases of Kim’s analysis are the rank scoring rules which maximize ex ante
utilitarian social welfare over all ordinal rules. In particular, Kim observes that the rank
scoring rules of Apesteguia et al. (2011) are incentive-compatible in the i.i.d. environment
of their paper.9 He then constructs incentive-compatible voting rules which, in terms of
the utilitarian SWF, are superior to any ordinal rule (in particular, any scoring rule), but
which utilize only a limited amount of cardinal utility information from the voters.

Azrieli and Kim (2014) perform a similar analysis for a dichotomy in which voters have
independent (but not identically distributed) random utilities. They show that the rule
which maximizes ex ante utilitarian social welfare over the class of all incentive compatible
rules is a weighted majoritarian rule (where the weight of each voter is determined by the
expected value of her utility function). They also obtain a similar characterization of the
ex ante and ex interim Pareto-optimal rules in the class of incentive-compatible rules.

The majority of the aforementioned papers deal only with dichotomous decisions,
whereas we allow an arbitrary number of alternatives.10 Also, except for Fleurbaey (2009),
all of the aforementioned papers assumed that cardinal interpersonal utility comparisons
are unproblematic. In contrast, we suppose that these interpersonal comparisons them-
selves are ambiguous in practice (but still meaningful in principle). Finally, except for
Weber (1978) and Caragiannis and Procaccia (2011), all of the aforementioned papers deal
with “small” populations of voters, whereas we are interested in asymptotic probabilistic

9For i.u.d. utilities, this result had been anticipated by Weber (1978a, p.10).
10However, approval voting and all rank scoring rules reduce to simple majority vote when there are

only two alternatives. Thus, in this setting, our results in Sections 3 and 4 imply the utilitarian optimality
of simple majority voting, and are complementary to the Rae-Taylor theorem and its extensions.
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results for very large populations.11 It is not possible here to adequately summarise the
vast and growing literature on the large-population asymptotic probabilistic analysis of
voting rules. Instead, we will only briefly touch on two strands of this literature. The first
strand is the Condorcet Jury Theorem (CJT) and its many generalizations.12 Like the
CJT literature, the results of the present paper say that, under certain probabilistic as-
sumptions, a large population using a certain voting rule is likely to arrive at the “correct”
decision. But the goal for the CJT literature is to find the correct answer to some objective
factual question, whereas the goal in the present paper is to maximize social welfare.

The second strand is the literature on strategic voting and/or strategic candidacy in
large populations with some kind of randomness or uncertainty in voters’ preferences.
This literature is mainly concerned with characterizing the Nash equilibria of certain large
election games. These equilibria occasionally have surprising social welfare properties. For
example, Ledyard (1984), Lindbeck and Weibull (1987, 1993), Coughlin (1992; Theorem
3.7 and Corollary 4.4), Banks and Duggan (2004; §4) and McKelvey and Patty (2006) have
all shown that, in certain election games, there is a unique Nash equilibrium (sometimes
called a “political equilibrium”) where all the candidates select the policy which maximizes
a utilitarian SWF. But these utilitarian SWFs are based on somewhat peculiar systems
of interpersonal utility comparisons. In these models, voter behaviour is described by a
stochastic device: the probability that voter i votes for candidate C (or in some cases, the
probability that i votes at all) is a function of the difference between the cardinal utility
which i assigns to C and the cardinal utility she assigns to other candidates. Although the
different models use different stochastic devices and seek to capture different phenomena
(e.g. random private costs for voting, or random private shocks to the utility functions, or
random individual errors due to bounded rationality, or other exogenous perturbations),
each model assumes that utility functions are translated into voting probabilities in the
same way for every voter. In this way, each model smuggles in a system of “implicit”
interpersonal utility comparisons via the stochastic device. As observed by Banks and
Duggan (2004, p.29), this means that the normative significance of the “utilitarianism”
emerging from these political equilibria is somewhat unclear.

In contrast, this paper assumes that there is a pre-existing, normatively meaningful
system of cardinal interpersonal utility comparisions, explicitly described by a set of “cal-
ibration constants” which exist independently of the voting rule and any other random
factors in the model. The social planner does not know the exact values of these calibra-
tion constants, so she she regards them as random variables. Our results suggest that it
is still possible to closely approximate the utilitarian social choice, even with this kind of
uncertainty. On the other hand, unlike the political equilibrium literature described in
the previous paragraph, this paper does not grapple with strategic issues, except in the
conclusion. Also, unlike the political equilibrium literature, this paper treats the social al-

11Since they consider a democratic federation of states, the papers by Barberà and Jackson (2006),
Beisbart, Bovens and Hartmann, etc. presumably posit large populations. However, most of these papers
represent each population in reduced form as an averaged utility function, not as a set of individuals, and
none of them engage in any sort of asymptotic analysis.

12See Nitzan (2009, Ch.11-12) or Pivato (2013) for surveys of this literature.
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ternatives as exogenous, rather than endogenizing them as the result of political candidates
competing for popularity.

2 Evaluative voting

The most natural “utilitarian” voting rule simply asks the each voter to assign a numeri-
cal score to each alternative, presumably reflecting the utility she would obtain from that
alternative. The obvious problem with this approach is that voters could strategically
exaggerate their scores. One partial solution is to rescale every voter’s utility function to
range over the interval [0, 1].13 The resulting social choice rule has been called evalua-
tive voting (Núñez and Laslier, 2014), utilitarian voting (Hillinger, 2005), or range voting
(Smith, 2000; Macé, 2013). It is closely related to the relative utilitarian SWF axiomatized
by Dhillon (1998) and Dhillon and Mertens (1999).

Before continuing, let us fix some notation which will be maintained throughout the
paper. Let R denote the set of real numbers. For any set A and function f : A−→R, let
argmaxA(f) denote the set of elements in A which maximize f . For any random variable
X, let E[X] denote its expected value, and let var[X] denote its variance.

Let A be a finite set of social alternatives, let I be a set of voters, and let I := |I|.
(We will typically suppose that I is very large.) In evaluative voting (EV), vote of each
voter i in I takes the form of a function vi : A−→[0, 1]. The EV rule then chooses the
alternative(s) in A that maximize the function VI : A−→R defined by

VI(a) :=
∑
i∈I

vi(a), for every alternative a in A. (1)

Does EV also maximize the utilitarian social welfare function? If not, how close does it
come to this goal? For every voter i in I let wi : A−→R be her “true” utility function.
We suppose these utility functions admit one-for-one cardinal interpersonal comparisons.
In other words, for any alternatives a, b, c, and d in A, if wi(b) − wi(a) = wj(d) − wj(c),
then the welfare that voter i gains in moving from a to b is exactly the same as the welfare
that voter j gains in moving from c to d. We therefore want to maximize the utilitarian
SWF UI defined by

UI(a) :=
1

I

∑
i∈I

wi(a), for every alternative a in A. (2)

Let wi := min{wi(a); a ∈ A}. By replacing wi with the function w̃i := wi−wi if necessary,
we can suppose that min{wi(a); a ∈ A} = 0, for every voter i in I. Clearly this does not
affect the maximizer of (2).

Next, let ci := max{wi(a); a ∈ A}, and then define ui(a) := wi(a)/ci, for every voter
i in I and every alternative a in A. Note that each ui ranges over the interval [0, 1]. The
relative utilitarian social welfare function RU : A−→R is defined:

RUI(a) :=
∑
i∈I

ui(a), for every alternative a in A. (3)

13Obviously, this is not a complete solution to strategic voting.
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The scaling constants {ci}i∈I represent the “preference intensities” of the voters, which we
assume are unknown to the social planner. From the planner’s point of view, {ci}i∈I are
random variables. We formalize this with the following assumption:

(E1) {ci}i∈I are real-valued random variables, which are independent, but not necessarily
identically distributed. There is some constant σ2

c ≥ 0 such that var[ci] ≤ σ2
c and

E[ci] = 1 for all i ∈ I.

