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Abstract

This paper analyzes a sequential voting mechanism that eliminates at each round

one candidate, until only one of them is left (the winner). The candidates are the

voters and they only differ across their skill level. The payoff allocated to the winner

depends on the sequence of elimination of the players’ skills, the rest of the players

receiving a payoff of zero. We fully characterize the equilibria of the game with two

skills. The winner must be a high-skilled player if there is an initial majority of strong

types. On the contrary, a high-skilled player might win with an initial majority of

weak players independently of the size of the majority. For an arbitrary number of

types, if some type of candidates form a strict majority at the first stage, the winner

belongs either to the majoritarian type or to a more skilled one.

Keywords: strategic voting, backward induction, dynamic voting.

JEL classification: C7, D7

1 Introduction

Since Farquharson [2], the concept of sophisticated voting has been applied to analyze

many different electoral dynamic settings. A good example of dynamic voting procedures
∗This work has benefited from useful discussions with Sébastien Courtin and Fabian Gouret. This re-

search has been developed within the center of excellence MME-DII (ANR-11-LBX-0023-01).
†THEMA, Université de Cergy-Pontoise, France. F-95000 Cergy-Pontoise, France.
‡THEMA, Université de Cergy-Pontoise, France. F-95000 Cergy-Pontoise, France.
§CNRS and Université de Cergy-Pontoise, THEMA, F-95000 Cergy-Pontoise, France.
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are the so-called “binary voting agendas” which are among the most fundamental voting

procedures. The alternatives are paired together to be voted on in a tree, where each

node in the tree represents a majority vote between two alternatives. The vote at any

point in the tree may be decided by simultaneous voting or sequential voting. In the

case of simultaneous voting, in which we focus, the tree represents a finite imperfect

information extensive game1.

Our focus is on rules that at each stage remove one of the alternatives. These rules

have been recently proved to exhibit appealing properties, mainly as far as Condorcet

Consistency is concerned (Bag et al. [1]). Indeed, it is well-known that simultaneous

strategic voting under most voting rules fails to satisfy a number of minimal require-

ments such as Condorcet-consistency (the election of the Condorcet Winner2) or Pareto

optimality3. This problem is mostly related to the theory of instrumental voting: indeed

in a Nash equilibrium, if a candidate is more than 2 votes ahead of the rest of the candi-

dates, then no player can change the outcome of the election (provided that the maximal

score a player can assign is normalized to one). This leads, inevitably, to a multiplicity of

equilibria. Bag et al. [1] prove that most of the common scoring rules lead to the election

of the Condorcet Winner if applied in a dynamic setting. More formally, they prove the

previous statement when the voting follows what they call the weakest link procedure4:

“voting occurs in rounds with all the players simultaneously casting their votes for one

candidate in each successive round. In any round the candidate with minimal votes is

eliminated, with any ties broken by a deterministic tie-breaking rule. Continue with this

process to pick a winner”.

Building on their framework, we analyze the voting behavior with two major modi-

fications: (i) the players are the candidates and (ii) the players’ payoffs depend on the

sequence of elimination of the candidates. To do so, we consider that the players are

1Using sequential voting defines a finite perfect information extensive game (Farquharson [2], McKelvey
and Niemi [7], Moulin [8] and Hummel [5].

2A Condorcet Winner is the candidate that beats every other candidate in sincere pairwise comparisons.
It is considered as a compelling democratic principle.

3This problem exists if the focus is on Nash equilibrium of one-shot voting games with complete infor-
mation over the players’ preferences. This might be partially solved if one focuses for instance on games
with population uncertainty as for instance Poisson Games.

4There is a related literature that has on the TV show called the weakest link in which a very similar
voting rule is used to determine the winner (see for example Levitt [6], Février and Linnemer [3] or, more
recently Hann et al. [4]). This literature looks for empirical evidence of some phenomena like discrimina-
tion or equilibrium selection in the histories of voters’ decisions.
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divided by their skill, considering that within each group all players are identical. The

voting at each round concerns the players’ type: that is each player votes for one of the

groups and one of the players with the highest number of votes is randomly eliminated.

In the event of a tie between both groups, the removed player belongs to the group with

the lowest skill level. This elimination proceeds until only player remains in the game:

the winner. This implies that there is no Condorcet winner since every player prefers his

own victory and is indifferent between the rest of the events. As far as the production is

concerned, each player makes at each round a contribution that just depends on his skill

level s. These contributions are stocked until the end of the game, and only the winner

of the game receives a payoff that depends on the sequence of elimination of the players.

