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Abstract

This paper proposes an empirical study of the shape of recoveries in fi-

nancial markets from a bounce-back augmented Markov Switching model.

It relies on models first applied by Kim, Morley and Piger [2005] to the busi-

ness cycle analysis. These models are estimated for monthly stock market

returns data of five developed countries for the post-1970 period. Focus-

ing on a potential bounce-back effect in financial markets, its presence and

shape are formally tested. Our results show that i) the bounce-back effect

is statistically significant and large in all countries, but Germany where evi-

dence is less clear-cut and ii) the negative permanent impact of bear markets

on the stock price index is notably reduced when the rebound is explicitly

taken into account.
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Back

JEL classification: C22, G10.

∗Thema, University of Cergy-Pontoise, F-95000 Cergy-Pontoise, and CREST, France. E-mail:

bec@ensae.fr
†Thema, University of Cergy-Pontoise, F-95000 Cergy-Pontoise, and Department of Eco-

nomics, ESSEC Business School, France. E-mail: songlin.zeng@u-cergy.fr

1



1 Introduction

Even though first applied to the characterization of expansion and recession regimes

in economic activity as measured by e.g. the real GDP growth rate, the Markov-

Switching (MS hereafter) model — first popularized by Hamilton [1989] two decades

ago — has quickly been used to model stock market returns dynamics. Indeed,

this model is able to capture central statistical features of asset returns such as

skewness, fat tails, volatility clustering or mean reversion1. This approach has

the advantage that the different regimes of the financial market can be inferred

from the market index data. Actually, this model and its extensions have proven

quite successful in identifying the bull and bear market periods – see e.g. Turner,

Startz and Nelson [1989], Schwert [1989], Hamilton and Susmel [1994], Schaller

and Van Norden [1997], Hess [2003], Guidolin and Timmermann [2005], Guidolin

and Timmermann [2007] or Chen [2009].

Basically, the two-regime models assume that following the end of a bear mar-

ket, the average of stock returns is the same over the entire bull market period.

This assumption in turn implies that the timing of investment in bull market is

not so important. However, from 160 years of monthly U.S. data, Maheu and

McCurdy [2000] find that “the best market gains come at the start of a bull mar-

ket”. Similarly, Gonzalez, Powell, Shi and Wilson [2005] investigate two centuries

of bull and bear market cycles in the U.S. and find that “the first 6 months of bull

markets exhibit significantly higher returns than do the remaining months of bull

markets (e.g., 3.18% total return per month v.s. 1.91%)”. As will be seen later,

our monthly data for the U.S., Canada, France, Germany and the U.K. over the

1970M1-2012M12 period also point to the same feature. Hence, the two-regime

assumption seems too restrictive and inconsistent with the empirical evidence for

1See the survey by Ang and Timmermann [2011] on this point.

2



stock market returns. For this reason, the MS modeling of these data has quickly

moved to three- or four-regime assumptions. For instance, Guidolin and Timmer-

mann [2005] identify three regimes in their MS setup: a bear, a normal and a bull

regime. More recently, Guidolin and Timmermann [2007] or Maheu, McCurdy

and Song [2009] use four-state MS models and typically identify a crash, a slow

growth, a bull and a recovery regime. However, as stressed by the former, “models

with more states have far more parameters” (p.3512 therein).

From an economic point of view, the bounce back effect in financial market cap-

tured by the so-called recovery regime is reasonable, since stock market movement

is usually related to macroeconomic fundamentals, such as GDP growth which

also seems to exhibit a bounce-back effect after the cycle trough (see e.g. Beaudry

and Koop [1993] or more recently Kim et al. [2005], Morley and Piger [2012] and

Bec, Bouabdallah and Ferrara [2013]). Cecchetti, Lam and Mark [1990] find that

switching in economic growth dynamics influences the distribution of stock returns

via the dividends. Hamilton and Lin [1996] show that the driving force of condi-

tionally switching moments of stock returns are economic recessions. Perez-Quiros

and Timmermann [2001] report the effect of output on higher order moments in a

discrete state model and show its significant impact. Chen [2009] finds that stock

market return could be predicted by some macro-variables. There is also a vast

theoretical literature that relates the stock returns distribution to the business

conditions (e.g. Ebell [2001]). Hence, it seems likely that a bounce-back effect

found in stock market returns basically originates in real economic activity.

