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Abstract
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1 Introduction

Residential location choice models have historically been estimated conditional on

workplace, or vice versa. The first discrete choice models applied to residential loca-

tion (Lerman, 1976; McFadden, 1978; Anas, 1981) borrowed from the Alonso-Muth-

Mills literature on monocentric models the assumption of exogenous determination

of workplace location (Alonso, 1964; Muth, 1969; Mills, 1972). The interdependency

between residential and workplace location was studied during the late 70s, with

the monocentric model extensions allowing simultaneous choice of workplace and

residential location (Siegel, 1975; Simpson, 1980), and during the 80s, with the Lin-

neman et al. (1983) joint multinomial logit model analyzing residential migration

and job search.

The relevance of the exogenous workplace assumption in residential location

choice models has been questioned from the early 90s following the empirical results

of Waddell (1993) that showed that a joint logit model of workplace, tenure and

residential location outperform a nested logit model of tenure and residential location

choice conditional on workplace.

Subsequent applications and theoretical developments of residential location and

of workplace discrete choice models were made separately. On the one hand, res-

idential location choice models have been studied in relation, among others, with

mobility or relocation (Clark et al., 1999; Lee et al., 2010), mode choice (Eliasson et

al., 2000), and accessibility (Ben-Akiva et al., 1998). On the other hand, workplace

location choice models have been mostly developed in the framework of aggregated

travel models.

Explicit modeling of both residential location and workplace choice have been

studied within the multi-worker household discrete choice literature. In this field, re-

searchers have been mainly interested in analyzing the influence of spouses’ earnings

and commuting time on the choice of the household residential location and spouses’

specifics job locations (Freedman et al., 1997; Abraham et al., 1997). Additionally,

Waddell et al. (2007) developed a discrete choice model of joint residential location

and workplace adapting methods of market segmentation for single worker house-

holds. Doing so, no a priori assumption has to be made on the exogenous choice

(workplace first and residence after or vice versa) and the probability of making one
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choice before the other is determined as a function of the household characteristics.

The literature on topics related to residential location and workplace range from

mobility and job uncertainty to the analysis of the decision-making process in dis-

crete choice models. Crane (1996) and Kan (1999; 2002) provide insights on mod-

eling the effect of job changes on residential mobility, mobility expectation and

commuting behavior. Introducing risk in discrete choice models provides a new

research direction in residential location and workplace. Palma et al. (2008) offer

a review on the implications of risk and uncertainty in the framework of discrete

choice models in specific fields including residential location and transportation and

provide recommendations on its implementation. A recent research strand in choice

models is advocating to take into account the effects of context on the process lead-

ing to a choice. Ben-Akiva et al. (2012) provide a review and illustration of process

and context in discrete choice models.

Commuting time is one of the main determinants of residential location. House-

hold locations and workplaces are interdependent choices because they jointly de-

termine commuting time. The residential location and workplace can be modeled

as a textitsequential two-stage decision process. In such a decision process, the

second-stage decision is made conditional on the first stage, and the second stage is

anticipated in the first-stage decision. In the model considered here, workers choose

a workplace conditional on their actual residential location (second stage), and they

anticipate their potential workplaces (job opportunities) when choosing their resi-

dential location (first stage). In this setting, actual commuting time (between the

locations chosen for living and for working) is relevant for explaining the workplace

location choice (Levine, 1998; Abraham et al., 1997), whereas accessibility to jobs

is the relevant variable for explaining the residential location choice (Anas, 1981;

Ben-Akiva et al., 1998; Levinson, 1998).

Which decision is made first is an open research question. Is it the choice of

workplace or the residential location choice? The extent to which workplace location

will depend on residential location, or conversely, varies along household’s life cycle

and is affected by real estate and labor market rigidities, the availability of jobs,

and the demographic and socioeconomic characteristics of households (Waddell,

1993; Waddell et al., 2007). The most widely used approach to model the sequential
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decision-making processes in a (residential, workplace or mode) choice framework is

to use discrete choice models, as in Anderson et al. (1992); Ben-Akiva et al. (1985).

This will be the approach adopted here. Discrete choice models allow to study the

location decision choice interdependency (nested models) and to model residence

(and workplace) choice as a trade-off among local attributes that can vary across

sociodemographic segments, as described in Sermons et al. (2001) and Bhat et al.

(2004).

Despite the variety of contributions to the study of residential location, little

has been said regarding the influence of job type attractiveness on the accessibility

to jobs and accordingly on the residential location and workplace choices when

individuals are forward-looking. A three-level nested logit model is developed here,

allowing to study, within a behavioral framework (RUM), the interdependency of

residential location and workplace, while accounting for variation across individuals

on the preferences for job types. In this model, residential location is the upper

level choice, and workplace location and job type are the middle and lower level

choices, respectively. This nested structure allows to build an individual-specific

accessibility measure, which corresponds to the expected maximum utility across all

potential workplace locations (middle level). When considering accessibility to jobs,

the choice of a particular workplace location is influenced by the relative distribution

of jobs of the same type of the worker. Modeling the job type choice (lower level)

allows for the computation of an individual-specific measure of attractiveness to job

types (log-sum variable) that is used in the workplace location choice model.

In Section 2, a framework that introduce the role of risk and information in

discrete choice models is developed. A three-level nested logit model is developed

to analyze the residential, workplace and job type choices when information can be

acquired at each choice step. In this model, residential location and workplace are

related through the generalized cost of commuting. However, workplace and job

type are assumed to be independent: the relative preference for one job type over

another one is the same in all locations. The data are presented in Section 4. The

empirical methodology and the results are provide in Section 5. Finally, Section 6

concludes with insights on implications of the proposed modeling for urban models.
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2 Risk and information in discrete choice models

The role of information in discrete choice models is analyzed below, with a special

focus on MultiNomial Logit model (MNL), and nested Logit model (NL). It will be

applied to the context of residential location, workplace and job type in the next

section.

Each individual (household) chooses a single alternative belonging to the choice

set L, with ∣L∣ = L. In the application considered below, it will be assumed that

the full set of alternatives, denoted by L0, is partitioned in I choice sets, or nests

denoted by Li, i = 1, ..., I (Li represents the nest containing a given alternative i,

i ∈ L0). The list of nests is assumed exogenous and identical for all decision mak-

ers. The utility of individual n choosing alternative i is a random variable given

by Un (i) = Vn (i) + εn (i), where Vn (i) is the deterministic (or measured) utility,

and where εn (i) is an absolutely continuous random variable. The random term,

εn (i) is an error term unknown to the modeler, corresponding to unobservable indi-

vidual and/or alternative-specific characteristics (Manski et al., 1977). Such models

are also referred to as Additive Random Utility Models (McFadden, 1978; Anderson

et al., 1992). Alternatively, the error term εn (i) can be interpreted as a match value

between individual n and alternative i. The modeler is assumed to know the distri-

bution of the error terms, but not their specific values. In the different cases analyzed

below, different assumptions are made about the level of information available to

the decision maker at the different stages of the decision process (before/after she

chooses a set of alternatives).

The expectation of εn (i) is set to zero without loss of generality, and its standard

deviation is assumed the same across alternatives and denoted by µ. According to

the law of comparative judgments (Thurstone, 1927), when the decision maker knows

the realization of εn (i) , i ∈ L, she selects the alternative with the highest utility.

Formally, the probability that individual n selects alternative i in choice set L is

Pn (i∣L) = Pr{Un (i) ⩾ Un (i′) , ∀ i′ ∈ L} . (1)

We will extend this formula to the case where the decision maker does not know

the realization of εn (i). In the MNL model, the error terms are assumed inde-
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pendent and identically distributed (i.i.d.). Their common law is Gumbel or double

exponential distributed, with:

P{ε ≤ x} = exp{− exp [− (x + γ) /µ]} , (2)

where γ ≃ 0.5772 (shift parameter) is the Euler constant, which guarantees that

E (ε) = 0, and the standard deviation of ε is proportional to µ (scale parameter).

The cdf of a standard Gumbel distribution is P{ε ≤ x} = exp{− exp (−x)}; its ex-

pectation is γ and its standard deviation is π/
√

6 (this corresponds to µ = 1).

The pdf of this standard random variable is denoted by f and given by f (x) =

exp [−x] exp{− exp [−x]} .