One crucial assumption is that the payoff allocated to the winner is larger when removing

first a low-skilled player than a high-skilled one, the rest of elimination sequence being

unchanged. Note that if each individual contribution is independent of the rest of the

contributions at each period (no complementarities) and is constant through time, our as-

sumption is satisfied. Moreover, our results are quite general since they hold provided

that the arbitrage between removing a high-skilled and low-skilled player remains un-

changed through the different periods. Indeed, if one assumes that the payoff becomes

larger when removing first a high-skilled player rather than a low-skilled one, the results

remain quite similar to those in the current work. However, our assumption seems more

realistic since the players’ contributions are compulsory and hence keeping as long as

possible the most productive players in the game helps to maximize the pie awarded to

the winner.

We prove that with two skill levels the equilibrium of the game is unique. If there is

a (weak) majority of high-skilled players in the initial stage of the game, the sequence of

elimination consists of eliminating first all the low-skilled (weak) players and then the

high-skilled ones: the winner is then a high-skilled player. On the contrary, if the weak

players are majoritarian, the elimination sequence coincides with the one that maximizes

the expected utility of a low-skilled player. Surprisingly, it consists on first eliminating

weak players until the number of weak players equals the number of strong players plus

one. Then, iteratively it removes strong and weak players in order to ensure that the weak

players never lose the strict majority while at the same time maximizing their expected

payoff. In this case, the winner is either weak or strong. With more than two types, there
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is a plethora of equilibria. However, some of the results of the two-type case hold. Indeed,

if some group is majoritarian on the first stage of the game, the winner belongs either to

this group or to the group with a higher skill level.

The paper is organized as follows. Section 2 presents the basic notation and defi-

nitions. Section 3 describes the equilibria in the semifinal and Section 4 presents the

results with two different types. Finally, Section 5 discusses the equilibria when players

have many different types.

2 The setting

2.1 Players.

The candidates are the voters so that we use player to refer to both of them. Each player i

has a skill level s with s being an integer in S = {s1, s2, . . . , sm} with 0 < s1 < s2 < . . . < sm.

At stage t ∈ T = {1, . . . ,n}, the player set is denoted by N t with |N t | = nt. At each stage,

one of the players is removed (the identity of which will be determined through a vote)

until only one of them is left.

Given that at the beginning of the game, there are n players (n1 = n), we write that

nt = n−(t−1). We denote the number of players of type sc at stage t by ntc with nt =
∑m
c=1n

t
c.

The set St depicts the skill levels present in stage t, i.e. St = {sc ∈ S | ntc > 0}. The highest

and lowest skill level present at stage t are respectively denoted by max(St) and min(St)

A skill sc is majoritarian at some stage t if ntc ≥
∑
sd∈St n

t
d , with d , c.

A skill sc is strongly majoritarian at some stage t if ntc >
∑
sd∈St n

t
d , with d , c.

2.2 Voting.

There are three types of stages:

1. The stage n in which just one candidate survives, the winner. In this stage, payoffs

are allocated and no vote is held.

2. The final (stage n− 1) in which just two players survive.
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3. Any stage t < n − 1 previous to the final is a voting stage in which players vote to

remove one of the players.

We now describe the rules of the final and of each of the voting stages.

Voting Stages.

The vote is done on the skill levels of the players and not on their identity. Each player

votes for one of the skill levels (i.e. picks one type from the set St) and, then, a player is

eliminated. This eliminated player is randomly picked from the group s with the most

votes. If several groups are tied, the group in which a player is randomly eliminated is

the one with the lowest skill among the tied ones. This breaking-tie rule seems to favor

the “efficiency” of the outcome of the game. No abstentions are allowed for simplicity.

We now introduce some notations to be used throughout. At stage t,

- vti ∈ S
t is the player i’s choice,

- vt = (vti )i∈N t describes the vote profile,

- wtc = wt(sc) = #{i ∈N t | vti = sc} stands for the number of votes for sc,

- wt = (wtc)sc∈St denotes the score vector,

- wt−i is the score vector without the vote of player i,

- p(sc |wt) is the probability that a player of type sc is not eliminated,

- L(wt) = {sc ∈ St |wt(sc) ≥ wt(sd) for any sd , sc} denotes the types with the most votes.

Given the score vector wt, a player with skill sc is not eliminated at any stage t < n− 1

and hence is present in stage t + 1 with probability:

p(sc |wt) =


1 if sc < L(wt),

1 if sc ∈ L(wt) and sc > sd for some sd ∈ L(wt),

1− 1/ntc if sc ∈ L(wt) and sc < sd for any sd ∈ L(wt).

If every player in the game has the same type, then St is a singleton and hence so is

L(wt). Therefore, one of the players is randomly eliminated since the players can only

announce their own type.
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The Final.

In the final stage t = n−1 with just two players, there is a vote even though the tie breaking

rule is different from the precedent voting stages. If L(wn−1) = {sc} for some sc ∈ S, then

the sc-group gets 2 votes. In this case, one of these players is removed with probability

1/2 as in the previous stages. If, on the contrary L(wn−1) = {sc, sd} for some sc, sd ∈ S, then

both groups are tied. We assume that

p(sc |wn−1) = pcd ,

with pcd + pdc = 1. Moreover, the probability of winning the final in the event of a tie is

higher against a lower type than against a higher one:

pce > pcd ⇐⇒ d > e,

and for any type sc, pcc = 1/2. The previous inequalities imply that pcd < 1/2 if d > c and

pcd > 1/2 when d < c.