Hypotheses (E1) does not allow the preference intensities of different voters to be correlated;
it cannot accommodate a scenario where voter i is likely to have strong preferences if voter
j does. However, (E1) does allow that certain types of voters tend to have more intense
preferences than other voters, for certain types of policy problems; for example, parents
of young children might have especially intense preferences about education policies, while
industrialists might have strong preferences about regulations affecting their industry.

Assuming voter i uses the full range [0, 1] to express her utilities, but is otherwise
accurate, she will set vi = wi. If all voters behave in this way, then VI = RUI . But voter i
may misperceive her own utility function. Thus, in general, vi = ui + εi, where εi : A−→R
is a random “error” function. Suppose ai and ai are the minimizer and maximizer of ui
(thus, ui(ai) = 0 and ui(ai) = 1). It is reasonable to suppose that vi(ai) = 0 and vi(ai) = 1
—that is, voter i reliably assigns a score of 0 to her worst alternative and a score of 1 to
her best alternative. Thus, εi(ai) = εi(ai) = 0. However, for the other alternatives in A,
the errors may be nonzero. We assume they satisfy the following condition:

(E2) For each alternative a in A, the random errors {εi(a)}i∈I are independent,14 but
not necessarily identically distributed. There is some constant σ2

ε > 0 such that
var[εi(a)] ≤ σ2

ε and E[εi(a)] = 0 for all a ∈ A and i ∈ I.15 The random variables
{ci}i∈I are independent of the random functions {εi}i∈I .

Finally, we assume the utility profile {ui}i∈I satisfies the following technical property.

(E3) There is a constant ∆ > 0 such that maxA(UI) − UI(a) > ∆ for every a 6∈
argmaxA(UI).

16

Here, ∆ is the minimum social welfare gap between the optimal policy and the next-best
policy. If a voting rule acts as an “estimator” of the utilitarian SWF, then we need the
error of this estimate to be smaller than ∆, in order for the rule to select the optimal
policy, and not the next-best policy.17 Our first result says that, despite the uncertainties
surrounding {ci}i∈I and {εi}i∈I , evaluative voting has a very good chance of maximizing
the utilitarian social welfare function UI when the population is large.

14Note that we do not assume that, for a fixed voter i in I, the random errors εi(a) and εi(b) are
independent for different alternatives a and b in A.

15This is consistent with the fact that εi(ai) = εi(ai) = 0 with certainty —this just means that the
distributions of εi(ai) and εi(ai) are point masses.

16Most of our results involve taking a limit as I→∞. In these results, ∆ is to be held constant as I→∞.
17Of course, if ∆ was very small, then selecting the next-best policy would not be a catastrophe; thus,

we will relax condition (E3) in Proposition 2 below.
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Theorem 1 For every voter i in I, let ui : A−→R be a utility function. Suppose that
the profile {ui}i∈I satisfies (E3), and suppose {ci}i∈I, {εi}i∈I and {vi}i∈I are randomly
generated according to rules (E1) and (E2). Define VI and UI as in equations (1) and (2).

Then lim
I→∞

Prob

[
argmax
A

(VI) ⊆ argmax
A

(UI)

]
= 1.

We can refine this result in three ways. First, we can drop condition (E3). Second, and
relatedly, instead of demanding that the outcome of evaluative voting exactly maximizes
UI , we can allow the possibility that it only almost maximizes UI —something which would
be almost as good, for practical purposes. Third, we can estimate how large the population
needs to be in order to achieve such “almost-maximization” with a certain probability. To
achieve these refinements, we need some more notation. For any utility profile {ui}i∈I , if
UI is as in equation (2), then let

U∗I := max {UI(a) ; a ∈ A} (4)

This is the theoretical maximum social welfare, which would be obtained from the optimal
social alternative. Let δ > 0 represent a “social suboptimality tolerance”, and let p > 0
represent the probability that this tolerance will be exceeded (the social planner wants
both of these to be small). For any values of δ and p, we define

I(δ, p) := 4A
σ2
c + σ2

ε

p δ2
. (5)

Our next result says that, for any population larger than I(δ, p), any VI-maximizing social
alternative will produce a utilitarian social welfare within δ of the theoretical optimum,
with probability at least 1− p.

Proposition 2 For every voter i in I, let ui : A−→R be a utility function. Suppose
{ci}i∈I, {εi}i∈I and {vi}i∈I satisfy (E1) and (E2). Define VI, UI, and U∗I as in equations
(1), (2), and (4). For any δ > 0 and p ∈ (0, 1), if I ≥ I(δ, p), then Prob [UI(a) < U∗I − δ] <
p, for every a in argmaxA(VI).

The evaluative voting rule prevents voters from strategically exaggerating their utility
functions, but strategic voting is still possible. In general, each voter’s best response is to
assign a score of either 0 or 1 to each alternative in A (Núñez and Laslier, 2014). In this
case, evaluative voting reduces to approval voting.

3 Approval voting

Approval voting18 works as follows:

18Approval voting was originally proposed by Ottowell (1977), Kellett and Mott (1977), and Weber
(1978), but the first sustained formal analysis was in Brams and Fishburn (1983), which has become the
standard reference on the subject.
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1. Each voter i identifies a subset of alternatives in A which she “approves”.

2. For each social alternative a in A, count how many voters approve a.

3. Choose the alternative which is approved by the most voters.

Formally, for every voter i in I, let Gi ⊆ A be the set of alternatives which i approves;
we refer to Gi as her approval set. Let G := {Gi}i∈I be the profile of the voters’ approval
sets. For any social alternative a in A, we define its approval score by: VG(a) := #{i ∈ I;
a ∈ Gi}. We then define Appr(G) := argmaxA(VG).

For every i in I, let ui : A−→R be i’s cardinal utility function, and let ci > 0 be
a “calibration constant”, which we will use to make cardinal interpersonal utility com-
parisons. We suppose that the functions ci ui and cj uj are interpersonally comparable
for all voters i and j in I. In other words, for any alternatives a, b, c, and d in A, if
ci ui(b) − ci ui(a) = cj uj(d) − cj uj(c), then the welfare that voter i gains in moving from
alternative a to alternative b is exactly the same as the welfare that voter j gains in moving
from c to d. We would therefore like to maximize the utilitarian social welfare function
UI : A−→R defined by

UI(a) :=
1

I

∑
i∈I

ci ui(a), for every alternative a in A. (6)

If the approval set Gi is a “noisy signal” of ui (for every voter i in I), then the aggregate
approval score VG could be seen as a “noisy signal” of the social welfare function UI . Thus,
under the right conditions, approval voting should maximize utilitarian social welfare.
Weber (1978) showed this was true when voters have i.u.d. utility functions over a set of
three alternatives. The goal of this section is to make this intuition precise in a much more
general setting.

Each voter’s true utility function is unknown to the social planner. So is the process by
which each voter converts her utility function into an approval set. The planner deals with
this uncertainty by treating these as random variables, described by some probabalistic
model. We will consider two different models: the Threshold Model and the Selection
Model. The Threshold Model first assigns each voter a random utility for each social alter-
native, and then selects her approval set from these alternatives by means of a randomly
determined threshold. The Selection Model first selects an approval set for each voter
(this process may be random or deterministic), and then randomly assigns utilities to each
social alternative, according to a probability distribution which depends on whether or not
it is in the approval set. Both models yield the same conclusion: in a large population,
approval voting maximizes the utilitarian social welfare function, with high probability.