When the error terms are i.i.d. Gumbel with scale parameter µ, the choice

probabilities have a closed form (McFadden, 1978):

Pn (i∣L) =
exp (

Vn(i)
µ )

∑
i′∈L

exp (
Vn(i′)
µ )

, i ∈ L. (3)

Clearly, the same expression would hold for any shift parameter (other than γ or 0).

Consider two alternatives i1 and i2 included in two choice sets, L and L’. Then,

the following property holds:

Pn (i1∣L)

Pn (i2∣L)
=

exp (
Vn(i1)
µ )

∑
i′∈L

exp (
Vn(i′)
µ )

/
exp (

Vn(i2)
µ )

∑
i′∈L

exp (
Vn(i′)
µ )

=
exp (

Vn(i1)
µ )

exp (
Vn(i2)
µ )

=
exp (

Vn(i1)
µ )

∑
i′′∈L′

exp (
Vn(i′′)
µ )

/
exp (

Vn(i2)
µ )

∑
i′′∈L′

exp (
Vn(i′′)
µ )

(4)

=
Pn (i1∣L

′)

Pn (i2∣L′)
.

This corresponds to the Independence of Irrelevant Alternatives (IIA) property

which characterizes the Multinomial Logit model. The relative probability that

individual n selects alternative i1 rather than alternative i2 is the same in all the

choice sets containing both i1 and i2.

Now consider an individual who should select between different choice sets. She

needs to evaluate the benefit (or surplus) of the different choice sets beforehand, i.e.

6



before the choice is made based on the information available at that stage.

The terminology ex-ante and ex-post is now introduced. It characterizes the

level of information available to the decision maker. Ex-ante utility of the choice

set L corresponds to the value associated to L before it has been selected. Ex-post

utility of the choice set L corresponds to the value associated to L after it has

been selected, based on the information available at that stage. Different cases are

possible.

2.1 Information revealed ex-post

This case will be referred, for convenience, to learning. In this case, individual has

no information ex-ante about the exact value of the idiosyncratic terms, but she

acquires such information after selecting the choice set.

The ex-post surplus is derived as follows. Once the individual has selected the

choice set, she has access to information about all the values of the idiosyncratic

terms. That is, she can observe the realizations en ≡ (e1, ..., eL) of the random terms

εn (1) , .., εn (L). Once the choice set L is selected, the utility of alternative i is a

number denoted by Ũn (i) = Vn (i) + ei, i = 1, ..., L. The ex-post value of the utility

of choice set L is a number equal to:

Ũn (L;en) = max
i∈L

Ũn (i) . (5)

Ex-ante, the values of the error terms are unknown, but the probability dis-

tribution of εn (1) , ..., εn (L), evaluated at any point en is known, and given by

f (e1) , f (e2) , ....f (eL). The surplus of choice set L corresponds to its expected

utility, computed ex-ante. It is given by:

EUn (L) ≡ ∫
RL
Ũn (L;en) f (e1) f (e2) ....f (eL)de1de2...deL. (6)

This formula is in the vein of von Neumann-Morgenstern Expected Utility function.

It involves the computation of L integrals.

Using the Gumbel specification, Ben-Akiva et al. (1985) have derived an exact

formula for the above expression. In this case, the ex-ante utility of choice set L is
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a surplus corresponding to the expected utility of choice set L:

Sn (L) ≡ EUn (L) = µ log{∑
i∈L

exp(
Vn (i)

µ
)} . (7)

Assume, without loss of generality, that Vn (1) < ... < Vn (i) < ...Vn (L). Then,

lim
µ→0

EUn (L) = Vn (L) . (8)

The interpretation is as follows: when the importance of idiosyncratic terms van-

ishes, the model becomes deterministic. In this case, individual n selects with prob-

ability 1 the best alternative L and gets the corresponding utility Vn (L).

Moreover, as the variance of the idiosyncratic terms gets very large, each MNL

choice probability tend to 1/L and the expected utility of the chosen alternative

tends to infinity:

lim
µ→∞

EUn (L) =∞. (9)

This is because the maximum of i.i.d. Gumbels has a Gumbel distribution with the

same variance (here µ → ∞) and with the same expectation (which tends here to

infinity).

As expected, the attractiveness of a choice set increases as alternatives are added

(since positive terms are added to the sum).

Assume now that Vn (1) = .... = Vn (i) = ... = Vn (L) ≡ Vn. Then

EUn (L) = Vn + µ log (L) , (10)

so that the marginal contribution of an extra alternative is decreasing as the number

of alternative increases. To sum up, the expected utility is an increasing and concave

function of the number of alternatives, L.

2.2 Information available ex-ante (and ex-post)

This case will be referred to full information. Here, the decision maker knows

beforehand the value of the idiosyncratic terms. Therefore, in this case, the ex-ante

value of the utility of the choice set is the same as its ex-post value. This common
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value is equal to:

Ũn (L;en) = max
i∈L

Ũn (i) . (11)

This common value is also equal to the ex-post value of the choice set in the previous

case, when information is revealed only ex-post. By contrast, the ex-ante value of

the choice set is different depending on whether the decision maker has information

ex-ante or not. Ex-ante information has a strictly positive value because it helps

the decision maker selecting her choice set, which is illustrated in the following very

simple example, sum up in Table (1).

[Insert Table 1]

Consider two choice sets containing two alternatives each. The expected utility

Vi, i = 1, ...,4 is equal to 0 for the two alternatives of the first choice set, and 1

for the two alternatives of the second choice set. The realizations ei, i = 1, ...,4 of

the random terms are (2; 1) for the first choice set and (0;−1) for the second one.

The utilities Ui, i = 1, ...,4 are then (2; 1) in the first choice set and (1; 0) in the

second choice set. If she has no information ex ante, the decision maker ignores

the realizations ei of the random variables. Therefore, since these realizations are

i.i.d. across alternatives, the decision maker will select the second choice set (with

the highest expected utilities Vi) at the first stage of the choice process. Once this

choice set is selected, the decision maker can observe the realizations in this choice

set, and therefore she will select the third alternative (since it has the highest utility

Ui in the chosen choice set).

On the opposite, if the decision maker has information ex ante, she will select

the first choice set and the first alternative. In the case, the decision maker acts as

if she were facing a one-step choice process, i.e. as if she were selecting in the full

set of alternatives (alternative 1).

In the learning case, the choice set selected ex ante often differs (as in the above

example) from the choice set which would be the best ex post. The decision maker

selects in the second step the alternative which is the best ex post in the small

choice set selected in the first step, but the alternative finally selected is usually not

optimal ex post in the full choice set. This implies that, in the learning case, A

suboptimal alternative is selected when the alternative which is optimal ex post is
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not included in the choice subset which is optimal ex ante.

The individual-specific value of the choice set in the full information case holds

for the decision maker n characterized by the realization en ≡ (e1, ..., eL) . This value

is known ex ante to the decision maker, but it is unknown ex-ante (and ex-post) to

the modeler. The modeler does not know the realizations of idiosyncratic error terms

for a given individual, but she knows the probability that the individual idiosyn-

cratic terms lie in the infinitesimal L-dimensional hypercube d (en) ≡ de1de2...deL is

f (e1) f (e2) ....f (eL)de1de2...deL. Therefore, the expected utility of choice set L for

individual n, computed by the modeler (who ignores the value of the idiosyncratic

tastes), is:

∫
RL
Ũn (L;en) f (e1) f (e2) ....f (eL)de1de2...deL. (12)

The probability, computed by the modeler, that individual n chooses alternative i in

the choice set L corresponds to the probability that the vector en lies in the region

such that Vn (i) + en (i) > Vn (i′) + en (i′) for all i′ in L. It is given by the MNL

formula given in (3). This formula holds both when the decision maker chooses in

the full set L0 and when she chooses in a subset Li.

When the decision maker has access to information ex ante, the modeler knows

that she will select the same choice set and alternative than if she were selecting

in the full set of alternatives, that is, if she were choosing in a single step. As a

consequence, when the decision maker has access to information ex ante, the choice

probabilities computed by the modeler are the same as if the decision maker were

choosing in a single step.