This tie-breaking rule differs from the one used in the previous stages in which we

assumed that pcd = 1 as long as c > d since we assume that the tie-breaking rule favors the

efficiency of the outcome of the game.

2.3 Payoffs.

Each stage in which each player is present in the game he produces some amount of

money to be collected at every stage. Such a contribution just depends on his skill level

s. These contributions are stocked until the end of the game, and the winner of the game

receives a payoff that depends on the sequence of elimination of the players.

The timing of the game at each stage is as follows:

1. At the beginning of each stage, each player contributes with some amount of money

which is collected.

2. The vote is held.

3. One of the players is removed and then a new stage starts.
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4. The payoff is allocated to the surviving player at stage n.

Since the contribution of a player only depends on his skill level s (i.e. he cannot

choose whether he contributes or not), the players’ expected payoffs only depend on the

type of the player eliminated at each stage t. In other words, as each player must con-

tribute at each stage, the final payoff just depends on the type of the player eliminated

at each stage. In a sense, given that the level of contributions is given (there is no effort

so that the contribution just depends on the skills of the players in the game), the vote

determines how the contribution in the next stage will be.

The skill level removed at each stage t is denoted by αt ∈ S. The whole sequence of re-

movals α1 . . .αn−2 is denoted by α. The sequence stops at the semifinal (t = n−2) since this

is the last stage in which the skill of the removed player matters to determine the players’

best responses. In other words, the skill of the eliminated player in the final (αn−1) does

not affect the total contribution since the player is removed after the contributions have

been done. Furthermore, there are no contributions in stage n.

Let us remark that α is an integer since each skill sc is an integer.

Example 1: Let n = 5 and α = s1s1s3. Then, the sequence α represents the elimination

of a player of type s1 at stages 1 and 2 and of a player of type s3 at stage 3.

Definition 1 (The Pie). Given a sequence of elimination α, we shall denote by f (α) the pie.

Therefore, given the elimination sequence α, we write that the utility of player i equals

ui(α) =

 f (α), if i is the winner

0, otherwise.

This payoff scheme is a winner-take-all one in which only the surviving player in stage

n gets a positive payoff.

Example 2: Let n = 4 with S = {s1, s2}. We set n1
1 = 3 and n1

2 = 1. Let α = s2s1. Hence,

f (α) corresponds to the pie associated to the sequence of elimination according to which

an s2-player is removed first, followed by the removal of a s1-player at t = 2. Given

the sequence of elimination α and the initial set of of players N 1, the final takes place

between two players of type s1.
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Example 3: Assume that each sc-player contributes an amount sc per stage in which

he is present. No complementarities are allowed so that each player contributes the same

amount independently of the skills of the rest of the players. Then at each stage t, the

money collected equals mt =
∑
sd∈St sdn

t
d . So, at the end of the game, the collected money

equals M =
∑n−1
t=1 mt. Assume that M is the payoff allocated to the winner.

The relation between the payoff allocated to the winner and the elimination sequence

is relatively straightforward. Indeed, we have

mt+1 =mt −αt,

since the only difference between both contributions is the removed player. It follows

that mt =m1 −
∑t−1
i=1α

i and so that

M = (n− 1)m1 −
n−2∑
t=1

(n− 1− t)αt.

In other words, in this example, it seems particularly intuitive to define the payoff of

the winner M to depend simply on the elimination sequence {αt}n−2
t=1 and hence write

M = f (α).

In general, we do not assign explicit values to f (α), even though we do need to impose

an assumption in order to compare them. This assumption implies that the size of the

pie f (α) is strictly decreasing on α. Indeed, a more talented player contributes more than

a less talented one. Therefore, as each player gives a contribution at every stage until

he is eliminated, a player who is eliminated early contributes less than a player of the

same type that is eliminated later. Hence, the pie f (α) is larger when type s players are

eliminated first, followed by the elimination of type s players. Formally, this assumption

can be stated as follows:

We denote by (α1scα2sd) the sequence consisting the subsequence α1 followed by the

elimination of an sc-player, the subsequence α2 and finally the elimination of an sd-player.

Assumption 1. For any two elimination sequences α1sdα2sc and α1scα2sd and any two types

sc, sd ∈ S, f (α1sdα2sc) > f (α1scα2sd) iff sc > sd .