3.1 The Threshold Model

For each voter i in I, and every alternative a in A, let uia be the utility which i assigns to
a. We suppose that i also identifies an approval threshold θi. She then defines her approval
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set Gi to be all social alternatives whose utility exceeds θi.
19 That is:

Gi :=
{
a ∈ A ; uia ≥ θi

}
. (7)

We make the following assumptions:

(Θ1) Same as (E1).

(Θ2) The utilities {uia; a ∈ A and i ∈ I} are i.i.d. random variables with finite variance.
The variables {ci}i∈I and {ui}i∈I are all independent.

(Θ3) Same as (E3).

Finally, we assume:

(Θ0) The thresholds {θi}i∈I are independent random variables (not necessarily identically
distributed). For any i ∈ I, the random threshold θi may depend on {uia}a∈A. But
{θi}i∈I and {ci}i∈I are independent. Finally, 0 < Prob[uia ≥ θi] < 1 for all a ∈ A.

Assumptions (Θ1) and (Θ3) have the same interpretations as (E1) and (E3). Assumption
(Θ2) describes the planner’s ignorance about people’s true utility functions, while (Θ0)
describes her ignorance about how they convert these utility functions into approval sets,
except for the fact that they follow rule (7). The condition “0 < Prob[uia ≥ θi] < 1” simply
guarantees that the output of rule (7) is almost-surely nondegenerate. The next result
says that, if a large population of voters satisfies hypotheses (Θ0)-(Θ3), then with very
high probability, approval voting will maximize the utilitarian social welfare function UI
in equation (6).

Theorem 3 Suppose {ui}i∈I, {θi}i∈I and {ci}i∈I satisfy (Θ0)-(Θ3), and the approval pro-

file G = {Gi}i∈I is defined by rule (7). Then lim
I→∞

Prob

[
Appr(G) ⊆ argmax

A
(UI)

]
= 1.

One notable difference between Theorem 1 and Theorem 3 is that the former places
essentially no conditions on the utility functions {ui}i∈I , whereas the latter requires these
utility functions to be i.i.d. random variables. The reason is that approval voting pro-
vides us with less information about individual utility functions than evaluative voting.
A voter’s response in evaluative voting tells us her entire utility function, up to a scalar
multiple; the only uncertainty is the magnitude of this scalar. But her approval set only
tells us whether each she assigns a ‘high’ or ‘low’ utility to each alternative. Thus, without
further information about the conditional probability distributions of these ‘high’ and ‘low’
utilities, it is not possible for us to estimate the utilitarian social welfare function.

Note that the total ignorance described by (Θ2) implies both a sort of a priori anonymity
(i.e. all voters are indistinguishible, a priori) and a priori neutrality (i.e. all social alter-
natives are indistinguishible, a priori). Thus, it does not allow us to incorporate the

19In the theory of approval voting, this is known as a sincere voting strategy. It is easy to see that any
insincere voting strategy is weakly dominated by some sincere voting strategy.
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knowledge that certain alternatives (e.g. low taxes) tend to be favoured by certain classes
of voters (e.g. business owners). Nor does it allow us to incorporate the knowledge that
people’s preferences may be correlated (e.g. voters who favour low taxes tend to also favour
less regulation, because they are often business owners). Likewise, (Θ0) does not allow us
to incorporate knowledge that certain types of voters tend to set higher thresholds than
others for certain types of policy problems. (However, (Θ1), like (E1), does allow certain
types of voters to tend towards more intense preferences than others.) Thus, when ap-
plied to a specific policy problem, these assumptions may be less than optimal; a voting
rule more closely optimized to the specific probability distribution of utility functions in a
society might yield a higher expected social welfare.20

However, in many cases, we may not have actionable information about the distribution
of utility functions. Furthermore, at a political level, it could be problematic to deploy a
“customized” voting rule for each policy issue; it would be too easy for such “customiza-
tion” to smuggle in the biases of the social planner, either deliberately or inadvertently.
Even if these customized voting rules were developed through some impeccably impartial
process, based on objective and publicly known facts about the statistical distribution of
voter preferences, there might remain the suspicion that the outcome was due to some
manipulation of this process, and this could undermine its legitimacy. If this is a real
concern, then it is important to fix a single voting rule once and for all when designing
the constitution, and then apply this one voting rule to all policy questions. In the design
of such a constitution, the a priori anonymity and neutrality of (Θ0) and (Θ2) is entirely
appropriate.

3.2 The Selection Model

In our second model, the approval set of each voter is exogenously and arbitrary. Her
approval set might be fixed in advance, or it might be generated by some other random
process. (If the voters’ approval sets are random variables, then we do not need to assume
that they are either independent, or identically distributed.) Each voter assigns random
utilities to each alternative, conditional on whether or not it is in her approval set.

Formally, for each i in I, let Gi be the (exogenous) approval set of voter i, and let
Bi := A \ Gi. Let γ and β be two finite-variance probability measures on R,21 such that
the mean value of γ is strictly larger than that of β. We make the following assumptions:

(S1) Same as (Θ1) and (E1).

(S2) For all g in Gi, ui(g) is a γ-random variable. For all b in Bi, ui(b) is a β-random
variable.22 The random variables {ci; i ∈ I} and {ui(a); i ∈ I and a ∈ A} are all

20For example, the scoring rules of Kim (2014;§5) and the weighted majority rules of Bordley (1985b,
1986), Fleurbaey (2009) and Azrieli and Kim (2014;§4) have this feature.

21These are not necessarily Gamma or Beta distributions.
22If the supports of γ and β overlap, then there is a chance that the voter will assign a lower utility

to some element of Gi than she assigns to some element of Bi. This would appear somewhat irrational.
To exclude this, one could assume that γ is a finite-variance probability measure on (0,∞), while β is a
finite-variance probability measure on (−∞, 0]. But our results do not require this assumption.
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independent.

(S3) Same as (Θ3) and (E3).

The interpretation of (S1) is the same as (E1) or (Θ1). The interpretation of (S2) is the
same as (Θ2); it implies both a sort of a priori anonymity and a priori neutrality. The
difference is that now we can distinguish, a priori between those alternatives which are in a
voter’s approval set and those which aren’t, and give them different statistical treatments.
Since the approval sets themselves are exogenous, this model is perfectly able to cope with
situations where a voter’s approval choices are highly correlated, both with other voters
and with other known facts about that voter (e.g. the fact that business owners tend to
approve of tax reduction and also tend to approve of deregulation). The model in effect
makes no assumptions about the statistical distribution of approval sets (it doesn’t even
treat them as random). However, the model still does not allow correlations of utility
within each voter’s approval set (e.g. a correlation between the utility that a voter assigns
to a tax reduction and the utility she assigns to a deregulation policy, given that she has
approved of both). The earlier remarks about constitutional design still apply. Once again,
if a large population of voters satisfies these hypotheses, then with very high probability,
approval voting will maximize the utilitarian social welfare function UI in equation (6).

Theorem 4 Let G = {Gi}i∈I be an arbitrary approval profile. If {ui}i∈I and {ci}i∈I satisfy

hypotheses (S1)-(S3), then lim
I→∞

Prob

[
Appr(G) ⊆ argmax

A
(UI)

]
= 1.

As in Section 2, we would like to refine Theorems 3 and 4 by dropping conditions
(Θ3) and (S3). We would also like to estimate how large the population must be in order
for approval voting to “almost-maximize” UI with a certain probability, by analogy with
Proposition 2. For brevity, we will present such a result only for the Selection Model, but
a similar result can be proved for the Threshold Model. Let U∗I := max{UI(a); a ∈ A}.