Our main contribution to the empirical literature devoted to stock market

returns is to study the possible bounce-back effect using the newly developed

bounce-back augmented MS model — first analyzed by Kim et al. [2005] and later

generalized by Bec, Bouabdallah and Ferrara [2011] — across several developed

3



countries’s stock market returns. As will be seen below, this model allows for a

transitional dynamics between the bear and bull markets during which the returns

may be temporarily higher than in the bull market. It also allows for the magnitude

of this bounce-back effect to be proportional to the depth of the previous bear

market, an assumption that can be easily tested in this framework. Moreover,

the bounce-back augmented MS model does not involve the estimation of a third

regime and hence does not require any increase in the dimension of the transition

probability matrix which governs the regime switching: the drawback put forward

by Guidolin and Timmermann [2007] is avoided. An application to five OECD

countries stock market returns reveals that the null hypothesis of no bounce-back

is always strongly rejected. The presence of this bounce-back effect in turn implies

that the negative permanent impact of a bear market episode on the level of stock

market index is smaller than what it would be absent the bounce-back effect.

The paper is organized as follows. Section 2 presents and discusses the method-

ology. Section 3 describes the data while Section 4 reports the models estimates

and tests for the presence and shape of the bounce-back effect. The implications

of the estimated shape of the bounce-back effect is also discussed, particularly

in terms of the permanent impact of a bear market episode on the stock market

index. Section 5 concludes.

2 The bounce-back augmented Markov-Switching

model

Let yt denote the log of stock market index and ∆yt its first difference, i.e. the stock

market returns. The model considered throughout this paper is the following:

φ(L)(∆yt − µt) = et, (1)
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where φ(L) is a lag polynomial of order p with roots lying outside the unit circle

and with et i.i.d. N (0, σ2
St

). Note that µt is allowed to switch across regimes. The

Markov Switching model proposed by Hamilton [1989] postulates the existence of

an unobserved variable, denoted St, which takes on the value zero or one. St char-

acterizes the “state” or “regime” in which the process is at time t. The standard

version of Hamilton’s model could be written as:

µt = γ0 + γ1St, (2)

where the mean of ∆yt is γ0 if St = 0 and γ0 + γ1 otherwise. Here, St = 1 is

identified as the bear market by assuming γ0 > 0 and γ0 +γ1 < 0. Hamilton [1989]

assumes that the unobserved state variable St is the realization of a two states

Markov chain with P (St = j|St−1 = i) = pij. This Markov chain implies that St

depends on the past realizations of ∆y and S only through the most recent value

St−1. The model given by Equations (1) and (2) allows for an asymmetric behavior

across regimes. For instance, the bull market may be characterized by long and

gradual upward movements if γ0 is positive and small and p00 is close to one, while

the bear market may correspond to sharp and short declines if γ1 is negative and

large in absolute value and p11 is small.

As shown in Bec et al. [2011], the above MS framework may be generalized

by the bounce-back augmented Markov-Switching model given below and denoted

BBF(p,m) hereafter:

µt = γ0 + γ1St + λ1St

m∑
j=1

γ1St−j + λ2(1− St)
m∑
j=1

γ1St−j + λ3

m∑
j=1

∆yt−jSt−j, (3)

where m is non-negative integer and corresponds to the duration of the bounce-

back effect2. The λi’s parameters govern the size of the bounce-back effect. The

2Bec et al. [2011]’s general model also allows for a delay of ` periods before the bounce-back

is activated. Since this delay is not present in our data, we neglect it to make the presentation

of the model simpler.
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additional terms on the right-hand side of Equation (3) define a very flexible form

for the rebound. Assuming λ2 = λ3 = 0, the first term of the bounce-back function