Example 3 (continued): Given that f (α) = (n − 1)m1 −
∑n−2
t=1 (n − 1 − t)αt, let us prove
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that Assumption 1 holds. Take any two sequences α = α1sdα2sc and β = α1scα2sd with

sc > sd . It follows that for any pair t, t′ with t < t′, we have

f (α)− f (β) = − ((n− 1− t)sd + (n− 1− t′)sc) + ((n− 1− t)sc + (n− 1− t′)sd)

= (n− 1− t)(sc − sd) + (n− 1− t′)(sd − sc)

= (sc − sd)((n− 1− t)− (n− 1− t′)) > 0,

which holds since t < t′ and sc > sd .

A natural implication of Assumption 1 is that no player is indifferent between two

different elimination sequences α and β provided that he has a positive probability of

being in the final under both sequences.

Some comments are in order:

• The fact that players vote for the types and not for the players corresponds to an

anonymity property of the game: only the type of a player can influence his payoffs.

• Note that, given Assumption 1, the elimination of a player in the sequence has more

impact on the size of the pie the earlier it arrives. This is in line with the idea that,

as each player contributes at each step, the earlier he is removed, the more impact

there is on the pie. This assumption is the main culprit of most of our results.

• The goal of each player is to maximize his expected payoff. This means that (i) he

wishes to reach the last stage of the game and (ii) he wishes to first eliminate weak

players in order to get the largest possible payoff f (α).

2.4 Equilibrium

At each stage, the players simultaneously vote and one candidate is removed. At the end
5 of n−1 rounds of voting one candidate survives who is the winner. For any t ≤ n−2, we

let ht = (v1,v2, . . . , vt−1) denote the complete history of the voting decisions up to stage t.

We denote byHt the set of histories at stage t andH = ∪tHt be the set of all histories. H0

stands for the null history.

5Note that if the game reaches a stage in which all players have the same type s, there is a vote but
players can only vote for their own type.
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A pure strategy for a player i is a function pi :H→∪tSt such that pi(h) ∈ ∪tSt if h ∈ Ht.
The set of pure strategies of player i is denoted by Pi with P =

∏
i Pi .

Following Bag et al. [1], we require our equilibrium concept to be subgame perfect

and, moreover, to be undominated. Therefore, an equilibrium is a strategy profile for the

players that is a subgame perfect equilbrium and is such that at each stage the votes of

each player are not weakly dominated given the equilibrium continuation strategies of

other players in future stages.

Formally, for any history h ∈ H, let Γ (h) be the subgame at h. For any strategy profile

p ∈ P and any history h ∈ H, we define the set of strategies for all players other than i that

are consistent with p in every subgame after h by

P̃−i(h,p) = {p′−i ∈ P−i | p
′
−i(h,h

′) = p−i(h,h
′)

for all non-empty h′ s.t.(h,h′) ∈ H}.

We denote byUi(p,h) the expected utility of player i given history hwhen players play

according to the strategy combination p.

Definition 2. A strategy profile p∗ is an equilibrium if for any history h it satisfies the following

properties in the subgame Γ (h):

(Nash) For any i, Ui(p∗,h) ≥Ui(pi ,p∗−i ,h) ∀pi ∈ Pi ,

(Weak Non Domination) For any i, @ pi ∈ Pi s.t.

Ui(pi ,p−i ,h) ≥Ui(p∗i ,p−i ,h)∀p−i ∈ P̃−i(h,p∗)

andUi(pi ,p−i ,h) > Ui(p
∗
i ,p−i ,h) for some p−i ∈ P̃−i(h,p∗).

3 The Final Stages

We now state some preliminary observations on the final stages of the game that will be

key throughout. Indeed, since we focus on subgame perfection, the outcome achieved in

the last stages will determine the players’ behavior throughout the tree.
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3.1 The Final

Due to the equilibrium concept we use, it is simple to see that in the final there is a

unique best response for each player. Indeed if there is one skill present in the final, the

only possible choice for a player is to vote for him. If there are two types of players, it is

weakly undominated to vote for the other type of player.

3.2 The Semifinal

We now focus in the semifinal (the stage t = n− 2) in which there are three players. Note

that the players’ behavior is driven by the distribution of skills. There are few possibilities

for the skill distribution Sn−2: either each player has a different skill level or there are two

skill levels (the case in which all players have the same level requires no analysis). Note

that with just two skill levels, there is a majoritarian type (two players have this skill)

than can be either higher or lower than the remaining skill.

We now state two propositions (the proofs of which are included in the appendix) that

show that the game exhibits a unique equilibrium in the semifinal.

Proposition 1. There is a unique equilibrium in the semifinal with two types.

With two types, the results are quite simple to state.

In the presence of two strong players in the semifinal, the weak player is first removed

and therefore the winner is a strong player.

If, on the contrary, there are two weak players in the semifinal, the strong player

need not be removed. Indeed, the weak players may prefer the removal of a weak player

provided that the benefit of removing him at this stage compensates the lower probability

of winnning the final.

Proposition 2. With three types in the semifinal, the equilibrium is unique.

With three types, the situation is more subtle.