2.3 No information ex-ante and ex-post

In the last case, referred to as the no information case, the decision maker knows the

distributions of the idiosyncratic terms, but ignores the realizations of these terms

both before and after selecting her choice set. Since the decision maker does not

acquire any new information after selecting her choice set, the decision process can

be clearly reduced to a one-step procedure.

The no information case can also be interpreted as a situation where the decision

maker choice is the outcome of an embedded matching model. In this case, the

decision maker devotes some level of effort in order to determine an optimal quality of
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matching. This quality determines the matching probabilities, i.e. the probabilities

that a given alternative is matched with the decision maker. The level of effort is

optimized such that the risk of unsatisfactory matching is minimized. The exact

procedure remains in this article a black box which has an output given by the MNL

probabilities:

Pn (i∣L) =
exp (

Vn(i)
µ )

∑
i′∈L

exp (
Vn(i′)
µ )

, i ∈ L. (13)

This formula holds both when the decision maker chooses in the full set (L = L0)

and when she chooses in a nest (L = Li).

The probability that the decision maker is allocated to nest Li can be computed

as the sum of the probabilities that she is allocated to each alternative in the nest

Li ∶

Pn (Li∣L0) =

∑
i′′∈Li

exp (
Vn(i′′)
µ )

∑
i′∈L0

exp (
Vn(i′)
µ )

,Li ⊂ L0. (14)

It is easy to check, from the above formulae, that Pn (i∣L0) = Pn (i∣Li)Pn (Li∣L0),

which means that, in the no information case, the probability that a decision maker

choosing in two stages is allocated to a given alternative is the same than if she were

choosing in a single step. The same probability can be computed by the modeler,

who has access to the same information as the decision maker.

Obviously, the case involving information ex ante and no information ex post

does not make sense, since ex ante information is included in ex post information.

2.4 One-step versus two-step decision process: MNL versus Nested

Logit

To sum up the three cases, the decision is achieved in one step when information

is the same ex ante and ex post, and in two steps when information is acquired ex

post (learning case). The latter case, corresponding to a two-step nested decision,

is relevant when the number of alternatives is so large that the decision maker is

not able to acquire information on all alternatives. In this case, she selects a choice

set in the first step based on the ex ante value of this choice set, and then, in the

second step, she acquires information about the alternatives contained in the choice

set that she has selected ex ante, in the first step (and not on alternatives included
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in other choice sets).

In the full information case, the choice is deterministic for the decision maker,

but probabilistic and given by the MNL formula (3) for the modeler who does not

know the value of the idiosyncratic terms.

In the no information case, the choice is random both for the decision maker and

for the modeler, and the choice probabilities are given by the same MNL formula

(3).

The fact that the modeler computes exactly the same probability in the full in-

formation and in the no information cases implies that it is not possible to test one

of these two models against the other. In other words, the data contain no informa-

tion which could be used to test whether the decision maker has full information or

no information.

On the opposite, the probability computed by the modeler is different in the

learning case because the modeler knows that the decision maker will acquire in-

formation ex post in the learning case, even though the modeler herself does not

acquire information ex post. In the learning case, the decision maker selects for sure

in the first step the choice set which is the best ex ante for her, i.e. which maximizes

the surplus computed as in (7). For the subset Li′ , the surplus is given accordingly

by:

Sn (Li′) ≡ EUn (Li′) = µ1 log

⎧⎪⎪
⎨
⎪⎪⎩

∑
i′′∈Li′

exp(
Vn (i′′)

µ1
)

⎫⎪⎪
⎬
⎪⎪⎭

, (15)

where µ1 is proportional to the standard deviation of the idiosyncratic terms within

Li′ .

It is assumed that the decision maker preferences differ as to their perception of

the quality of the subset. The corresponding idiosyncratic terms are assumed to be

i.i.d. Gumbel distributed with zero mean and a standard deviation proportional to

µ2. Using the same reasoning as before, the probability, computed by the modeler,

that the decision maker selects subset Li, i = 1, ..., I is

Pn (Li) =
exp (

Sn(Li)
µ2

)

I

∑
i′=1

exp (
Sn(Li′)
µ2

)

, i = 1, ..., I.

Clearly, when µ1 = µ2, the NL probabilities reduce to the MNL probabilities. Inter-
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estingly, this means that the test of the equality µ1 = µ2 amounts to test that there

is no information acquisition from the first to the second decision stage.

The framework developed above will now be applied to a multilevel nested model

in which individuals decide upon their residential location, workplace, and job type,

and may acquire information at each choice step. Each level in this nested model is

described by a MNL model, so the the full model is a multi-level NL model when

ths scale parameters differs, and a MNL model when the scale parameters are equal,

i.e. when there is no information acquisition.

3 A Nested Logit model for job type, workplace and residential

location

Individual n chooses a residential location i, a workplace j and a specific job l of

type k in a set denoted by En. There are I locations and K job types. Individual

utility, denoted by Un, is equal to:

Un (l, k, j, i) = UTn (l, k) +UWn (j) −CWR
n (j, i) +URn (i) ∀ (l, k, j, i) ∈ En, (16)

where UTn (l, k), UWn (j), and URn (i) denote the utility specific to job l of type k, the

utility specific to the workplace j, and the utility of living in residential location i,

respectively. The term CWR
n (j, i) captures the generalized commuting cost between

residential location i and workplace j.

The model concentrates on two major choices: the selection of a specific job,

including its type and location, and the choice of a residential location. These

choices are analyzed by a three-stage model solved by backward induction (Figure

1). At the lower level, individual n chooses a specific job l of type k, conditional on

workplace j and residential location i. At the middle level, individual n chooses a

workplace j, conditional on residential location i and anticipating job l of type k.

Finally, at the upper level, individual n chooses a residential location i, anticipating

the work related choices (j, k, l).

[Insert Figure 1]

Additive separability between the deterministic and stochastic components of

the utility is imposed at each level, like in the previous section. The utility UTn (l, k)
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provided by job l of type k, in equation (16), is decomposed into a deterministic term

V T
n (k) depending on type k and two random terms, ε0n (l) and ε1n (k) depending on

specific job l and on type k, respectively. The deterministic term V T
n (k) represents

the intrinsic preferences of individual n for job type k. A deterministic term specific

to the utility of performing a specific job l could be added if job characteristics

could be observed. This would add a level into the tree. Under full information, the

random terms ε0n (l) and ε1n (k) represent the idiosyncratic preference of individual n

for the specific job l, and for the job type k, respectively. In the no information and

learning cases, these random terms rather represent job-specific and type-specific

characteristics unknown to the decision maker before she chooses her workplace and

job type. In the learning case, after selecting job type k, the decision maker acquires

information about the realization of ε0n (l) for all the jobs of type l located in j.

The deterministic terms V W
n (j) and V R

n (i) measure the intrinsic preference for

working in j and living in i, respectively. The choices of residential location and

workplace are de facto related through the generalized commuting cost CWR
n (j, i)

and cannot be assumed independent. Under full information, the random terms

ε2n (j) and ε3n (i) correspond to the idiosyncratic preference (unobserved heterogene-

ity of preferences) of individual n for working in j and living in i. An additional

random term could be considered explicitly for the generalized commuting cost but

it would be impossible to disentangle it from ε2n (j). As a consequence, ε2n (j) also

includes idiosyncratic preference for commuting between i and j. In the no in-

formation case, ε2n (j) and ε3n (i) rather represent local characteristics unknown to

the decision maker throughout the decision process. In the learning case, ε2n (j) and

ε3n (i) also represent local characteristics and ε3n (i) is observed by the decision maker

at the first stage of her decision process, whereas she acquires information about

ε2n (j) only after selecting residential location i (which is plausible for commuting

costs).

The random terms ειn (⋅) , ι = i, j, k, l, are independent from each other for a

given individual n and independent across individuals.