is λ1St

∑m
j=1 γ1St−j. Consequently, any negative value of λ1 will contribute to lead

the growth rate of yt above γ1 as soon as one period after the dynamics of yt enters

the bear regime and stays therein for at least two consecutive periods. Hence a

bounce-back effect requires that λ1 < 0. Finally, its duration may vary according

to the value of parameter m. Similarly, assuming λ1 = λ3 = 0, any negative value

of λ2 will lead µt above γ0 as soon as the economy comes back in bull market after

a bear market episode. The longer the bear market, the larger this bounce-back

effect. This precise case corresponds to the so-called V-shaped recession model. A

closely related model is obtained by setting λ1 = λ2 = λ and λ3 = 0 in Equation

(3): If λ < 0, then the bounce-back activates as soon as one month after the

beginning of the bull market, and it lasts at least m periods whatever the duration

and the depth of the bear market. Finally, the last term of Equation (3) also yields

a bounce-back effect for the ∆yt variable from the month following the beginning of

a bear market on, when λ3 is negative: by construction of the St variable, the term

∆yt−j−1St−j is indeed negative. In this particular case, namely the Depth-shaped

recession model, the magnitude of the rebound is positively related to the depth

of the recession and its duration is again an increasing function of the recession’s

duration.

Hence, the model given by equations (1) and (3) above nests the three models

first proposed by Kim et al. [2005], namely the U-, V- and Depth-shaped bounce-

back3 as well as the no bounce-back — standard Hamilton — model with the

following linear restrictions:

- HN
0 : λi = 0 ∀i corresponds to the standard (no bounce-back) Hamilton model,

3See Bec et al. [2011] for a detailed description of these functions.
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- HU
0 : λ1 = λ2 = λ 6= 0 and λ3 = 0 gives the U-shaped model, denoted BBU,

- HV
0 : λ2 6= 0 and λ1 = λ3 = 0 gives the BBV model,

- HD
0 : λ3 6= 0 and λ1 = λ2 = 0 defines the BBD model.

For m assumed known and fixed as described in section 3 below, the BBF(p,m)

model is estimated by the maximum likelihood method using the filter presented in

Hamilton [1989], as described in Kim et al. [2005]. Note that here, due to the terms

involving the sum of lagged values of St, one has to keep track of 2p+m+1 states

versus 2p+1 when constructing the likelihood function in each period. Standard

errors are based on numerical second derivatives. Basically, the autoregressive lag

parameter p is chosen as the smallest one which succeeds in eliminating residuals

autocorrelation according to the LM test. Computing residuals for MS models

is not so straightforward. The approach described in Kim, Shephard and Chib

[1998] is retained here: the BBF model residuals are constructed from the one-

step-ahead prediction distribution functions. Indeed, from equations (1) and (3),

it can be seen that time-t residuals depend on ξt ≡ (St, St−1, . . . , St−−m−p). The

one-step-ahead prediction distribution functions are defined by:

εt =
2p+m+`+1∑

i=1

P (ξit|It−1)Φ
(
ε̂it
σ̂

)
, (4)

where ε̂it denotes the ML estimates of the BBF model residuals in regime i and Φ

is the distribution function of the standard normal. Note that the P (ξit|It−1)’s can

be easily obtained as by-products of the filtering algorithm. If the nonlinear model

is true and ignoring the effect of estimating parameters, the εt are approximately

standard uniform and iid. Then, they can be mapped to the residuals for the BBF

model by the standard normal inverse distribution function, εBBF
t = Φ−1(εt).
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The linear null hypothesis amounts here to test the joint hypothesis λ1 = λ2 =

λ3 = 0 and γ0 = γ1, i.e. µt becomes a constant term. Due to the presence of nui-

sance parameters, this test statistics distribution is not standard. Garcia [1998]’s

linearity test will be used as described below. By contrast, the four assumptions

HN
0 , HU

0 , HV
0 and HD

0 LR test statistics are nuisance parameter free and have a

standard Chi-squared distribution. Consequently, the test of the shape of the

rebound is quite straightforward in this BBF-MS setup.