Proposition 5 Let G = {Gi}i∈I be an arbitrary approval profile. If {ui}i∈I and {ci}i∈I
satisfy (S1) and (S2), then for any δ > 0, we have

lim
I→∞

Prob
(
UI(a) ≥ U∗I − δ for all a ∈ Appr(G)

)
= 1. (8)

Furthermore, if the fourth moments of γ and β are finite, then there are constants C1, C2 >
0 (determined by γ, β, and σ2

c ) such that, for any p > 0, if I ≥ C1/p and I ≥ C2/p δ
2,

then Prob [UI(a) < U∗I − δ] < p for all a ∈ Appr(G).

4 Rank scoring rules

One concern with approval voting is that it gives each voter very little ability to express
the intensity of her preference for or against each alternative. For example, if a voter
does not include a certain alternative in her approval set, this may be because she actively
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dislikes this alternative, or it may simply be because she has no strong feelings either way,
or perhaps inadequate knowledge of this alternative, and for this reason she “abstains”
from endorsing it. Approval voting is unable to distinguish between voting against and
abstention. For this reason, Alcantud and Laruelle (2014) propose “dis&approval” voting,
which allows a voter three choices for each alternative: approve, disapprove, or abstain.
However, “dis&approval” voting still does not distiguish between “strong” (dis)approval
and “weak” (dis)approval. For this purpose, we turn to rank scoring rules.

Let N := A. Let s1 ≤ s2 ≤ · · · ≤ sN be real numbers, and define s := (s1, s2, . . . , sN).
The s-rank scoring rule on A is defined as follows:

1. For every voter i in I, let �i denote her (strict) ordinal preferences on A.

2. For every alternative a in A, if a is ranked kth place from the bottom with respect
to �i, then voter i gives a the score sk. (In particular, i gives the score s1 to her
least-prefered alternative, and the score sN to her most prefered alternative.)

3. For each alternative in A, add up the scores it gets from all voters.

4. The s-rank scoring rule chooses the alternative(s) with the highest total score.

For example, the Borda rule is the rank scoring rule with s = (1, 2, 3, . . . , N). The standard
plurality rule is the rank scoring rule with s = (0, 0, . . . , 0, 1).

Formally, for every voter i in I, if A = {a1, a2, . . . , aN} and a1 ≺i a2 ≺i · · · ≺i aN ,
then define vi : A−→R by setting vi(ak) := sk for all k ∈ [1 . . . N ]. Let P := {�i}i∈I be
the profile of ordinal preferences of the voters. For every social alternative a in A, define
V s
P(a) :=

∑
i∈I vi(a). Then define Scores(P) := argmaxA(V s

P).
Recently, Apesteguia et al. (2011; Theorem 3.1) have shown that, amongst all voting

rules, rank scoring rules are the ones which maximize the expected value of the utilitarian
social welfare function (under certain conditions). Furthermore, they characterized the
optimal rank scoring rule in terms of the probability distribution of the voters’ utility
functions —to be precise, in terms of the expected order statistics of this distribution. Our
results in this section are complementary. We work with a much broader class of probability
distributions than Apesteguia et al. (2011). We will show that, if the profile {ui}i∈I
arises from this class, then there exists a rank scoring rule which will come arbitrarily
close to selecting a utilitarian optimum, with very high probability as I→∞. Thus, while
Apesteguia et al. (2011) show that the optimal rank scoring rule is “better on average”
than any other voting rule, we show that it is, in fact “almost perfect”, in the limit of a
large population.23

As in Section 3, we will present two stochastic models of voter preference formation. In
the Endogenous Preference model, the voters’ utility functions are i.i.d. random variables,
and their ordinal preferences are determined by these utility functions. In the Exogenous
preference model, the voter’s ordinal preferences are exogenous and arbitrary, and their
utility functions are random variables conditional on these preferences.

23Weber (1978) showed this was true for the Borda rule, when voters have i.u.d. utility functions.
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4.1 Endogenous Preferences

For each voter i in I, we will represent her utility function over A as an N -dimensional
vector ui = (uia)a∈A ∈ RA. Let µ be a finite-variance24 probability measure on RA; we
will use this probability measure to randomly generate the utility functions of the voters.
For any a, b ∈ A, we assume that µ{u ∈ RA; ua = ub} = 0 (i.e. almost surely, no two
alternatives yield the same utility). We also make the following assumptions.

(N0) µ is symmetric under all coordinate permutations.

(N1) Same as (S1), (Θ1), and (E1).

(N2) The utility functions {ui}i∈I are independent, µ-random vectors. Also, {ui}i∈I are
independent of {ci}i∈I .

(N3) Same as (S3), (Θ3), and (E3).

Note that we do not assume, for any particular voter i, that the utilities she assigns to
different alternatives a and b are independent random variables: the probability measure
µ may allow for arbitrary correlations between uia and uib. However, assumption (N0) acts
as a form of a priori neutrality. It implies that the expected value of uia and uib are the
same. Furthermore, the expected value of uia, conditional on some information about the
rank of b (say, that b is i’s favourite alternative) is the same as the expected value of uib
conditional on the same information about the rank of a. Hypothesis (N1) is comparable
to (S1) or (Θ1). Hypothesis (N2) is comparable to (S2) or (Θ2): it is a sort of a priori
anonymity, saying that all voters are indistinguishable, a priori. However, (N2) supposes a
richer level of knowledge than (S2) or (Θ2); for example, we might know that, on average,
each voter’s second-best and third-best alternatives obtain, respectively 90% and 75% of
the utility of her favourite alternative (assuming her worst alternative has utility 0). We
will now see how to incorporate such knowledge into the optimal rank scoring rule.

Let u ∈ RA be a µ-random variable. Rearrange the coordinates of u in increasing order,
to get a vector û := (û1, . . . , ûN), where û1 ≤ û2 ≤ · · · ≤ ûN . For all n ∈ [1 . . . N ], let
sn be the expected value of ûn; this yields a vector s = (s1, . . . , sN). The next result says
that, if a large population of voters satisfies hypotheses (N0)-(N3), then with very high
probability, the s-rank scoring rule will maximize the utilitarian social welfare function UI
in equation (6).

Theorem 6 Suppose {ui}i∈I, and {ci}i∈I satisfy (N0)-(N3), and let P = {�i}i∈I be the
ordinal preference profile defined by {ui}i∈I.25 Then

lim
I→∞

Prob

[
Scores(P) ⊆ argmax

A
(UI)

]
= 1. (9)

24By this, we mean that the variance of each coordinate of a µ-random variable is finite.
25P is almost surely a profile of strict preferences, because by hypothesis on µ, no two alternatives yield

the same utility for any voter, almost surely.
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Impartial Culture. As we have emphasized, hypothesis (N2) does not require the util-
ities {uia}a∈A to be i.i.d. random variables, for any particular voter i. However, it is
certainly compatible with this additional assumption. This corresponds to the special case
of the model where µ is a Cartesian product of N copies of some underlying finite-variance,
nonatomic probability measure ρ on R. In this case, the utilities {uia; i ∈ I and a ∈ A}
are all independent, ρ-random variables (this is a version of the so-called “Impartial Cul-
ture” model). If we make the further assumption that ρ is absolutely continuous and has
compact support, and assume that ci := 1 for every voter i in I, then we obtain the models
considered by Weber (1978) and Apesteguia et al. (2011). But the Endogenous Preference
model is much more general than this Impartial Culture model.26

4.2 Exogenous Preferences

In our second model, the preference orders of the voters are exogenous and arbitrary.
These preference orders may themselves be random variables, or they may be determined
in some other way. (If they are random variables, then we do not assume that they are
independent or identically distributed. In particular, unlike the Impartial Culture model,
we do not suppose that all N ! possible ordinal preferences on A are equally likely to occur
in P .) The model then assigns each voter a random utility for each alternative, conditional
on her preference order.