To sum up, utility Un (l, k, j, i) can be decomposed as:
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Un (l, k, j, i) = V T
n (k) + ε0n (l) + ε1n (k) + V W

n (j) −CWR
n (j, i) + ε2n (j) + V R

n (i) + ε3n (i)

∀ (l, k, j, i) ∈ En. (17)

3.1 Lower Level Choice: Specific Job and Job Type

The additive separability assumed in (17) means that the preference of individual

n for a specific job l of type k is assumed independent from the job location. This

preference may be related, for example, to the wage, the number of working hours

and other working conditions. All these characteristics vary significantly across job

types and these job characteristics, or the utility attached to these job character-

istics, depend on individual characteristics such as gender, education or age. This

is the reason why V T
n (k), ε0n (l) and ε1n (k) are indexed by n. We assume that

the difference between the utilities of two job types for a given individual is the

same whatever their location. This is the reason why V T
n (k) + ε0n (l) + ε1n (k) does

not depend on job and residential locations j and i. This does not exclude that

job characteristics, or the utility attached to these characteristics, vary geograph-

ically. For example, wages may be systematically higher in a location j than in

location j′, for all job types. These geographical differences, if any, can be included

in V W
n (j) + ε2n (j), provided they are homogeneous across job types. The only re-

striction we impose is that we exclude the case where geographical differences would

be specific to job type. To be more specific, we exclude, for example, the case where

wages would be systematically higher in j then in j′ for blue collars, but wages would

be statistically identical in j and in j′ for white collars. This interpretation holds

in the full information case, but a similar one could be provided in the learning and

no information cases. As a result, the choice between the various jobs located in j

only depends on individual characteristics and job types, and is not affected by local

observed or unobserved characteristics of workplace and/or residential location.

Let Tkj denote the set of jobs of type k available to an individual n in location j,

with ∣Tkj ∣ = Nkj . Since the deterministic part of the utility V T
n (k) depends only on

job type k, but not on the specific job l, all the jobs in Tkj have the same probability

1/Nkj to be selected, and equality (10) implies that the expected value of job type
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k in location j is

EUn (Tkj) = V
T
n (k) + µ0 log (Nkj) , (18)

where µ0 denotes the scaling factor of ε0n (l).

The probability that individual n chooses job type k given workplace j is then

equal to

P1
n (k) =

exp(
V Tn (k)+µ0 ln(Nkj)

µ1
)

∑
k′=1,...,K;Nk′j>0

exp(
V Tn (k′)+µ0 ln(Nk′j)

µ1
)

, ∀ k = 1, ...,K;Nkj > 0, (19)

where µ1 denotes the scaling factor of max
l∈T

ε0n (l)+ε1n (k), which is assumed to follow

a Gumbel distribution in the learning case. The ratio µ0

µ1
then corresponds to the

ratio of the standard error of idiosyncratic preferences at the job-specific level and

at the job-type level, that is the relative intensity of unobserved preferences between

jobs of the same type and between job types.

In the two other cases (full information and no information), µ0 = µ1, and the

coefficient of ln (Nkj) simplifies to 1. This result can be checked as follows. When

the decision maker acquires no information after choosing her nest (here job type),

her choice probabilities are the same as if she were choosing in one step in the full

choice set, and given by the MNL formula. In this case, the probability of specific

job l is given by

P0
n (l, k) =

exp (
V Tn (k)
µ1

)

∑
k′=1,...,K,Nk′j>0

⎛

⎝
∑

l∈Tk′j
exp (

V Tn (k′)
µ1

)
⎞

⎠

, (20)

and the choice probability of job type k given workplace j is equal to

P1
n (k) = ∑

l∈Tk′j

exp(V
T
n (k)
µ1

)

∑
k′=1,...,K,Nk′j>0

⎛
⎜
⎝
∑

l∈Tk′j
exp(V

T
n (k′)
µ1

)
⎞
⎟
⎠

=
Nkj exp(

V Tn (k)
µ1

)

∑
k′=1,...,K,Nk′j>0

(Nk′j exp(
V Tn (k′)
µ1

))

=
exp(

V Tn (k)+µ
1 ln(Nkj)
µ1

)

∑
k′=1,...,K,Nk′j>0

⎛
⎝
exp
⎛
⎝
V Tn (k′)+µ1 ln(Nk′j)

µ1

⎞
⎠
⎞
⎠

. (21)

Allowing µ0/µ1 to vary across individual types (and then be denoted by µ0n/µ
1
n)
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amounts to considering that relative intensity of unobserved preferences between

jobs of the same type and between job types varies across individuals. Probability

(21) then becomes:

P1
n (k) =

exp (δ1n + δ
0
n ln (Nkj))

∑
k′=1,...,K,Nk′j>0

exp (δ1n + δ
0
n ln (Nk′j))

, (22)

with δ0n =
µ0n
µ1n

and δ1n =
V T
n (k)

µ1n
.

Interestingly, the choices of job type k and job location j are related only through

the number Nkj of jobs of type k in location j, denoted by Nkj . This result is a

direct implication of the assumption of additive separability of utility in Equation

(17).

In the case of job type choice conditional on workplace, the surplus (15), or ex-

pected utility resulting from the choice of the best job type conditional on workplace

j is denoted by Sn (j), and is equal to:

Sn (j) = µ1n ln
⎛

⎝

K

∑
k=1,...,K;Nkj>0

exp
⎛

⎝

V T
n (k) + µ0 ln (Nkj)

µ1
⎞

⎠

⎞

⎠

= µ1n ln
⎛

⎝

K

∑
k=1,...,K;Nkj>0

exp (δ1n + δ
0
n ln (Nkj))

⎞

⎠
. (23)

It measures the attractiveness of workplace j.

3.2 Middle Level Choice: Workplace Location

Let I denote the set of all potential (residential or workplace) locations, with ∣I ∣ = I.

These locations are assumed available for each individual both for working and for

living, so (j, i) ∈ I2. Considering the decision tree assumed here, an individual n

will choose a workplace j conditional on her current residential location i, and so

actual travel time is relevant for explaining workplace location and the generalized

travel cost, CWR
n (j, i), is considered here, in the middle level choice.

Using the assumptions above, from equation (16), the utility of workplace loca-

tion j, including generalized commuting cost, CWR
n (j, i) , between residential loca-

tion i and workplace j, can be expressed as:

UWn (j) −CWR
n (j, i) = V W

n (j) −CWR
n (j, i) + ε2n (j) ∀ j ∈ I. (24)
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Similarly to the lower level, in the full information case, the error term ε2n (j) rep-

resenting the idiosyncratic preference of individual n attributable to workplace j, is

distributed so that the random part of max
(k,l)

UTn (l, k) + ε2n (j) has a Gumbel distri-

bution with scale parameter µ2n specific to individual n (See the discussion about

µ1n below equation (21)). The probability of choosing workplace location j is then

equal to:

P2
n (j) =

exp(
V W
n (j; ) −CWR

n (j, i) + Sn (j)

µ2n
)

∑
j′∈I

exp(
V W
n (j′) −CWR

n (j′, i) + Sn (j′)

µ2n
)

∀ j ∈ I. (25)

In the case of workplace choice conditional on residential location, the surplus (15),

or expected utility resulting from the choice of the best workplace conditional on

residential location i is denoted by LSn (i), and is equal to:

LSn (i) = µ2n ln
⎛

⎝
∑
j∈I

exp(
V W
n (j) −CWR

n (j, i) + Sn (j)

µ2n
)
⎞

⎠
. (26)

It measures the accessibility to jobs of residential location i.

3.3 Upper Level: Residential Location

In the upper level of the decision tree, the individual anticipates the workplace, job

type and specific job choices when she chooses her residential location. The utility

of living in residential location i (equation (16)) is:

URn (i) = V R
n (i;Xn, Zi) + ε

3
n (i) ∀ i ∈ I. (27)

The residual term ε3n (i) accounts for the idiosyncratic preference of individual n

for residential location i. It expresses unobserved location attributes, variation in

individual tastes, and model misspecification. Similarly to other levels, this residual

term is distributed so that the random part of max
(j,k,l)

UTn (l, k)+UWn (j)−CWR
n (j, i)+

ε3n (i) is type I extreme value distributed with scale parameter µ3n. The probability
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of choosing residential location i is then:

P3
n (j) =

exp(
V R
n (i;Xn, Zi) +LSn (i)

µ3
)

∑
i′∈I

exp(
V R
n (i′;Xn, Zi′) +LSn (i′)

µ3
)

∀ i ∈ I. (28)

4 Data, methodology and results

4.1 Greater Paris Data

The model is estimated using exhaustive household data from the last French Gen-

eral Census conducted in 1999 in Ile-de-France Region (IDF). In this census, job type

and individual characteristics are observed for 100% of the population, correspond-

ing to about 11 million inhabitants and 5 million households. Residential location

and workplace are observed at the commune (municipality) level for a 5% sample

of the working population; that is around 240,000 workers in 1999. The commune

is the smallest administrative unit used in France. The IDF region is composed by

1,300 communes, of which 20 form the central city of Paris. The 1,300 communes

are grouped into eight departments or districts, the central one corresponding to

Paris. The central city of Paris accounts for about 2 million inhabitants. The inner

ring (close suburbs) is made of three districts, while the outer ring is composed by

four districts (Figure 2).