3 Data

Several developed countries’ stock index are considered. For the U.S. financial mar-

ket, yt is the log of monthly S&P500 index over the period 1969M12 to 2012M12,

i.e. 517 observations. For the sake of comparison, stock market data for Canada,

France, Germany and the UK are also considered. They come from the Morgan

Stanley Capital International (MSCI) database. Monthly stock indices are chosen

because bull and bear markets are relatively low frequency movements so that it

would not be worth it using higher frequency data such as daily data. In this

paper, we follow the general practice which consists in identifying financial cycles

from nominal stock returns. As emphasized by e.g. Schwert [1990], the variation

in dividend returns is relatively small compared to the variation in the stock mar-

ket index, so that capital returns convey the relevant information to capture the

financial cycle.

The five stock market indices are presented in Fig 1 and 2. The series show an

overall upward trend over time, but large market movements such as the crash of

1987 are also evident. Returns are computed as the first difference of the log stock

price index. Summary statistics for stock index returns are reported in Table 1.

The means of monthly stock returns range from 0.38% in Germany to 0.55% in

8



Table 1: Summary statistics

US Canada France Germany UK

Mean 0.51 0.53 0.49 0.38 0.55

Median 0.86 0.86 1.11 0.78 1.01

Standard deviation 4.52 4.90 5.87 5.80 5.58

Kurtosis 2.42 3.01 1.19 2.80 8.56

Skewness -0.66 -0.81 -0.38 -0.81 0.20

Minimum -24.16 -24.57 -24.81 -28.67 -30.27

Maximum 15.96 14.95 20.40 17.95 42.89

Jarque-Bera 163.39 251.33 43.00 224.98 1578.19

Summary statistics for capital returns (%), from January 1970 to December

2012.

the UK over the whole sample, while their standard deviations range from 4.52%

in the US to 5.87% in France. Expectedly, the returns’ distribution is clearly not

Gaussian according to Jarque and Bera test statistics: it displays leptokurtosis, a

well-know feature of stock returns data.

A dating algorithm is applied to the stock price index data in order to identify

bull and bear markets. A popular algorithm is the one proposed by Bry and

Boschan [1971] to identify turning points of business cycles. Pagan and Sossounov

[2003] adapt this algorithm to study the characteristics of bull/bear markets in

monthly stock prices. Their method can be summarized as follows: firstly, they

identify the peaks and troughs by using a window of 8 months; secondly, they

enforce alternation of phases by deleting the lower of adjacent peaks and the

higher of adjacent troughs; then, they eliminate phases lasting less than 4 months

unless the changes exceed 20%; lastly, they eliminate the cycles lasting less than 16

months 4. The dating algorithm sorts stock market index into a particular regime

4Window width and phase duration constraints will depend on the particular series and

will obviously be different for smoothed business cycle data than for stock prices. Pagan and

Sossounov [2003] provide a detailed discussion of their choices for these constraints.
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with probability zero or one.The resulting peak and trough dates are reported

in Table 2. It is then straightforward to compute such features of bull and bear

markets as duration, average return or returns volatility. Table 2 clearly points

to the fact that bull markets last longer than bear markets: depending on the

country considered, the average length of bull markets ranges from 30 months to

48 months, while the average duration of bear markets lies between 12 months and

18 months. Obviously, this asymmetric duration is a feature of financial cycles.

The classification into bull and bear markets obtained from this dating algorithm

Figure 1: Bull and bear markets in the U.S.

U.S. Stock Market Price Index

1970 1975 1980 1985 1990 1995 2000 2005 2010
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

is reported in Figure 1 for the U.S. stock market, and in Figure 2 for the other

countries: the shaded areas represent the bear markets episodes. The average

returns of stock market observed from one to twelve months after the end of a

bear market are reported in Table 3 below: these statistics confirm the presence

of a bounce-back effect since the returns following the end of a bear market are

larger than the average returns in bull markets in all cases. More precisely, the

returns are two to five times larger in the month following the end of the bear
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Canada Stock Market Price Index
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France Stock Market Price Index
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(b) FR