Formally, let U := {u ∈ RN ; u1 < u2 < · · · < uN}, and let λ be a finite-variance
probability measure on U. For every voter i in I, let �i denote i’s (exogenous) preference
order over A. We make the following assumptions:

(X1) Same as (N1), (S1), (Θ1) and (E1).

(X2) The utility vectors {ui}i∈I are independent random vectors, generated as follows.
For each i ∈ I, we obtain ui by taking a λ-random variable ûi, and rearranging the
coordinates to agree with the preference order �i. The random variables {ui}i∈I and
{ci}i∈I are independent.

(X3) Same as (N3), (S3), (Θ3), and (E3).

Once again, we do not assume, for any particular voter i, that the utilities she assigns to
different alternatives a and b are independent random variables, even after we condition
on �i; the probability measure λ may allow for arbitrary correlations between uia and
uib. However, (X2) has a consequence similar to (N0): given two voters i and j, and two
alternatives a and b, if a has the same rank with respect to �i as b does with respect to �j,
then the expected value of uia is the same as that of ujb. The interpretation of hypothesis
(X1) is the same as to (N1). Hypothesis (X2) is comparable to (N2): it is a sort of a priori

26One problem with Impartial Culture models is that, in a large population, all elements of A end
up with roughly the same average utility (due to the Law of Large Numbers), so that utilitarianism
is effectively indifferent between them, and the use of any voting rule is somewhat superfluous. The
Endogenous Preference model avoids this unrealistic outcome.
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anonymity, saying that all voters are indistinguishable, a priori, except for their exogenous
ordinal preferences.

For all k ∈ [1 . . . N ], let sk be the expected value of uk, where (u1, . . . , uN) ∈ U is a λ-
random variable. Let s := (s1, s2, . . . , sN). The next result says that, if a large population
of voters satisfies hypotheses (X1)-(X3), then with very high probability, the s-rank scoring
rule will maximize the utilitarian social welfare function UI in equation (6).

Theorem 7 Let P = {�i}i∈I be an arbitrary ordinal preference profile. Suppose {ui}i∈I,
and {ci}i∈I satisfy (X1)-(X3). Then the limit (9) holds.

As in Sections 2 and 3, we would like to refine Theorems 6 and 7 by dropping conditions
(N3) and (X3). We would also like to estimate how large the population must be in order
for the rank scoring rule to “almost-maximize” UI with a certain probability, by analogy
with Propositions 2 and 5. For brevity, we will present such a result only for the Exogenous
Preference model, but a similar result can be proved for the Endogenous Preference model.
As usual, let U∗I := max{UI(a); a ∈ A}.

Proposition 8 Let P = {�i}i∈I be an arbitrary ordinal preference profile. If {ui}i∈I and
{ci}i∈I satisfy (X1) and (X2), then for any δ > 0, we have

lim
I→∞

Prob
(
UI(a) ≥ U∗I − δ for all a ∈ Scores(P)

)
= 1. (10)

Furthermore, if the fourth moment of λ is finite,27 then there are constants C1, C2 > 0
(determined by λ and σ2

c ) such that, for any p > 0, if I ≥ C1/p and I ≥ C2/p δ
2, then

Prob [UI(a < U∗I − δ] < p, for all a ∈ Scores(P).

Conditional Impartial Culture. Theorem 6 is in fact a consequence of Theorem 7; in
effect, the Exogenous Preference model can be intepreted as the Endogenous Preference
model, conditional on a particular realization of the (random) ordinal preference profile
{�i}i∈I . Theorem 7 says that limit (9) holds for any particular realization of {�i}i∈I .
Theorem 6 follows from this fact by integrating over all possible realizations of {�i}i∈I .
(See Appendix B for details.)

At the end of Section 4.1, we explained how the “Impartial Culture” model was a special
case of the Endogenous Preferences model. If we condition on a particular realization of
{�i}i∈I , we obtain the Conditional Impartial Culture model. To be precise, let ρ be a
probability measure on R with finite variance and no atoms. For every voter i in I, let
�i be voter i’s (exogenous) ordinal preference relation on A. In this case, hypothesis (X2)
takes the following form:

27The fourth moment of the multivariate probability measure λ is the integral

∫
U

N∑
n=1

u4n dλ[u]. It is

finite if dλ[u] decays quickly enough as ‖u‖→∞. For example, the fourth moment of a multivariate normal
probability measure is finite.
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(X2′) Let {ri1, ri2, . . . , riN} be a sample of N independent, ρ-random variables. Rearrange
this sample in increasing order, to obtain ri(1) < ri(2) < · · · < ri(N) (these are called the

order statistics of the sample). If A = {a1, a2, . . . , aN} and a1 ≺i a2 ≺i · · · ≺i aN ,
then set ui(a1) := ri(1), ui(a2) := ri(2), . . ., and ui(aN) := ri(N).

The rank scoring rule described prior to Theorem 7 now has the following construction.
Take a random sample of N independent random variables drawn from ρ, and compute
the order statistics of this sample; this yields N new random variables (which are neither
independent, nor identically distributed). Let sN1 < sN2 < · · · < sNN be the expected values
of these random variables. Then set s := (sN1 , s

N
2 , . . . , s

N
N).

It is convenient to “renormalize” sN1 , s
N
2 , . . . , s

N
N to range over the interval [−1, 1], by

defining

s̃Nn :=
2 sNn − sNN − sN1

sNN − sN1
, for all n in [1 . . . N ].

This ensures that s̃NN = 1 and s̃N1 = −1. (For example, if N = 3, then we have s̃33 = 1
and s̃31 = −1, and only the value of s̃32 remains to be determined.) If ρ is a probability
distribution symmetrically distributed about some point in the real line, then the values
s̃N1 , s̃

N
2 , . . . , s̃

N
N will be symmetrically distributed around zero —that is, s̃Nk = −s̃NN+1−k for

all k in [1 . . . N ]. Thus, if N is odd and k = (N + 1)/2, then s̃Nk = 0. In particular, if
N = 3, then we must have s̃32 = 0, while s̃33 = 1 and s̃31 = −1. Thus, we get the rank scoring
rule defined by the scoring vector (−1, 0, 1), which is just the Borda rule. Thus, Theorem 7
implies the next result, which says that the Borda rule is asymptotically utilitarian-optimal
for any symmetric measure ρ.

Corollary 9 Suppose |A| = 3, and let P = {�i}i∈I be any profile of preference orders on
A. Let ρ be any symmetric, finite-variance probability distribution on R. If {ui}i∈I, and

{ci}i∈I satisfy (X1), (X2′), and (X3), then lim
I→∞

Prob

[
Borda(P) ⊆ argmax

A
(UI)

]
= 1.

If |A| ≥ 4, then the Borda rule is no longer guaranteed to be asymptotically optimal; the
optimal rule will depend on the expected values of the order statistics for ρ, which depend
on the structure of ρ itself. For example, suppose ρ was a normal probability distribution
and |A| = 7. Then we get the following expected order statistics (to 5 significant digits).28

s77 ≈ 1.35218,
s76 ≈ 0.75737,
s75 ≈ 0.35271,
s74 = 0,
s73 ≈ −0.35271,
s72 ≈ −0.75737,

and s71 ≈ −1.35218,

which renormalize to

s̃77 = 1,
s̃76 ≈ 0.56011,
s̃75 ≈ 0.26085,
s̃74 = 0,
s̃73 ≈ −0.26085,
s̃72 ≈ −0.56011,

and s̃71 = −1.