As proved in the appendix, the least-skilled player has no weakly undominated strat-

egy. The two other players have a unique weakly undominated strategy that varies as a

function of the pie f (.) and of the probabilities pij of winning the final. Therefore, there is

a unique equilibrium given the pie and the probabilities of winnin the final. The identity

11



of the winner varies accordingly since the three types of players can be removed in the

semifinal.

4 A characterization of equilibria with two-types

Within this section, we only consider games with two skill levels. We respectively denote

by s and s the low and the high skill.

In this two-type version of the model, the probabilities of surviving to the next stage

simplify. Indeed, for a low-skilled player s, we write,

p(s |wt) =


1 if wt(s) < wt(s),

1− 1/nt if wt(s) = wt(s),

1− 1/nt if wt(s) > wt(s).

On the contrary, the surviving probability of a high-skilled player equals

p(s |wt) =


1 if wt(s) < wt(s),

1 if wt(s) = wt(s),

1− 1/nt if wt(s) > wt(s).

Lemma 1. For any stage t, if s is weakly majoritarian, then s-players weakly prefer to vote for

s.

Proof. The proof is done by backward induction on the stages.

Consider the semifinal (just three players remain in the game) and assume that there

is a majority of s-players. As previously shown by Proposition 1, the s-players weakly

prefer to vote for s.

Assume now that that the claim holds from some stage t + 1 onwards. In other words,

assume that in any stage j (j > t + 1) with a majority of s-players, the s-players weakly

prefer to vote for s.

Let us now prove that the s-players weakly prefer to vote for s in stage t with a majority

of strong players (i.e. nt ≥ nt).
Indeed, in the event of being pivotal, an s-player decides whether to remove an s-

player or an s-player.
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If an s-player is removed, then nt+1 > nt+1. Note that we have assumed that from

stage t + 1 onwards in which there is a majority of s-players, the s-players weakly prefer

to vote for s. Hence, an s-player wins and all s-players are eliminated first. Hence, if an

s-player is removed, the s-player’s expected utility is maximal as the pie is maximal when

removing first the low-skilled players.

Conversely, if an s-player is removed the expected utility of any s-player is strictly

lower. Indeed, in the event that an s-player is in the final, removing first an s-player gives

a more reduced pie than removing an s-player.

Hence, the claim follows by induction: whenever nt ≥ nt, then s-players weakly prefer

to vote for s.

Lemma 2. For any stage t < n− 2, if nt = nt + 1, then s-players weakly prefer to vote for s.

Proof. Consider the set of stages T̂ = {t′ ∈ {1, . . . ,n−2} |nt′ = nt
′
+ 1}. For t = n−2, the claim

is not true as stated by the analysis of the semifinal with a majority of weak players in

section 3. Take the last stage prior to the semifinal in the set T̂ (the maximum in T̂ \{n−2}).
We denote it by t. In the event of being pivotal, an s-player decides whether to remove an

s-player or an s-player.

If he votes for s, then an s-player is removed. Then, nt+1 = nt+1. Therefore in stage

t+1, all s-players vote for s, as stated by Lemma 1. It follows that in stage t+1, an s-player

is removed and then Lemma 1 applies in the rest of the stages. Hence, the winner is an

s-player. In other words, in the event of being pivotal, if an s-player votes for s, then his

expected payoff equals zero.

If he votes for s, then an s-player is removed. As the stage t is the last one in T̂ \{n−2},
it follows that in any stage t′ > t (posterior to t), the difference between the number of

weak and strong players is higher or equal than two. Hence, independently of the path

of play, in the semifinal there is a majority of s-players. Therefore there is at least one

s-player in the final so that the expected payoff for s-players is strictly positive.

The same claim applies to any stage prior to t in the set T̂ , concluding the proof.

Therefore, an s-player weakly prefers to vote for s in any stage in T̂ .

Lemma 3. For any stage t < n− 2, if nt > nt + 1, then s-players weakly prefer to vote for s.
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Proof. Take any stage t < n− 2 with nt > nt + 1. In the event of being pivotal, an s-player

decides whether to remove a weak or a strong player.

Given Lemma 2, we know that there is an s-player in the final. Hence, an s-player has

a strictly positive expected utility. Moreover, given that an s-player is in the final, a weak

player prefers to remove an s-player in the event of being pivotal. Hence, the s-players

vote for s, proving the claim.

We now introduce two important definitions that describe the ratio between the pay-

offs allocated to the different skill levels. For any two skills sc, sd ∈ S with sc < sd , we

have:

Balanced Rewards: If for any sequence of elimination α, f (αsd )
f (αsc)

> pcd , then the society has

balanced rewards.

Unbalanced Rewards: If for any sequence of elimination α, f (αsd )
f (αsc)

< pcd , then the society

has unbalanced rewards.

Theorem 1. 1. If s is majoritarian at the first stage, then an s-player wins at equilibrium.