[Insert Figure 2]

The study area exhibits spatial disparities in the supply of jobs. In particular,

many outer ring communes have little or no job supply. Almost 25% of the 1,300

communes (almost entirely located in the outer ring) are very small communes

in terms of number of jobs (Figure 3). In order to circumvent this small number

problem, small adjacent communes were grouped into "pseudo-communes" following

a simple pairwise aggregation strategy until each pseudo-commune contained at least

100 jobs. The resulting 950 pseudo-communes with 100 jobs or more were used as

unit of location for both jobs and residence.

[Insert Figure 3]

19



The census data was aggregated at the pseudo-commune level, and variables

measuring prices and local amenities were computed at the same level. Price data

originally come from Cote Callon, which reports average prices perm2 for offices and

dwellings by type and tenure status for communes with more than 5,000 inhabitants

(287 communes, each of them containing at least 100 jobs). Hedonic price regressions

were estimated jointly for each tenure and dwelling type as well as for offices, and

the results were used to predict prices in smaller pseudo-communes. Palma et al.,

2007 provide a detailed description of local amenities, of price equations and of the

method used for correcting the endogeneity of prices.

Origin-Destination (O-D) matrices of travel time using public transportation

were obtained from the Regional Department of Infrastructure and Transporta-

tion Planning (DRIEA) transport model MODUS, whereas O-D matrices of travel

time for private car were computed using the dynamic transport network model

METROPOLIS described in (Palma et al., 1997). The transport model METROPO-

LIS has a dynamic traffic simulator which uses a mesoscopic approach: vehicles are

simulated individually while the traffic dynamics is modeled at the aggregate level.

The disaggregate representation of demand allows to consider the heterogeneity of

the population and trips. Saifuzzaman et al. (2012) provide a more detailed infor-

mation on METROPOLIS calibration for the Paris Region.

The sample analyzed contains 239,499 people living and working in Ile-de-France.

The lower and middle level models (job type and workplace) are estimated separately

in 24 subsamples in order to reflect how individual preferences and job opportunities

depend on age, education, gender, and fertility. More precisely, the sample is split

in two age groups of approximately equal size, the "young" being less than 35 years.

Education groups (elementary; secondary; undergraduate; graduate) were defined

according to preliminary results measuring the influence of education on the job type

choice. Similarly, the influence of fertility on female job type choice was measured

by a dummy variable indicating whether the woman considered has at least one

child less than 12 years old. The combination of education, age, gender and fertility

categories results in 24 categories (Table 2).

[Insert Table 2]
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The results of the three models (residential location, workplace, and job type)

outlined in Section 2 are presented after some methodological considerations.

4.2 Methodological considerations

Since the nested logit is estimated sequentially by backward induction, the first

model estimated corresponds to the job type choice, the second one corresponds to

workplace choice, and the last model estimated corresponds to residential location

choice. A Multinomial Logit (MNL) model is estimated at each level, including a

log-sum variable at the middle and upper levels.

Given the large number of alternatives (950 pseudo-communes), it would have

been too cumbersome to consider all the 950 alternatives at the middle and upper

levels (job and residential location choices). This problem can be circumvented by

using random sampling, which consists in randomly selecting a small number of

alternatives for each individual, with equal probabilities of selection in the choice

set . McFadden (1978) showed that random sampling leads to consistent estimates

of the coefficients a MNL model under the IIA assumption. Ben-Akiva et al. (1985)

further showed that importance sampling improves the efficiency of the estimates.

Importance sampling consists in increasing the probability that a given alternative

is included in the choice set. Ben-Akiva et al. (1985) also show that importance

sampling usually induces a bias in the coefficients, which should be corrected. In

our case, the probability that a pseudo-commune is included in the choice set is

proportional to the number of dwellings (upper level) or jobs (middle level) in that

pseudo-commune. Since no information is available concerning the dwellings (in-

trinsic) characteristics, all dwellings of the same type and tenure status located in

the same pseudo-commune are statistically identical and provide the same expected

utility and the same odds of being selected by a specific household. Similarly, since

information is available concerning the jobs characteristics, all jobs of the same type

located in the same pseudo-commune are statistically identical. As a consequence,

the importance sampling of pseudo-communes considered here is equivalent to uni-

form random sampling of dwellings (or jobs), so the coefficients are not biased and

no correction is needed.

The strong segmentation of the dwelling market in France has two implications
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here. First, prices vary across dwelling types and tenure status, so it is more relevant

to consider dwelling prices specific each of the resulting four sub-markets. Second,

at a given point in the life cycle, a given household is usually not flexible concerning

dwelling type and tenure status, which adds a level at the top of the tree (Figure

4). Modeling endogenous choice of dwelling type and tenure status is out of the

scope of this paper. Instead, residential location is simply estimated separately in

the four sub-samples defined by dwelling type and tenure status, which amounts to

assuming that dwelling type and tenure status is exogenous to residential location

choice. Getting rid of this implicit assumption is left for future research.

[Insert Figure 4]

Finally, the residential location choice is restricted to one-worker households, in

order to avoid the bargaining considerations that would arise in a multiple-worker

household. In such households, the jobs of the different workers are usually located

in different places, and each household member has to bargain so that the household

locates closer to his/her job.

4.3 Job Type Choice

A multinomial logit (MNL) model is estimated for each of the 24 categories. This

is, 24 different MNL choice models between the following job types: blue collar,

employee, intermediate, manager and independent. Given the small number of

alternatives (5 job types), no random sampling is needed at this level.

The results of the MNL model of job type are presented in Table 3. The reference

alternative is blue collar. Almost all the estimated coefficients by job type are highly

significant. The measure of goodness of fit presented in the last column of Table 3

suggests that the explanatory power increases with education for men. This suggests

that the less educated men accept any job and are randomly assigned to job types

such as blue collar, employee, or independent. By contrast, the most educated men

typically only accept the job types best suited to them (manager, intermediate and

independent). The role of education is more ambiguous for women. Conditional on

age and fertility, what influences most the decision to work or not for a woman is

the education rather than the choice of job type.
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[Insert Table 3]

Based on this lower-level estimates, a log-sum can be computed. It corresponds

to the sum of the log-number of jobs by type, weighted by the individual-specific

probability to choose a particular job type. This individual-specific measure of

attractiveness, defined in equation (23), varies between job locations and between

individual characteristics. The job type attractiveness of each workplace, computed

as the log-sum across local job types, is represented in Figures 5 and 6 by gender

and education.

[Insert Figures 5 and 6]

4.4 Workplace Location Choice

The only criteria to choose a workplace location considered here are the generalized

commuting cost CWR
n (j, i) and the availability of jobs of different types that can be

found in the job type choice inclusive value or surplus term Sn (j). Past empirical

works have included average wage by job type as an explanatory variable of work-

place location choice (Waddell (1993)). Any significant difference in wage between

locations in the geographical units of study is already in the job type surplus term

Sn (j), because this term allows us to account for differences in the employment

structure between different workplace locations. With the purpose of constructing

a parsimonious workplace choice model the V W
n (j;Xn, Zj) term is considered nil.

The workplace location choice of a pseudo-commune is considered to depends on

its job type attractiveness (the individual-specific measure computed in the job type

choice model) and the commuting travel time of individuals. For this second choice

level, MNL models are estimated separately for each of the 24 categories described.

The results of the 24 workplace location choice models are presented in Table 4.

[Insert Table 4]

In the Attractiveness column of Table 4 the association between the measure

of attractiveness and the workplace location is explored. The estimated coefficients

indicate that the most educated and older men are more sensitive to the job type

attractiveness of the workplace than the younger and less educated. Women (espe-

cially the more educated) are less sensitive than men to the job type attractiveness.
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Columns "Travel time" and "(Travel time)2" allow for a quadratic specification

of travel time. The results suggest that the workplace location utility is decreasing

and concave in travel time for each of the 24 groups. The value of time depends

then on age, education, gender and children.