28Here we suppose for simplicity that ρ is a standard normal distribution. Any other normal distribution
would yield the same values for s̃71, . . . , s̃

7
7 after renormalization.
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By comparision, the Borda rule uses the scoring vector (−1,−0.66,−0.33, 0, 0.33, 0.66, 1).
Unfortunately, the expected values of order statistics are quite hard to compute for

many probability distributions. Harter and Balakrishnan (1996) provide tables of these
expected values for most of the common probability distributions (e.g. normal, exponential,
Weibull, etc.); from this data it is easy to design the appropriate rank scoring rule.

5 Conclusion

This paper has neglected strategic voting and implementation issues. However, simula-
tion results by Lehtinen (2007, 2008) suggest that strategic voting can often improve the
utilitarian efficiency of some of the voting rules discussed in this paper. Furthermore, the
results of Kim (2014) show that, with stochastically independent voters, the rank scoring
rules considered in Section 4 are truth-revealing in Bayesian Nash equilibrium.29 Finally,
the central premise of our results is that it is sufficient to obtain an arbitrarily high prob-
ability of selecting a utilitarian optimum, rather than certainty. This is exactly the same
premise as the theory of virtual implementation introduced by Matsushima (1988) and
Abreu and Sen (1991). Virtual implementation is an extremely powerful and versatile
implementation technology. For example, if the voters have complete information about
one another, then any social choice rule can be virtually implemented in Nash equilibrium
(Abreu and Sen, 1991) or iterated undominated strategies (Abreu and Matsushima, 1992).
Even with incomplete information, a very large class of social choice rules can be virtually
implemented in Bayesian Nash equilibrium (Serrano and Vohra, 2005), or even robustly
virtually implemented (Artemov et al., 2013). Since virtual implementation is the imple-
mentation technology most suited to the probabilistic approach taken in this paper, we
can consider the implementation problem to be essentially solved, for our purposes.

We have also assumed that the random variables associated with different voters are in-
dependent.30 This excludes the possibility that voters belonging to a particular community
or social group might exhibit correlations in their utility functions, preference intensities,
errors, and/or approval thresholds. Empirical data suggests that these independence as-
sumptions are false (Gelman et al., 2004). But they were made for expositional simplicity,
rather than technical necessity. The results in this paper are derived using results from
Section 2 of Pivato (2014b), which assumes stochastically independent voters. Section 3 of
Pivato (2014b) extends these results to correlated voters, assuming the correlation strength
is not too strong.31 Using this extension, it would be straightforward to extend the results
of the present paper to correlated voters.

For a large enough population, our results suggest that simple and popular voting rules

29Weber (1978) also states a special case of this result. However, a BNE with stochastically independent
voters assumes that each voter is totally ignorant about the preferences of all other voters when she votes;
this would not seem very realistic in many situations.

30This assumption is shared by virtually all the literature reviewed in Section 1, except for Bordley
(1985b, 1986), Fleurbaey (2009), and Beisbart and Hartmann (2010).

31To be more precise, we need an asymptotic condition on the L1 norm of the covariance matrix of the
random variables {ci}i∈I and {ui}i∈I , as I→∞.
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such as the Borda rule or approval voting have a very high probability of selecting an
alternative which maximizes or almost-maximizes the utilitarian social welfare function.
However, each result depends on specific assumptions about the statistical distribution of
utility functions in the population. Thus, to select the best rule, we must know something
about this distribution. The statistical distribution of utility functions probably depends
on both the society and the particular policy problem. Thus, different voting rules will be
optimal in different situations. In some situations, none of the voting rules considered here
may be optimal, from a utilitarian perspective. This suggests a two-stage approach. In the
first stage, estimate the utility functions of some statistically representative sample of the
population (e.g. using a survey). Use this data to estimate the statistical distribution of
utilities, and then determine which voting rule (if any) is optimal, given this distribution.
If the statistical distribution of utility functions satisfies the hypotheses of one of the results
in this paper, then in the second stage, we can use the corresponding voting rule to make
the collective decision. Otherwise, we must resort to some other method —perhaps the
methods considered in Pivato (2014a,b) or Kim (2014).
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Puppe for useful discussions and helpful comments on earlier versions of this paper. I also
thank Gustaf Arrhenius, Miguel Ballester, Marc Fleurbaey, Annick Laruelle, and the other
participants of the June 2014 “Workshop on Power” at the Collège d’Études Mondiales in
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Appendix A: Background

The proofs in this paper depend on some results from Pivato (2014b). In this appendix,
we briefly review these results.

Pivato (2014b) considers the problem of a utilitarian social planner who can only make
noisy observations of the utility functions of the individuals in society and the correct
system of interpersonal comparisons. For every i in I, let ui : A−→R be the true cardinal
utility function for voter i, and let ci > 0 be a calibration constant, which we will use
to make cardinal interpersonal utility comparisons. We suppose that the social planner
wants to maximize the utilitarian social welfare function UI : A−→R defined by formula
(6); however, she faces the following informational problems.

(U1) {ci}i∈I are unknown. The social planner regards {ci}i∈I as independent (but not
necessarily identically distributed) real-valued random variables. There are constants
c > 0 and σ2

c ≥ 0 such that E[ci] = c and var[ci] ≤ σ2
c , for all i ∈ I.

(U2) The utility functions {ui}i∈I are not precisely observable. Instead, for each i in
I, the planner can only observe a function vi := ui + εi, where εi : A−→R is a
random “error” term. For each alternative a in A, the random errors {εi(a)}i∈I
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are independent32 (but not necessarily identically distributed), and they all have an
expected value of 0 and a variance less than or equal some constant σ2

ε > 0.

Finally, the random variables {ci}i∈I are independent of the random functions {εi}i∈I .

We assume that the utility profile {ui}i∈I satisfies one or both of the following conditions.

(U3) There is a constant ∆ > 0 such that maxA(UI) − UI(a) > ∆ for every a 6∈
argmaxA(UI).

(U4) There is a constant M > 0 such that
1

I

∑
i∈I

ui(a)2 < M2 for every a in A.

Note that, while we assume that {vi}i∈I and {ci}i∈I are random variables, we make no
assumptions about the mechanism generating the underlying profile of utility functions
{ui}i∈I . These utility functions might be fixed in advance, or they might themselves be
generated by some other random process, as long as they satisfy (U4) and (U3). Define the
function VI : A−→R as in equation (1), and define the SWF UI : A−→R as in equation
(6). Here is Theorem 1 of Pivato (2014b).

Theorem A1 For every i in I, let ui : A−→R be a utility function. Suppose the profile
{ui}i∈I satisfies (U3) and (U4). If {ci}i∈I, {εi}i∈I and {vi}i∈I are randomly generated

according to rules (U1) and (U2), then lim
I→∞

Prob

[
argmax
A

(VI) ⊆ argmax
A

(UI)

]
= 1.33

For any δ > 0 and p ∈ (0, 1), we define

I(δ, p) := 4A
M2 σ2

c + σ2
ε

p δ2
. (A1)

Define U∗I := max {UI(a) ; a ∈ A}. Here is Theorem 2 of Pivato (2014b).

Theorem A2 Suppose {ui}i∈I, {ci}i∈I, {εi}i∈I and {vi}i∈I satisfy (U1), (U2) and (U4).
For any δ > 0 and p ∈ (0, 1), if I ≥ I(δ, p), then Prob [UI(a) < U∗I − δ] < p, for all a in
argmaxA(VI).

Appendix B: Proofs

Proof of Theorem 1. We will derive this from Theorem A1. Recall that ui := wi/ci, so
that wi = ci ui; with this substitution, formulae (2) and (6) are equivalent. Observe
that hypothesis (E1) implies (U1) (with c := 1), hypothesis (E2) implies (U2), and
hypothesis (E3) implies (U3). Meanwhile, hypothesis (U4) is true automatically, with
M = 1, because the functions {ui}i∈I range over [0, 1]. The asymptotic probability claim
now follows from Theorem A1. 2

32We do not assume that, for a fixed voter i in I, the random errors εi(a) and εi(b) are independent for
different alternatives a and b in A.