2. If s is strongly majoritarian at the first stage and the rewards are balanced, then an s-player

wins at equilibrium.

3. If s is strongly majoritarian at the first stage and the rewards are unbalanced, both types of

players can win with positive probability at equilibrium.

Proof. 1. This is a direct consequence of Lemma 1.

2. In this case, Lemmata 2 and 3 apply until the stage j = n − 3. Then, in the semifinal

(j = n−2), there is a majority of weak players. Therefore, as the rewards are balanced, the

analysis of the semifinal with a majority of weak players proves that an s-player wins.

3. This case is similar to 2 so that in the semifinal, there is a majority of weak players.

Therefore, as the rewards are unbalanced, the analysis of the semifinal proves that both

types of players win with positive probability.

The next corollaries (stated without proof as they are simple consequences of the pre-

vious results) depict the sequence of eliminations for each of the cases and the pie in

equilibrium.

Corollary 1. If s is majoritarian at the first stage, then all the s-players are eliminated first. In

equilibrium, the payoff allocated to the winner is the maximal possible one in the game.
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Corollary 2. If s is strongly majoritarian at the first stage, then the s-players are eliminated

first until nj = nj + 1 for some stage j. From this stage until the semifinal, the sequence of

removals consists of an s-player followed by an s-player iteratively.

assume that the player’s utility function equals:

5 The Multi-type Game

In this section, we address the situation with more than two-types. A full characterization

of equilibria in this more general setting seems unreachable. Indeed, if one considers the

semifinal with three different types, any outcome is an equilibrium if one adequately

calibrates the rewards for the different types of players.

Nonetheless, we are able to describe the equilibria for polarized initial situations in

which there is an absolute majority (i.e. strictly more than half) of players with the same

type.

Consider the following strategy ϑc that depicts the behavior of sc-players if they are

majoritarian at some stage prior to the final:

1. For any stage prior to the semifinal and any type sc, if ntc = (
∑
l,cn

t
l ) + 1, then sc-

players vote for the lowest possible type different from sc in stage t.

2. For any stage prior to the semifinal and any type sc, if ntc > (
∑
l,cn

t
l ) + 1, then sc-

players vote for the lowest possible type in stage t.

3. In the semifinal6, if for some sc > sl , ntc = ntl + 1, then sc-players vote for type sl in

stage t.

4. In the semifinal, if for some sc < sl , ntc = ntl + 1, then sc-players vote for type sl in

stage t if rewards are balanced.

5. In the semifinal, if for some sc < sl , ntc = ntl + 1, then sc-players vote for type sc in

stage t if rewards are unbalanced.

6Note that if there is a majoritarian type in the semifinal (i.e. three players), there is at most two different
types.
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It is not too difficult to check that, if any group of majoritarian players of type sc vote

according to ϑc, they ensure that there is at least an sc-player in the final. Note that the

sc-players keep their majority at every stage if they all vote according to ϑc. Moreover, let

us remark that, since preferences over the terminal nodes only depend on the type of the

player, every player with the same type has the same preferences. Due to the existence of

this strategy, we can prove the next results.

Proposition 3. Let sm = max(S1). For any sc ∈ S majoritarian at some stage t, the strategy ϑc
is the unique weakly undominated one for sc-players.

Proof. By a similar argument to the one explained by Lemma 1, it can be shown that the

equilibrium strategies depicted by ϑc are the unique weakly undominated ones for the

sm-players. The proof proceeds by backward induction on the stages.

Winning Types

Theorem 2. Let sm = max(S1). If n1
m ≥ (

∑
l,mn

1
l ), then in equilibrium, only sm-players win.

Proof. According to ϑc, the sm-players vote at any stage for the lowest possible type, which

is different from sm by definition. Hence, as n1
m ≥ (

∑
l,mn

1
l ), it follows that first the players

with the lowest type are eliminated, followed by the players with the second lowest type

and so on. Therefore, the final takes place between two sm-players and the pie allocated

to the winner is maximal.

Theorem 3. Let sm = max(S1). If for some sc < sm, n1
c > (

∑
l,cn

1
l ), then in equilibrium there is

an sc-player in the final.

Proof. Take any game with for some sc < sm, n1
i > (

∑
l,i n

1
l ). As there exists ϑc, we know

that any path of play that leads to no sc-player in the final is dominated for the si-players

and hence cannot be an equilibrium. This proves that in equilibrium there is an sc-player

in the final.

Theorem 4. Let sm = max(S1). If for some s1 < sd < sm, n1
d > (

∑
l,d n

1
l ), then in equilibrium

there is no player in the final with type lower than sd .