German Stock Market Price Index

1970 1975 1980 1985 1990 1995 2000 2005 2010
4.0

4.5

5.0

5.5

6.0

6.5

7.0

(c) GE

UK Stock Market Price Index
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(d) UK

Figure 2: Bull and bear markets

market than they are on average during bull markets. For instance, in the US,

the bull market average monthly return is 0.016 while it reaches 0.074 in the first

month after the troughs and is still around 0.05 two months later or 0.027 during

the seventh month after the troughs. When looking at the five countries under

consideration, it is also worth noticing that if one wants to make sure that the

bounce-back function captures all the rebound phenomenon, then setting m to

seven months seems to be a safe choice in Equation (3). As can be seen from

Table 3, from the eighth month following the trough on, the returns become close

to zero or even slightly negative while they seem to become randomly positive or

negative from the ninth month on.
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Even though very useful for regime dependent descriptive statistics, dating

algorithms cannot be used for forecasting or inference. Typically, they are not

very helpful to tackle such questions of interest as “How likely is it that the market

could turn into a bull market next month?” or “How strong is the bounce-back

effect?”. These questions can be answered by bounce-back augmented MS models,

which involve the estimation of a transition probabilities matrix as well as of the

parameters governing the magnitude of the bounce-back effect.

Table 3: Stock market index returns

US Canada France German UK

Months after

bear market

1 0.074 0.057 0.083 0.074 0.059

2 0.038 0.030 0.018 0.027 0.067

3 0.049 0.010 0.013 0.005 0.028

4 0.020 0.032 0.039 0.045 0.008

5 0.037 0.012 0.037 0.044 0.034

6 0.022 0.011 0.012 0.007 0.025

7 0.027 0.025 0.013 0.029 0.010

8 0.005 -0.001 -0.002 -0.004 -0.016

9 0.031 0.029 -0.002 0.013 0.026

10 0.011 0.018 0.033 0.037 0.042

11 -0.001 0.010 0.043 0.000 0.017

12 -0.002 0.004 -0.011 -0.010 -0.000

Full bull market 0.016 0.019 0.018 0.022 0.023

Average returns are measured as monthly percentages. The sample pe-
riod is 1970:M1 to 2012:M12.
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4 Empirical results

This Section first presents the linearity tests results before turning to the bounce-

back effect tests. From the latter, a preferred model is selected in each of the

five countries considered, whose estimates are briefly commented. Finally, the

implications of the estimated shape of the rebound are discussed.

4.1 Linearity tests

As a first step of the empirical analysis, Garcia [1998]’s linearity test is implemented

and the corresponding results are reported in Table 4. Under the null, the process

follows a standard linear autoregression whereas it is a two-regime MS model with

switching mean and variance under the alternative. The models were estimated

with no lag under both the null and the alternative since the estimated residuals

displayed no serial correlation in this case. The likelihood-ratio (LR) statistics

Table 4: Linearity tests

US CA FR GE UK

Log-LikHamilton -1480.94 -1509.75 -1625.49 -1594.68 -1557.63

Log-LikAR -1510.15 -1551.85 -1644.57 -1638.44 -1618.97

LR 58.42 84.20 38.16 87.52 122.68

p-value 0.00 0.00 0.00 0.00 0.00

ranges from 38.16 in France to 122.68 in the UK. Since this statistics is not Chi-

squared distributed due to the presence of nuisance parameters, Garcia [1998]

has tabulated critical values for the simple two-mean, two-variance model: The

99%-critical value is 14.02, which is well below all the values obtained here: The

linear null is hence always strongly rejected. Since the bounce-back augmented

MS model encompasses the standard Hamilton MS model, Garcia [1998]’s test has
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probably some power against such larger alternative as the BBF model as well,

which comforts the subsequent empirical analysis.