33Here, the constants M and ∆ in conditions (U3) and (U4) are to be held constant as I→∞.
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Proof of Theorem 2. If we set M := 1 in formula (A1), we obtain formula (5). The
asymptotic probability inequality now follows from Theorem A2. 2

Proof of Theorem 3. Let g := E[uia |uia ≥ θi] and let b := E[uia |uia < θi]; thus g > b. By
(Θ2) and (Θ0), these values do not depend on i or a. For all i ∈ I, define vi : A−→R by

vi(a) :=

{
g if uia ≥ θi;
b if uia < θi.

=

{
g if a ∈ Gi;
b otherwise.

(The second equality is by equation (7).) Then define εi(a) := vi(a)−ui(a) for all a ∈ A.
Thus, vi = ui + εi. By construction, E[ui(a) | vi(a)] = vi(a), and thus E[εi(a)] = 0, for
all i ∈ I and a ∈ A. Let c := g − b; then c > 0. For all i ∈ I, let ũi := ui/c and
c̃i := c · ci; thus, ci ui = c̃i ũi. Thus, UI = 1

I

∑
i∈I c̃iũi. For all i ∈ I, let ṽi := vi/c

and ε̃i := εi/c; thus, ṽi = ũi + ε̃i. Let ṼI =
∑

i∈I ṽi. Then ṼI = VG+(a constant).

Thus, argmaxA(ṼI) = argmaxA(VG). But argmaxA(VG) = Appr(G); thus, it suffices to

compute the asymptotic probability that argmaxA(ṼI) ⊆ argmaxA(UI), using Theorem
A1. To do this, we must verify hypotheses (U1)-(U4). First, let u := E[uia] and let
σ2
u := var[uia] for any i ∈ I and a ∈ A. By hypothesis (Θ2), these values are finite and

independent of i and a. Let M := u2 + σ2
u.

Claim 3.1: lim
I→∞

Prob
(
M and the profile {ui}i∈I satisfy condition (U4)

)
= 1.

Proof. Fix a ∈ A. For all i ∈ I, we have E[u2i (a)] = u2 + σ2
u = M2. Thus, 1

I

∑
i∈I ui(a)2

is an average of I independent random variables (by (Θ2)), each with expected value
M2. Thus, the Law of Large Numbers implies that

lim
I→∞

Prob

[
1

I

∑
i∈I

ui(a)2 < M2

]
= 1.

Thus, since A is finite, the claim follows. 3 Claim 3.1

Hypotheses (Θ0) and (Θ2) imply that {ũi}i∈I , {ṽi}i∈I and {ε̃i}i∈I satisfy (U2). Hypoth-
esis (Θ1) implies that {c̃i}i∈I satisfies (U1), and hypothesis (Θ3) implies that {ũi}i∈I
satisfies (U3) (with ∆̃ := ∆/c). Now Apply Theorem A1 to {ũi}i∈I , {ṽi}i∈I , {ε̃i}i∈I and
{c̃i}i∈I to derive the claimed asymptotic probability. 2

Proof of Theorem 4. The strategy is very similar to the proof of Theorem 3. Let g be
the mean value of γ, and let b be the mean value of β; thus g > b. For all i ∈ I, define
vi : A−→R by

vi(a) :=

{
g if a ∈ Gi;
b if a ∈ Bi.
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Then define εi(a) := vi(a) − ui(a) for all a ∈ A. Thus, vi = ui + εi. By construction,
E[ui(a)] = vi(a), and thus E[εi(a)] = 0, for all i ∈ I and a ∈ A. Let c := g − b;
then c > 0. For all i ∈ I, let ũi := ui/c and c̃i := c · ci; thus, ci ui = c̃i ũi. Thus,
UI = 1

I

∑
i∈I c̃iũi. For all i ∈ I, let ṽi := vi/c and ε̃i := εi/c; thus, ṽi = ũi + ε̃i. Let

ṼI =
∑

i∈I ṽi. Then ṼI = VG+(a constant). Thus, argmaxA(ṼI) = argmaxA(VG). But
argmaxA(VG) = Appr(G); thus, it suffices to compute the asymptotic probability that

argmaxA(ṼI) ⊆ argmaxA(UI), using Theorem A1.

Let Mg := g2 + var[γ] and Mb := b2 + var[β]. Let M :=
√

max{Mg,Mb} and let

M̃ := M/c.

Claim 4.1: lim
I→∞

Prob
(
M̃ and the profile {ũi}i∈I satisfy condition (U4)

)
= 1.

Proof. Fix a ∈ A. For all i ∈ I, if a ∈ Gi, then E[u2i (a)] = Mg. If a ∈ Bi, then
E[u2i (a)] = Mb. Either way, E[u2i (a)] ≤ M2. Thus, 1

I

∑
i∈I ui(a)2 is an average of I

independent random variables (by (S2)), each with expected value M2. Thus, the Law
of Large Numbers implies that

lim
I→∞

Prob

[
1

I

∑
i∈I

ui(a)2 < M2

]
= 1.

Since ũi := ui/c for all i ∈ I, it follows that

lim
I→∞

Prob

[
1

I

∑
i∈I

ũi(a)2 < M̃2

]
= 1.

Thus, since A is finite, the claim follows. 3 Claim 4.1

Hypothesis (S1) implies that {c̃i}i∈I satisfies (U1). Define σ2
ε := max{var(γ), var(β}/c2.

Since ε̃i = ũi− ṽi, it follows that var(ε̃i) ≤ σ2
ε for all i. Thus, hypothesis (S2) implies that

{ũi}i∈I , {ṽi}i∈I and {ε̃i}i∈I satisfy (U2). Finally, hypothesis (S3) implies that {ũi}i∈I
satisfy (U3) (with ∆̃ := ∆/c). Now apply Theorem A1 to {ũi}i∈I , {ṽi}i∈I , {ε̃i}i∈I and
{c̃i}i∈I to derive the claimed asymptotic probability. 2

Proof of Proposition 5. Define {ũi}i∈I , {ṽi}i∈I , {ε̃i}i∈I and ṼI as in the proof of Theorem
4. From Theorem A2, along with Claim 4.1, we immediately obtain the limit equation
(8). However, to obtain more precise estimates of the convergence speed, we must first
estimate the speed of the convergence in Claim 4.1, using the next result.

Claim 5.1: Suppose the fourth moments of γ and β are finite. Then there is some
C1 > 0 (determined by γ and β) such that, for any p ∈ (0, 1), if I > C1/p, then

Prob
(
M̃ and {ũi}i∈I violate condition (U4)

)
<

p

2
.
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The proof is very similar to the proof of Claim 8.1 in the proof of Proposition 8 (below).

Recall that {ũi}i∈I , {ṽi}i∈I and {ε̃i}i∈I satisfy (U2), with σ2
ε := max{var(γ), var(β}/c2.

For any δ > 0 and p ∈ (0, 1), define I(δ, p) as in equation (A1). Finally, define C2 :=

8A (M̃2 σ2
c + σ2

ε ). Thus, for any p, δ ∈ (0, 1), if I > C2/p δ
2, then I > I(δ, p/2), so that,

for any a ∈ Appr(G) = argmaxA(ṼI), Theorem A2 says

Prob
[
UI(a) < U∗I − δ

∣∣∣ M̃ and {ũi}i∈I satisfy (U4)
]

<
p

2
. (B1)

If I > C1/p also, then Claim 5.1 applies. This, together with inequality (B1), implies
that Prob [UI(a) < U∗I − δ] <

p
2

+ p
2

= p, as desired. 2

Theorem 6 follows from Theorem 7, so we will prove that first.