In order to explore further the gain of using a job type attractiveness measure, 24

workplace location choice models were estimated using a size measure (log number

of jobs) instead of the measure of job type attractiveness chosen here, while keeping

the quadratic specification of travel time. The last column of Table 4 presents

the difference between the Likelihood Ratio (LR) of the workplace location choice

model estimated with the attractiveness measure and the LR of the models estimated

with the size measure instead. Results indicate that the measure of attractiveness

(specific to each individual) is a better predictor of the workplace location choice

than the size measure commonly used (log of the number of jobs).

This choice level allows us to develop an accessibility measure specific to each in-

dividual: the log-sum of workplace locations. That is to say, the expected maximum

utility of all job opportunities. This measure varies between residential location of

households and individual characteristics. Accessibility differs across groups because

local employment prospects and the value of time differ across them. The computed

measure of accessibility to jobs has been mapped in Figures (7) and (8) by gender

and education in the Appendix. Difference of accessibility are particularly strong as

the education level of individual increases (Figure 8).

[Insert Figures 7 and 8]

4.5 Residential Location Choice

The results presented in Tables 6 and 7 are limited to households with only one

worker. In households with more workers, the choice of residential location and

workplace is modified by the negotiation process within the household. Bargaining

considerations are left for future work. The location model is estimated separately by

tenure type (owner and tenant) and dwelling type (apartment and single dwelling).

Sample sizes by tenure and dwelling type are presented in Table 5.

[Insert Table 5]
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In the last row of Tables (6) and (7) the measure of goodness of fit is presented.

The explanatory power is higher for owners than for renters. This is consistent

with the fact that purchasing decisions are much more developed or matured (and

so less random) than renting decisions. Similarly, the explanatory power is higher

for the choice of single dwellings than for the choice of apartments. This result is

consistent with the rotation rates, which are higher for renters than for owners, and

for apartments than for single dwellings. Location decisions are more thoughtful

when it regards the longer term.

[Insert Table 6]

From the accessibility and transport estimated coefficients and presented in Ta-

ble 6, when comparing between ownership status and dwelling types, owners are

more sensitive to accessibility than tenants; and sensitivity to accessibility is more

pronounced for households living in apartments than for those living in a single

dwelling. These results are consistent with considerations of life cycle and geo-

graphical distribution of single dwellings and apartments. In the early stages of the

life cycle, when jobs are less stable and when households do not have children yet,

households usually rent an apartment strategically located in relation to potential

jobs. At later stages of the life cycle, when employment stabilizes and couples have

children, households buy single dwellings that are usually far away (and less accessi-

ble) in the suburbs. In the decision-making process of choice of residence, the more

the households move through their life cycle, the more they are willing to sacrifice

accessibility to jobs to access to ownership and gain in residence space.

The numbers of subways and suburban train stations (RER and SNCF suburban

trains) only attract households who rent apartments. For other households, the

effect is ambiguous or insignificant, which is logical in the single-worker household

sample used here.

The results of the influence of price in the residential location choice can be

found in the lower rows of Table 6. For households with an average income, the

price has a negative impact on the probability of location, with the exception of

households that rent a single dwelling (very small sample). The negative effect of

price decreases with income, and may be positive for the richest households.
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To test for the influence of unobserved local amenities, regional dummies are

considered. All other things being equal, an apartment in the outer ring has a lower

probability of being selected, and conversely a single dwelling in the outer ring has

a higher probability to be chosen. Similarly, apartments located in a Planned City

have greater probability of being selected, while there are no significant differences

between Planned Cities and the other locations for single dwellings. All other things

being equal, an apartment in Paris has a lower probability of being selected, which

may seem surprising at first sight. However, this can be explained by the fact that

the reasons why Paris attract households are already taken into account by other

explanatory variables in the model (number of subway stations and accessibility to

jobs are particularly favorable for Paris).

The fourth group of explanatory variables taken into consideration and the last

group presented on Table 6 are the local taxes variables. The effect of the residence

tax (for ownership and tenancy) and property taxes (for ownership) is ambiguous.

Higher taxes have a direct negative effect, but they are usually associated with local

services (such as child care center or streets amenities, not measured here), which

exert an attractive effect.

[Insert Table 7]

The second table of results dedicated to the residential location choice model

(Table 7), displays the coefficients measuring the influence of local amenities, and

population composition variables. As expected, the probability of choosing a com-

mune increases with the density for households living in an apartment, and decreases

for those living in a single dwelling, as well as for ownership with respect to tenancy.

The other usual local amenity variables present the expected signs.

Variables related to social mix are among the most significant for explaining

residential location choice: households are attracted by households with similar

characteristics regarding age, size, and income. Single dwelling owners are more

attracted by communes with a high percentage of foreigners, which can be explained

by the fact that the (rich) foreigners who settled in the Paris Region tend to buy a

dwelling close to their compatriots. Moreover, beyond a threshold, the percentage of

foreigners (rather poor) can be seen as a negative characteristic, but the communes

26



concerned generally have little owners. For renters, the percentage of foreigners has

a positive effect, which decreases with education.

5 Conclusion

The choices between residential location, workplace, and job type are modeled here.

An econometric framework is developed to study the interdependency between the

residential location and workplace, including the attractiveness of jobs by type.

This framework provides a way to compute individual-specific measures that are

very relevant for public policy analysis: accessibility to jobs, travel time, value of

time, and job type attractiveness.

The three-level nested logit model proposed allows for a new concept of accessi-

bility to jobs that takes into account the individual-specific job type attractiveness

and the heterogeneity in the preferences of individuals, in the education, age, gender,

and children dimensions.

Estimation results show that the job type attractiveness measure is a more sig-

nificant predictor of workplace than the usual (total number of jobs) measure. It

means that workers are not attracted equally by any job, but they are more at-

tracted by the jobs which are better suited to them. This selective attraction of

jobs is more pronounced for highly educated men than for less educated men or

for women. Results also show that the individual-specific accessibility measure is

an important determinant of the residential location choice, and its effect strongly

differ along the life cycle.

The model developed here bridges the gap between micro-simulation and general

equilibrium urban models. On the one hand, micro-simulation urban models ignore

the joint nature of the residential location, workplace, and job type decision. On

the other hand, general equilibrium urban models consider only limited heterogene-

ity. Empirical results draw the attention to the pertinence of considering residential

location, workplace, and job type all together and allowing for greater heterogene-

ity, especially when individual-specific accessibility, attractiveness, and travel time

measures are computed for policy study.
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Table 1: Simplified Examples

Chosen Alternative Chosen alternative

Choice set Alternative Vi ei Ui Under Full Information in the Learning Case

1 1 0 2 2 X

1 2 0 1 1

2 3 1 0 1 X

2 4 1 -1 0
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Table 2: Sample Size per Category

Men Women

Young Old Young Old

Education With Children Without Children With Children Without Children

Elementary 18,270 36,813 5,002 7,700 5,974 25,577

Secondary 8,551 12,750 2,950 5,883 3,402 11,251

Undergraduate 10,441 10,234 3,354 9,569 3,145 7,791

Graduate 11,091 17,279 2,478 8,549 3,165 8,280

Note: Total sample size of 239,499 working persons. Categorization by sex, age, children, and education resulted in 24

subsamples. A person is considered young if she has less than 35 years old. Also, a woman is categorized as having

children if she has at least one child of 11 years old or less.

Source: General Population Census for the Paris Region. INSEE, 1999.