4.2 Tests for presence and shape of bounce-back effect

As discussed in the previous Section, since the BBF model nests the BBU, BBV,

BBD as well as the no bounce-back MS model (Hamilton), it is possible to formally

test whether there is a bounce-back effect and the shape of it. The advantage

is that there is no nuisance parameter issue, so that the conventional LR test

applies. The autoregressive lag parameter p of the generic BBF model is chosen as

the smallest integer value such that there is no serial correlation in the estimated

residuals, which leads to retain p = 0 in all cases. Then, as noticed from the

descriptive statistics reported in Table 3, the choice of a quite liberal value of

seven months for the bounce-back duration parameter m should guarantee that

the whole rebound effect is well captured by the bounce-back function in Equation

(3). Table 5 reports the log-likelihood of the BBF model and the LR test statistics

corresponding to the restrictions HH
0 , HU

0 , HV
0 and HD

0 , which are described in

Section 2.

First, it is worth noticing that these tests results provide support in favor of

the presence of a bounce-back effect following a bear market. Actually, the LR

tests of HH
0 , i.e. the standard Hamilton model without bounce-back effect, against

the BBF alternative, do reject the null in the U.S., Canada, France and the UK at

the 5%-level. By contrast, this model is not rejected in Germany at conventional

levels. Then, based on the LR statistics of HU
0 , HV

0 and HD
0 , it turns out that none

of these models is ever rejected at the 5%-level. Hence, the subsequent analysis will

be carried out using the model which maximizes the log-likelihood, i.e. the BBU

model for Canada and the United Kingdom, the BBV for the United States and
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Table 5: Tests for presence and shape of BB effect

US CA FR GE UK

Ha : BBF

Log-Lik -1467.96 -1505.59 -1619.09 -1593.17 -1553.89

HH
0 : Hamilton

Log-Lik -1480.94 -1509.75 -1625.49 -1594.68 -1557.63

LR− stat
(p−value)

25.96
(0.00)

8.32
(0.04)

12.80
(0.00)

3.02
(0.39)

7.48
(0.05)

HU
0 : BBU

Log-Lik -1470.79 -1505.60 -1620.48 -1593.46 -1554.67

LR− stat
(p−value)

5.66
(0.06)

0.02
(0.99)

2.78
(0.25)

0.58
(0.75)

1.56
(0.46)

HV
0 : BBV

Log-Lik -1468.96 -1506.15 -1620.33 -1593.92 -1555.72

LR− stat
(p−value)

2.00
(0.37)

1.12
(0.57)

2.48
(0.29)

1.50
(0.47)

3.66
(0.16)

HD
0 : BBD

Log-Lik -1470.06 -1507.29 -1619.77 -1594.65 -1555.94

LR− stat
(p−value)

4.20
(0.12)

3.4
(0.18)

1.36
(0.51)

2.96
(0.23)

4.04
(0.13)

the BBD model for France. For Germany, where the presence of any bounce-back

is questioned by these tests, we will consider both Hamilton and BBU models.

Indeed, the null of no bounce-back effect is not rejected against the BBU in this

German case, but at the 12% only.

4.3 Estimates of bounce-back augmented MS Models

Estimation results for the bounce-back augmented MS models selected in the pre-

vious paragraph are reported in Table 6 for the period 1970M1-2012M12.
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Table 6: Estimates of nonlinear models

γ0 γ1 σ0 σ1 p00 p11 λ ARCH(12) JB test Q(12)

US BBV 0.65
(0.23)

−3.07
(1.00)

3.24
(0.18)

6.18
(0.51)

0.95
(0.02)

0.82
(0.07)

−0.24
(0.08)

14.77
(0.25)

2.93
(0.23)

9.84
(0.63)

CA BBU 0.79
(0.20)

−5.26
(1.61)

3.67
(0.15)

8.18
(0.73)

0.97
(0.01)

0.85
(0.05)

−0.10
(0.03)

8.96
(0.71)

0.91
(0.63)

12.16
(0.43)

FR BBD 0.86
(0.29)

−7.76
(1.76)

4.78
(0.22)

7.78
(0.81)

0.96
(0.02)

0.78
(0.08)

−0.06
(0.02)

21.08
(0.05)

4.04
(0.13)

19.09
(0.09)

GE H 0.92
(0.24)

−0.72
(0.69)

3.90
(0.21)

8.28
(0.59)