Proof. Assume that there is some player with type sc with sc < sd in the final. Due to

Theorems 2 and 3, we know that there is at least an sd-player in the final so that the
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probability of winning the final for player of type sd equals pdc > 1/2. Moreover, following

ϑc, the sd-players ensure to have a strict majority at every stage. Hence, as there is an sc-

player in the final, in the semifinal, there must be one sc-player and two sd players in

the semifinal. However, given ϑc, in this semifinal the sd-players vote for the sc-player

and hence the sc-player is removed. Therefore, the final sdsc does not arise. Hence, given

ϑc, either there is a final between two sc-players or a final between an sd-player and a

sl-player with sl > sd , which proves the claim.

eliminated player at stage t equals min(St). by ϑc. ϑc, the weak players (players with

a type lower than sm−1) are first removed by increasing order of skill. Once the weak

players have been removed, there are only two types of players in the game: sm−1 and sm.

Hence, the results concerning two types of players apply, which concludes the proof.

6 Conclusion

Our work considers a dynamic voting procedure in which the candidates are the voters.

The originality of our contribution lies in the fact that the order of deletion of the players

has an impact on the final payoffs allocated to the players. Each player contributes at

each stage some amount of money that just depends on his skill level; the higher the skill

level the higher the contribution. With just two types, we prove that a strong player must

win if the game starts with a majority of strong players. On the contrary, if the game

starts with more than half of the players being low-skilled, the winner might be either

high or low-skilled. Note that this result holds even if the game starts with all players

but one being low-skilled. With more than two types, the multiplicity of equilibria seems

unavoidable. Yet, in the presence of an initial majority, some of the results present in the

two-types’ case are still valid.

Two assumptions seem to be the main culprits behind our result.

First, the players’ contributions are compulsory. That is, to keep things simple, we

assume that each player must contribute at each stage and then decides which ballot to

cast. Relaxing this assumption and allowing players to choose a certain effort level seems

to be a interesting venue of research. One might also assume that the players’ type is

private information rather than public as in our model and hence allow the players to

hide their level of competence.
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The second assumption is the payoff structure. Indeed, we have focused on a winner-

take-all scheme in which just the winner gets a positive payoff. Understanding whether

sharing the profits among the different players (for instance as a function of their removal

stage) seems also of potential interest, specially if one allows for endogenous labor supply.
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A Proof of Proposition 1

We assume that there are just two skill levels, so that S1 = {s, s}. Hence, we simply write

nt and nt to respectively denote the number of low (s) and high-skilled (s) players.
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Semifinal with a Majority of Strong Players.

Let n1 = {1,2,3} with n1 = 2 and n1 = 1. That is, there are two strong players and one

weak player. There is a unique equilibrium in weakly undominated strategies, in which

the weak player is first eliminated and the winner is a strong player.

- Take player 1 and assume w.l.o.g. that 1 is the s-player.

If the rest of the other players cast the same ballot (w1
−1 ∈ {(2,0), (0,2)}), he is indifferent

between both ballots. If each of the other players cast a different ballot (w1
−1 = {(1,1)}),

then player 1 is not anymore indifferent between his two ballots.

If he votes s, then w1 = (1,2) so that an s-player is eliminated. Then the final takes

place between one strong player and one weak player. Hence, the expected utility of 1 of

playing s equals pssf (s) > 0.

Similarly, if he votes s, then w1 = (2,1) so that a s-player is eliminated. Then the final

takes place between two strong players so that 1 gets a payoff of 0.

Therefore, player 1 votes s as it is weakly undominated.

- Take now a strong player, w.l.o.g we let i = 2.

As previously argued, the player is indifferent between his two ballots unless w1
−2 =

(1,1). In this case, if he votes s, then the final takes place between one strong player and

one weak player. In this case, player 2’s expected payoff equals 1
2pssf (s).

Following the same reasoning, if he votes s, his expected payoff equals 1
2f (s).

That is, the player prefers to vote s rather than s if and only if 1
2pssf (s) < 1

2f (s) which

is equivalent to:

pssf (s) < f (s). (∗)

However, by assumption f (s) < f (s) which implies that (∗) always holds since pss ≤ 1.

Therefore, the strong players vote s as it is weakly undominated.

The same reasoning applies for player 3.

In other words, the strong players weakly prefer to vote s. As the equilibrium concept

requires that players use weakly undominated strategies, in the unique equilibrium of

this game the weak player is removed and hence the winner has a high type.
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Semifinal with a Majority of Weak Players.

Let n1 = {1,2,3}with n1 = 1 and n1 = 2. That is, there are two weak players and one strong

player. Let us study the equilibria in weakly undominated strategies.

- Take player 1 and assume w.l.o.g. that 1 is the s-player.

As previously argued, the player is indifferent between his two ballots unless w1
−1 =

(1,1). In this case, if he votes s, then the final takes place between the two weak players.

Hence, his expected payoff equals 0.

Similarly, if he votes s, then w1 = (2,1) so that a s-player is eliminated. In this case,

his expected utility equals pssf (s) > 0, which entails that the strong player votes s as it is

weakly undominated.