Proof of Theorem 7. Since Scores(P) = argmaxA(V s
P), it suffices to compute the asymp-

totic probability that argmaxA(V s
P) ⊆ argmaxA(UI), as I→∞. As usual, we will use

Theorem A1. Hypothesis (X1) implies (U1). For all i ∈ I and all a ∈ A, if we know
that i ranks a in kth place (in particular, if we know the preference order �i), then
the expected value of ui(a), conditional on this information, is sk. But, by definition,
vi(a) = sk. Thus, E[ui(a) | �i] = vi(a). Thus, if we define εi(a) := ui(a) − vi(a), then
E[εi(a) | �i] = 0. By hypothesis, the variance of the random variable ui(a) is finite; thus,
the variance of εi(a) is finite. Finally, by hypothesis (X2), the random functions {ui}i∈I
are independent of one another and independent of {ci}i∈I . Thus, the random functions
{εi}i∈I are independent of one another and independent of {ci}i∈I . This establishes
(U2). It remains to verify (U4).

Let û = (û1, . . . , ûN) ∈ U be a λ-random vector. The coordinates û1, . . . , ûN are
themselves random variables (neither independent, nor identically distributed). Let
σ2
1, . . . , σ

2
N denote their variances. Since λ has finite variance, it is easy to check that

σ2
1, . . . , σ

2
N are all finite. Define σ2

ε := max{σ2
1, σ

2
2, . . . , σ

2
N}. Also, let S := max{|s1|, |s2|,

. . . , |sN |}, and choose any M >
√
S2 + σ2

ε .

Claim 7.1: lim
I→∞

Prob
(
M and the profile {ui}i∈I satisfy condition (U4)

)
= 1.

Proof. Fix a ∈ A. For all i ∈ I, if a is ranked kth from the bottom by �i, then ui(a) is
a random variable with mean sk and variance σ2

k. Thus,

E[u2i (a)] = (sk)
2 + σ2

k ≤ S2 + σ2
ε < M2. (B2)

Thus, for any a ∈ A, the sum
1

I

∑
i∈I

ui(a)2 is an average of I independent random vari-

ables, each with expected value smaller than M2, by inequality (B2). Thus, regardless
of how the preferences {�i}i∈I are obtained, the Law of Large Numbers implies that

lim
I→∞

Prob

[
1

I

∑
i∈I

ui(a)2 < M2

]
= 1.

Thus, since A is finite, the claim follows. 3 Claim 7.1
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Finally, hypothesis (X3) implies that {ui}i∈I satisfy (U3). Now apply Theorem A1 to
{ui}i∈I , {vi}i∈I , {εi}i∈I and {ci}i∈I to derive the limit (9). 2

Proof of Theorem 6. Define U as in Section 4.2, and let λ be the conditionalization
of µ on U. In the Endogenous Preference model of Section 4.1, the ordinal preference
profile P = {�i}i∈I is a random variable (determined by the underlying cardinal utility
profile {ui}i∈I . However, if we fix a particular realization of P , then conditional on
this realization, the probability distribution of the cardinal profile {ui}i∈I is described
by λ via the Exogenous Preference model of Section 4.2. Thus, for any particular
realization of P , Theorem 7 implies that the limit (9) holds.34 Thus, integrating over all
possible realizations of P , and applying Lebesgue’s Dominated Convergence Theorem,
we conclude that the limit (9) holds unconditionally.35 2

Proof of Proposition 8. We will apply Theorem A2. Define {εi}i∈I and M as in the proof
of Theorem 7. Claim 7.1 established that lim

I→∞
Prob[M and the profile {ui}i∈I satisfy

condition (U4)] = 1. However, to obtain the more precise estimate of convergence speed,
we need the next observation.

Claim 8.1: Suppose the fourth moment of λ is finite. Then there is some C1 > 0
(determined by λ) such that, for any p ∈ (0, 1), if I > C1/p, then

Prob
(
M and {ui}i∈I violate condition (U4)

)
<

p

2
.

Proof. If the fourth moment of λ is finite, then there is some C ′ > 0 such that for any
a ∈ A, the fourth moments of each of the random variables {ui(a)}i∈I is less than
C ′. In other words, the second moments of each of the random variables {ui(a)2}i∈I
is less than C ′. This implies that there is some C ′′ > 0 such that the variance of each
of {ui(a)2}i∈I is less than C ′′. Also, these random variables are independent. Thus,

var

[
1

I

∑
i∈I

ui(a)2

]
<

C ′′

I
. (B3)

Next, inequality (B2) says each of {ui(a)2}i∈I has expected value less than M2. Thus,

E

[
1

I

∑
i∈I

ui(a)2

]
< M2. (B4)

34To be precise, we fix an infinite sequence (�n)∞n=1 of ordinal preferences. Then, for any particular
value of I, we identify I with [1 . . . I] and let P = {�n}In=1. Theorem 7 then applies for every possible
infinite sequence.

35The set of all possible infinite sequences (�n)∞n=1 has a natural sigma-algebra (generated by “cylinder
sets”, which are defined by fixing values for any finite number of coordinates). The Endogenous Preference
model defines a probability measure on this sigma algebra (in fact, it is a Bernoulli stochastic process). In
the last step of the proof, we integrate with respect to this probability measure.
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Thus, Chebyshev’s inequality and inequalities (B3) and (B4) imply that there is some
C1 > 0 (determined by C ′′) such that, for any p > 0, if I > C1/p, then

Prob

[
1

I

∑
i∈I

ui(a)2 > M2

]
<

p

2|A|
. (B5)

Now, if the profile {ui}i∈I and M to violate condition (U4), then 1
I

∑
i∈I ui(a)2 > M2

for some a ∈ A. Thus, adding together |A| copies of inequality (B5) proves the claim.
3 Claim 8.1

For any δ > 0 and p > 0, let I(δ, p) be as in equation (A1). Finally, define C2 :=
8A (M2 σ2

c + σ2
ε ). Thus, for any p, δ ∈ (0, 1), if I > C2/p δ

2, then I > I(δ, p/2), so that,

for all a ∈ argmaxA(ṼI), Theorem A2 says that

Prob
[
UI(a) < U∗I − δ

∣∣∣ M and {ui}i∈I satisfy (U4)
]

<
p

2
. (B6)

If I > C1/p also, then Claim 8.1 applies. This, together with inequality (B6), implies

that Prob [UI(a) < U∗I − δ] <
p
2

+ p
2

= p for any a ∈ argmaxA(ṼI) = Scores(P), as
desired. 2

References

Abreu, D., Matsushima, H., 1992. Virtual implementation in iteratively undominated strategies:
complete information. Econometrica 60 (5), 993–1008.

Abreu, D., Sen, A., 1991. Virtual implementation in Nash equilibrium. Econometrica 59 (4),
997–1021.

Alcantud, J. C. R., Laruelle, A., 2014. Dis&approval voting: a characterization. Soc. Choice Welf.
43 (1), 1–10.

Apesteguia, J., Ballester, M. A., Ferrer, R., 2011. On the justice of decision rules. Rev. Econ.
Stud. 78 (1), 1–16.

Artemov, G., Kunimoto, T., Serrano, R., 2013. Robust virtual implementation: Toward a rein-
terpretation of the Wilson doctrine. Journal of Economic Theory 148 (2), 424 – 447.

Azrieli, Y., Kim, S., 2014. Pareto efficiency and weighted majority rules. International Economic
Review (to appear).

Badger, W. W., 1972. Political individualism, positional preferences, and optimal decision-rules.
In: Niemi and Weisberg (1972), pp. 34–59.
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