0.96
(0.01)

0.93
(0.03)

5.63
(0.93)

5.22
(0.07)

10.30
(0.59)

BBU 0.73
(0.25)

−7.72
(2.65)

4.47
(0.20)

9.94
(1.06)

0.97
(0.01)

0.75
(0.10)

−0.08
(0.03)

18.15
(0.11)

2.25
(0.32)

17.88
(0.12)

UK BBU 0.71
(0.21)

−5.38
(2.03)

4.17
(0.17)

11.40
(1.40)

0.98
(0.01)

0.83
(0.07)

−0.10
(0.04)

10.66
(0.56)

0.73
(0.70)

14.56
(0.27)

The entries into parenthesis are the standard errors. For ARCH and JB test, p-values are into parenthesis.

The U.S. As can be seen from the first line of Table 6, the bounce-back param-

eter λ is significantly negative at 5%-level, with a value of -0.24, which provides

further support to the bounce-back augmented MS model for the US stock returns.

It is also worth noting that the residuals variance is almost twice as large in the bear

market (regime 1 with a large negative γ̂1 value) than in the bull regime: σ̂1=6.18

while σ̂0= 3.24. The smoothed probability of bear market is plotted in Figure 3

Estimated Transition Probability

Stock Market Index Transition Probability

1970 1975 1980 1985 1990 1995 2000 2005 2010
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

0.00

0.25

0.50

0.75

1.00

Figure 3: U.S. smoothed probability of St and bear market of BB dating algorithm

together with the bear market dates in shaded areas. Even though there are some

wrong signals, Figure 3 reveals a strong correspondence between this smoothed
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probability and the bear market dates. For six out of eight bear markets in the

sample, the smoothed probability decreases dramatically from around 1 to 0 after

the trough date. The 1976M12 and 1983M6 bear markets are the exceptions: they

are hardly detected by the model as the smoothed probability drops close to zero,

but from 0.25 or less. Then, for seven out of eight bear markets, the smoothed

probability increases sharply after the peak date. The transition probabilities also

confirm that bull market are more persistent than bear market. More specifically,

the estimated average length of a bear market, given by 1/(1− p̂11), is 5 months,

while the estimated average length of a bull market is 20 months.

International Evidence From the results in Table 6, it can be seen that on

the whole, the parameters estimates of the bounce-back augmented MS models

have the same order of magnitude in the remaining countries. For instance, γ0

typically lies between 0.71 and 0.92 while γ1 ranks from -7.76 to -5.26. The resid-

uals standard deviation in the bear market regime is two to three times as large

as in the bull market regime. The estimated duration of the bear market regime

is also very homogeneous across countries since it goes from four months in the

German case (BBU model) to seven months for Canada. Finally, the bounce back

parameter estimates lies between −0.06 for the French BBD model and −0.10 for

the Canadian and UK BBU models.Since it is significantly negative in all these

cases, it provides further support to the presence of a bounce-back effect in stock

market returns.

4.4 Estimated shape of the bounce-back effects

The typical shape of the bounce-back effect obtained from the BBV model’s es-

timates for the US data is plotted in Figure 4 below. The solid line represents
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the shape of stock market return taking the bounce-back effect into account, while

the dotted line corresponds to the case without bounce back effect, i.e. Hamilton’s

model. In the latter, the function is simply given by γ0 when St = 0 and by

γ0 + γ1 when St = 1. Similarly, the Canadian, French, German and UK analogues

are plotted in Figure 5. The main difference between the BBV model and the

0 5 10 15 20 25
−2

−1

0

1

2

3

4

5
U.S. BBV

Figure 4: Estimated bounce-back function: The US BBV model

other bounce-back functions, such as the BBU or BBD ones, lies in the timing of

the activation of the rebound: the bounce-back effect is triggered as soon as one

month after the process has entered the bear market in the BBU and BBD model,

whereas in the BBV model, it becomes active only when the returns are back in

the bull market. Probably due to the “depth” nature of the recoveries in the model

retained for France, this is the country which exhibits the largest monthly returns

at the beginning of bull markets.