32



Table 3: Job Type Choice Model

Job Type Preferences (Reference: Blue Collar)

Groups Size Measure Independent Managerial Intermediate Employee ρ2
1

Men
Young

Elementary 0.8222‡ -1.5332‡ -3.2529‡ -1.7087‡ -1.3610‡ 0.30

(0.0251) (0.0452) (0.0490) (0.0244) (0.0231)

Secondary 0.8643‡ -0.9413‡ -1.704‡ -0.3940‡ -0.3618‡ 0.16

(0.0365) (0.0709) (0.049) (0.0323) (0.0342)

Undergraduate 0.9574‡ 0.0309‡ 0.2486‡ 1.2597‡ 0.4337‡ 0.21

(0.0389) (0.0792) (0.0436) (0.0387) (0.0432)

Graduate 0.8261‡ 0.9085‡ 2.9593‡ 1.5861‡ 0.5015‡ 0.44

(0.0398) (0.0990) (0.0646) (0.0676) (0.0748)

Old

Elementary 0.8063‡ -0.3283‡ -1.9485‡ -1.0148‡ -1.3334‡ 0.13

(0.0158) (0.0249) (0.0221) (0.0152) (0.0171)

Secondary 0.8032‡ 0.7045‡ 0.3025‡ 0.4639‡ -0.3486‡ 0.07

(0.0275) (0.0479) (0.0311) (0.0302) (0.0354)

Undergraduate 0.7389‡ 1.2021‡ 1.5406‡ 1.3041‡ -0.3058‡ 0.19

(0.0324) (0.0627) (0.0425) (0.0435) (0.0548)

Graduate 0.5935‡ 1.8790‡ 3.1703‡ 1.0478‡ -0.3125‡ 0.50

(0.0296) (0.0653) (0.0521) (0.0574) (0.0708)

Women
Young

With Children

Elementary 0.8421‡ -0.6579‡ -2.5086‡ -0.5056‡ 1.3346‡ 0.47

(0.0652) (0.1252) (0.1372) (0.0638) (0.0515)

Secondary 0.7735‡ 0.0085‡ -0.6206‡ 1.2581‡ 2.1184‡ 0.40

(0.0983) (0.1903) (0.1344) (0.0990) (0.1000)

Undergraduate 0.8730‡ 0.7312‡ 1.5153‡ 3.1667‡ 2.6266‡ 0.37

(0.0933) (0.2398) (0.1554) (0.1472) (0.1515)

Graduate 0.9575‡ 1.3300‡ 4.1252‡ 3.4052‡ 1.9893‡ 0.42

(0.0884) (0.3437) (0.2526) (0.2540) (0.2623)

Without Children

Elementary 0.8540‡ -0.6294‡ -2.0835‡ -0.4047‡ 1.3296‡ 0.45

(0.0511) (0.0981) (0.0921) (0.0501) (0.0423)

Secondary 0.7288‡ -0.5234‡ -0.4125‡ 1.1887‡ 2.1063‡ 0.41

(0.0679) (0.1480) (0.0889) (0.0699) (0.0708)

Undergraduate 0.7167‡ 0.0124‡ 1.1669‡ 2.9215‡ 2.7596‡ 0.37

(0.0585) (0.1543) (0.0914) (0.0854) (0.0885)

Graduate 0.8210‡ 0.8320‡ 3.6721‡ 3.2444‡ 2.3833‡ 0.34

(0.0479) (0.1790) (0.1230) (0.1236) (0.1265)

Old

With Children

Elementary 0.7458‡ -0.5445‡ -1.8243‡ -0.3663‡ 1.2783‡ 0.40

(0.0549) (0.1019) (0.0919) (0.0556) (0.0474)

Secondary 0.7786‡ 0.8059‡ 0.6396‡ 1.9021‡ 2.2070‡ 0.30

(0.0823) (0.1628) (0.1123) (0.1018) (0.1044)

Undergraduate 1.1452‡ 1.6729‡ 1.9197‡ 3.0693‡ 1.8303‡ 0.34

(0.0860) (0.2038) (0.1495) (0.1447) (0.1513)

Graduate 0.6183‡ 1.6659‡ 4.1522‡ 3.0145‡ 1.6371‡ 0.45

(0.0775) (0.2467) (0.2030) (0.2064) (0.2173)

Without Children

Elementary 0.8646‡ 0.1262‡ -1.1662‡ -0.1209‡ 1.2035‡ 0.32

(0.0250) (0.0432) (0.0355) (0.0259) (0.0231)

Secondary 0.8230‡ 1.3394‡ 1.1889‡ 2.2136‡ 2.1471‡ 0.24

(0.0415) (0.0855) (0.0644) (0.0610) (0.0628)

Undergraduate 0.8785‡ 1.6054‡ 2.2571‡ 3.0564‡ 1.8847‡ 0.29

(0.0515) (0.1233) (0.0950) (0.0936) (0.0980)

Graduate 0.3816‡ 1.6216‡ 4.1368‡ 2.9735‡ 1.9107‡ 0.41

(0.0484) (0.1428) (0.1217) (0.1241) (0.1300)

1ρ2 is a measure of goodness of fit defined as the percentage increased in the log-likelihood function above the value taken at zero parameters.

‡ Significant at the 1% level, † Significant at the 5% level, ∗ Significant at the 10% level
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Table 4: Workplace Location Choice Model

Explanatory Variables

Groups Attractiveness Travel Time (Travel Time)2 ρ2
1

∆LR2

Men
Young

Elementary -0.0468‡ 1.2532‡ -8.4221‡ 0.48 -7.0
(0.0108) (0.1247) (0.1907)

Secondary 0.0634‡ 1.7142‡ -8.3713‡ 0.38 -1.0
(0.0141) (0.1581) (0.2418)

Undergraduate 0.0511‡ 1.4170‡ -7.0682‡ 0.28 6.0
(0.0102) (0.1360) (0.2034)

Graduate 0.1277‡ 1.2599‡ -5.8953‡ 0.21 114.6
(0.0104) (0.1231) (0.1741)

Old
Elementary 0.0381‡ 1.7761‡ -8.7578‡ 0.43 1.0

(0.0076) (0.0794) (0.1227)
Secondary 0.2090‡ 1.9071‡ -8.3928‡ 0.33 -6.0

(0.0119) (0.1288) (0.1966)
Undergraduate 0.1510‡ 1.8766‡ -7.7952‡ 0.29 25.0

(0.0132) (0.1365) (0.2049)
Graduate 0.2904‡ 1.6935‡ -7.1091‡ 0.25 272.0

(0.0119) (0.1101) (0.1549)
Women

Young
With Children
Elementary 0.0425∗ 0.5459† -7.9755‡ 0.53 -2.0

(0.0227) (0.2412) (0.3928)
Secondary 0.1970‡ -0.2243 -6.2741‡ 0.42 0.1

(0.0287) (0.2921) (0.4595)
Undergraduate 0.1619‡ -0.4822∗ -5.8000‡ 0.39 6.8

(0.0227) (0.2767) (0.4285)
Graduate 0.1078‡ -0.3486 -4.9114‡ 0.30 13.9

(0.0204) (0.3014) (0.4424)
Without Children
Elementary 0.0648‡ 0.5082† -7.8432‡ 0.51 -4.0

(0.0174) (0.1986) (0.3055)
Secondary 0.2283‡ 0.2109 -6.7998‡ 0.42 -1.0

(0.0217) (0.2116) (0.3177)
Undergraduate 0.2453‡ 0.3424† -6.0165‡ 0.32 25.0

(0.0157) (0.1512) (0.2248)
Graduate 0.1120‡ 0.5039‡ -5.3448‡ 0.25 45.1

(0.0129) (0.1484) (0.2122)
Old

With Children
Elementary 0.1761‡ 0.5775‡ -8.1457‡ 0.54 -7.0

(0.0244) (0.2244) (0.3590)
Secondary 0.3019‡ -0.0683 -6.9683‡ 0.46 2.5

(0.0280) (0.2860) (0.4470)
Undergraduate 0.1893‡ 0.2121 -6.9253‡ 0.42 13.3

(0.0190) (0.2815) (0.4258)
Graduate 0.2033‡ -0.4168 -5.3695‡ 0.35 20.2

(0.0293) (0.2838) (0.3988)
Without Children
Elementary 0.1462‡ 0.6924‡ -8.2738‡ 0.55 -28.0

(0.0102) (0.1083) (0.1699)
Secondary 0.2961‡ 0.3529† -7.2969‡ 0.45 23.0

(0.0145) (0.1560) (0.2371)
Undergraduate 0.1576‡ 0.6057‡ -7.1502‡ 0.41 20.0

(0.0149) (0.1754) (0.2578)
Graduate 0.1705‡ 0.6792‡ -6.6626‡ 0.36 22.0

(0.0300) (0.1684) (0.2355)

1ρ2 is a measure of goodness of fit defined as the percentage increased in the log-likelihood function above the value taken at zero

parameters.
2∆LR is the difference between the Likelihood Ratio (LR) of the workplace location choice model estimated with the attractiveness

measure and the LR of a model estimated with the size measure (total number of jobs): ∆LR = LRattractiveness −LRsize measure

‡ Significant at the 1% level, † Significant at the 5% level, ∗ Significant at the 10% level. Standard errors in parenthesis.
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Table 5: Sample Size by Tenure and Dwelling Type

Dwelling Type1

Tenure Apartment Single Dwelling Total

Owner 17,047 16,121 33,168

(37.96%)

Tenant 51,104 3,095 54,199

(62.04%)

Total 68,151 19,216 87,367

(78.01%) (21.99%) (100%)

1All the detached-single unit and semi-detached dwellings are de-

fined as "houses", otherwise the dwellings are defined as "flats".