- Take now a weak player. We prove the claim for i = 2 and the same logic applies to

i = 3.

As previously argued, the player is indifferent between his two ballots unless w1
−2 =

(1,1). In this case, if he votes s, then his expected utility equals 1
2f (s).

Following the same reasoning, if he votes s, then w1 = (2,1) so that his expected utility

is equal to 1
2pssf (s).

That is, he prefers to vote s rather than s if and only if 1
2f (s) < 1

2pssf (s) which is equiv-

alent to:

f (s) < pssf (s)⇐⇒
f (s)
f (s)

< pss. (+)

By assumption f (s) < f (s) and pss < 1/2. We let f (s) = ηf (s) so that (+) is equivalent to
1
η < pss. Moreover, η = f (s)

f (s) which implies that η ∈ (1,∞)

Hence, as η→∞, then the left side of (+) tends towards zero so that (+) holds. In this

case, the weak players vote s (for their own type) as the difference between the contribu-

tions of strong and weak players grows. On the contrary, as η→ 1, then there must exist

some η for which (+) is violated so that players vote s.

Therefore, the more alike the contributions of the players are, the more weak players

vote for the strong type. On the contrary, when the contribution of a strong player be-

comes relatively large compared to the one a weak player, weak players eliminate their

own type.

Therefore, there are two cases:

Balanced Rewards: If for any sequence of elimination α, f (αs)
f (αs) > pss, then the society has
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balanced rewards. Then s-players vote for s: a strong player is eliminated and the winner

is a weak player.

Unbalanced Rewards: If for any sequence of elimination α, f (αs)
f (αs) < pss, then the society has

unbalanced rewards. Then s-players vote for s: a weak player is eliminated and the final

takes place between a strong and a weak player.

Since we require that players use weakly undominated strategies, the equilibrium is

unique given the rewards scheme.

B Proof of Proposition 2

Semifinal with three types of players.

Let n1 = {1,2,3} with n1
i = 1 for each i ∈ {1,2,3}. That is, there are three players, each of

them with a different skill level. We now focus on the equilibria in weakly undominated

strategies.

-W.l.o.g we assume that player i has type si . The next tables depict the consequences of

choosing each of the ballots (s1, s2 or s3) in the different pivotal events s−i ∈ {(1,1,0), (1,0,1), (0,1,1)}.
Note that if s−i < {(1,1,0), (1,0,1), (0,1,1)}, each voter is indiffferent between his three

available ballots.
Strategy Total Scores when Removed Player Payoffs Player 1 Player 2 Player 3

s−i = (0,1,1)

s1 (1,1,1) s1 0 p23f (s1) p32f (s1)

s2 (0,2,1) s2 p13f (s2) 0 p31f (s2)

s3 (0,1,2) s3 p12f (s3) p21f (s3) 0

Strategy Total Scores when Removed Player Payoffs Player 1 Player 2 Player 3

s−i = (1,0,1)

s1 (2,0,1) s1 0 p23f (s1) p32f (s1)

s2 (1,1,1) s1 0 p23f (s1) p32f (s1)

s3 (1,0,2) s3 p12f (s3) p21f (s3) 0
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Strategy Total Scores when Removed Player Payoffs Player 1 Player 2 Player 3

s−i = (1,1,0)

s1 (2,1,0) s1 0 p23f (s1) p32f (s1)

s2 (1,2,0) s2 p13f (s2) 0 p31f (s2)

s3 (1,1,1) s1 0 p23f (s1) p32f (s1)

Weakly Dominated Strategies:

Player 1: Since he prefers to play s2 when s−i = (1,1,0) and s3 when s−i = (1,0,1), he

has no weakly dominant strategy.

Player 2: Playing s1 weakly dominates s2 since the player obtains either the same

payoff (when s−i = (1,0,1)) or a strictly higher one in the rest of the cases.

If p23f (s1) > p21f (s3) then s1 weakly dominates s3. On the contrary, if p23f (s1) <

p21f (s3), then s3 weakly dominates s1.

Player 3: Playing s1 weakly dominates s3. Moreover, if p32f (s1) > p31f (s2), then s1

weakly dominates s2. On the contrary, when p32f (s1) < p31f (s2), then s2 weakly domi-

nates s1.

Since 2 out of the 3 players have a unique weakly undominated strategy, it follows

that there are four cases:

1. If both 2 and 3 have s1 as a unique weakly undominated strategy, then this is an

equilibrium since the strategy of 1 is irrelevant.

2. If 2’s unique weakly undominated strategy is s1 and s2 is the one for 3, then 1 plays

s2 as unique best response.

3. If 2→ s3 and 3→ s1, then 1 has s3 as a unique best response.

4. If 2→ s3 and 3→ s2, then 1 has a unique best response (either s2 or s3 depending on

whether p13f (s2) ≶ p12f (s3)) .
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