4.5 Permanent impact of a bear market

In order to evaluate the average permanent impact of a bear market on the stock

index price, we follow Hamilton [1989]’s suggestion and measure it as the expected
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Figure 5: Estimated bounce-back functions

difference in the long run stock index price given that the stock market is currently

in the bear regime versus in the bull regime, which may be written as:

lim
j→∞

E[yt+j|St = 1,Ωt−1]− E[yt+j|St = 0,Ωt−1], (5)

where Ωt−1 = St−1 = 0, St−2 = 0, ...; yt−1, yt−2, .... Unfortunately, when the bounce-

back functions depend on past returns as in the French case for instance, this limit

has no trivial closed form solution. Nevertheless, as stressed by Bec et al. [2011],
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the area defined in Figure 5 by the difference between the bounce-back function

and the horizontal line corresponding to γ0, i.e. the average returns in bull market,

provides a natural measure of the accumulated or permanent impact of a bear

market on the stock market index. The main difference between this measure

and the one suggested by Hamilton [1989] is that the latter does not constrain

the St paths to be the same in E[yt+j|St = 1,Ωt−1] and E[yt+j|St = 0,Ωt−1] after

the bear market of the first expectation term is over. Hence, starting from the

bull market return and after time-t bear market is over, the expected stock return

will not tend towards the bull market return γ0. Instead, it will reach a weighted

average of the bull and bear market returns. In Figure 5, it would lie somewhere

between the first value and the minimum value of the bounce-back curves. As a

result, the magnitude of Hamilton’s measure of permanent loss should be slightly

lesser than ours: put in other words, it would tend to over-estimate the bounce-

back magnitude once St goes back to zero. Here, we retain the Bec et al. [2011]

measure since we also think that an important intrinsic property of this two-regime

MS class of models is to allow for the return to go back to its bull market average

after the end of the bear market. To this end, we compute numerically the limit

given in Equation (5) conditionally to the assumption that once the bear market

initiated at time t in the first term is over, i.e. at time t plus the estimated average

bear market duration, both expectation terms involved in this limit are governed

by the same path for the state variable. The resulting values are reported in

the first line of Table 7. By contrast with what seems to happen in the other

Table 7: Permanent impact evaluation

λ US France UK Canada Germany

λ = λ̂ 5.37% -7.20% -5.42% -5.51% -10.06%

λ = 0 -14.52% -34.50% -28.02% -31.29% -27.96%
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countries, a bear market in the US will typically result in a slight permanent gain

of 5.37% in the stock market index. In Figure 4, this means that the area between

the bounce-back function and γ0 is larger for St = 0 than for St = 1. So, in

this case, the rebound of the markets returns in the months following the end of

a bear market is strong enough to more than offset the initial drop. Regarding

real economic activity, some authors as e.g. Caballero and Hammour [1994] or

Aghion and Saint Paul [1998] conclude that the cleansing effect of recessions has

a permanent positive impact on output. This could in turn translate into a higher

stock market price. However, this result is specific to the US case since all the

other countries considered here exhibit slight permanent losses instead. These

losses rank from 5.42% in the UK to 10.06% in Germany if we consider the BBU

model for this latter case. It is worth noticing that without any bounce back effect,

i.e. with λ = 0 as in the second line of Table 7, all the countries would experience

a large permanent loss: around 30% for France, the UK, Canada and Germany

and 15% in the US.

5 Conclusion

This paper applies the bounce-back augmented class of Markov-Switching model

to identify bull and bear markets and measure any potential bounce-back effect

from monthly stock returns data for several developed countries since the early

seventies. This model provides a realistic identification of bull and bear markets

which matches correctly the outcome of the dating algorithm. Focusing on a po-

tential bounce-back effect in financial markets, its presence and shape are formally

tested. Our results show that i) the bounce-back effect is statistically significant

and large in all countries, but Germany where evidence is less clear-cut and ii) the

negative permanent impact of bear markets on the stock price index is notably
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reduced (or even more than offset in the US) when the rebound is explicitly taken

into account.
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