Note: Sample size of 87,367 one-worker households living and work-

ing in the Greater Paris Area.

Source: General Population Census for the Paris Region. INSEE,

1999.
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Table 6: Residential Location Choice Mode, I

Owner Tenant

Apartment Single Apartment Single

Dwelling Dwelling

Accessibility and Transport

Accessibility to Jobs (IV) 0.3024‡ 0.0727† 0.4029‡ 0.236‡

(0.0428) (0.0369) (0.0236) (0.0789)

Suburban Train × High-Income 0.0199‡ 0.0161∗ 0.0368‡ 0.0291

(0.0064) (0.0088) (0.0054) (0.0217)

Suburban Train× Middle-Income 0.000662 -0.0649‡ 0.0176‡ -0.0449†

(0.0066) (0.0109) (0.0038) (0.0214)

Suburban Train× Low-Income -0.006209 -0.0303 0.0161 ‡ -0.0724‡

(0.0099) (0.0195) (0.0040) (0.0257)

Subway × High-Income 0.004628 -0.0620‡ 0.0355‡ -0.0633‡

(0.0031) (0.0059) (0.0022) (0.0129)

Subway× Middle-Income 0.004678 -0.0953‡ 0.0197‡ -0.0596‡

(0.0033) (0.0083) (0.0018) (0.0120)

Subway × Low-Income -0.009174† -0.0818‡ -0.000154 -0.0417‡

(0.0043) (0.0141) (0.0019) (0.0125)

Prices

AvgPrice × High-Income 1.2159‡ -0.0929 -1.3917‡ 2.1822‡

(0.1686) (0.1387) (0.1552) (0.5123)

AvgPrice × Middle-Income -0.4729‡ -0.2054 -2.4401‡ 0.8922∗

(0.1954) (0.1556) (0.1354) (0.4823)

AvgPrice × Low-Income -0.8661‡ -0.6162∗∗ -3.4165‡ 0.959∗

(0.2082) (0.2578) (0.1293) (0.5184)

Regional dummies

Paris Dummy -0.4969‡ -1.0269‡

(0.0585) (0.0377)

Outer Ring Dummy -0.0972‡ -0.0391 -0.4347‡ 0.3993‡

(0.0370) (0.0305) (0.0214) (0.0739)

Planned City Dummy 0.3938‡ -0.0374 0.0619‡ 0.0351

(0.0436) (0.0356) (0.0234) (0.0780)

Local Tax Rates

Residence Tax × High-Income 0.0388‡ 0.0221‡ -0.0295‡ -0.002156

(0.0060) (0.0040) (0.0038) (0.0113)

Residence Tax × Middle-Income 0.0538‡ -0.001725 -0.003713 -0.003324

(0.0056) (0.0045) (0.0026) (0.0101)

Residence Tax × Low-Income 0.0587‡ -0.006367 0.0148‡ 0.000731

(0.0072) (0.0081) (0.0026) (0.0122)

Ownership Tax × High-Income -0.0382‡ -0.003597†

(0.0029) (0.0016)

Ownership Tax× Middle-Income -0.0180‡ 0.0119‡

(0.0024) (0.0017)

Ownership Tax × Low-Income -0.0181‡ 0.0151‡

(0.0032) (0.0032)

Observations 17,047 16,121 51,104 3,095

ρ2 0.0598 0.2166 0.0553 0.1639

‡ Significant at the 1% level, † Significant at the 5% level, ∗ Significant at the 10% level. Standard errors

in parenthesis.
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Table 7: Residential Location Choice Model, II

Owner Tenant

Apartment Single Apartment Single

Dwelling Dwelling

Land Use and Local Amenities

Density 0.0140‡ -0.0750‡ 0.0171‡ -0.0688‡

(0.0018) (0.0048) (0.0012) (0.0085)
%Noise (Surface) 0.1883 -0.3433‡ -0.0697‡ -0.567†

(0.1281) (0.1080) (0.0719) (0.2577)
%Water (Surface under) 0.1042 -2.4388‡ 0.9928‡ -0.6122

(0.3065) (0.3524) (0.1760) (0.7749)
%Water × Children Dummy 0.3851 1.1099 0.0808 2.5462†

(0.8023) (0.7161) (0.3673) (1.2991)
% Priority Schools (Surface) -0.0604 -0.1178‡ -0.0780‡ 0.1463

(0.0458) (0.0435) (0.0239) (0.0995)
% Priority Schools × Children Dummy 0.2551‡ -0.1348∗ 0.4531‡ -0.0265

(0.0856) (0.0793) (0.0375) (0.1559)
%Educational Buildings (Surface) 0.5175 -11.1408‡ 0.6231† -5.9683‡

(0.5074) (1.1641) (0.3163) (2.1469)
%Education × Children Dummy -0.0755 -0.3048 3.3991‡ -8.0326†

(1.5100) (1.6933) (0.6295) (3.2130)
Neighborhood Composition

%Foreign HHs 8.2979‡ 8.5187‡ 5.2350‡ 6.499‡

(0.5791) (0.5381) (0.2352) (0.9758)
%Foreign HHs × Below Secondary 3.8826‡ 0.5979 3.0045‡ 1.7406

(0.6095) (0.5024) (0.2824) (1.1303)
%Foreign HHs × Undergraduate 0.2241 -0.4024 0.1871 -1.4373

(0.4228) (0.4236) (0.2254) (0.9273)
%Foreign HHs × Graduate -1.2090‡ -1.3881‡ -1.7355‡ -2.066†

(0.4242) (0.4690) (0.2397) (1.0649)
% High-Income HHs × High-Income 1.3133‡ 2.6800‡ -0.0670 1.3933‡

(0.2497) (0.1951) (0.1718) (0.4723)
% Low-Income HHs × Low-Income -0.9021† -0.5987 0.3802† 0.8118

(0.4337) (0.5595) (0.1920) (0.8369)
% Middle-Income HHs × Middle-Income -1.5340† 2.8920‡ 1.6014‡ 0.7312

(0.6313) (0.4131) (0.3068) (0.8124)
% of 1person HHs × 1 person HH 4.1973‡ -1.1671‡ 4.2715‡ 0.9202

(0.1804) (0.3930) (0.1063) (0.5751)
% of 2 persons HHs × 2 persons HH -1.3139 2.1214‡ -0.1747 -1.2891

(0.8264) (0.6843) (0.4722) (1.5166)
% of 3+ persons HHs × 3+ persons HH 0.1882 3.3951‡ 1.2337‡ 2.9105‡

(0.2002) (0.2091) (0.1093) (0.4280)
% Young HHs × Young HH 2.4149‡ -3.7586‡ 4.2568‡ -1.0913

(0.5182) (0.8446) (0.2343) (0.9658)
% Middle-age HHs × Middle-age HH -0.6212‡ 1.7560‡ -0.2820∗ -0.2946

(0.2408) (0.2383) (0.1492) (0.4910)
% Old HHs × Old HH 3.6486‡ 2.3031‡ 1.5554‡ 1.5386∗

(0.3758) (0.3067) (0.2951) (0.9104)

Observations 17,047 16,121 51,104 3,095
ρ2 0.0598 0.2166 0.0553 0.1639

Note: HH= Household Head

‡ Significant at the 1% level, † Significant at the 5% level, ∗ Significant at the 10% level. Standard errors in

parenthesis. 37



Figure 1: Three-level Nested Structure of Residential Location, Workplace, and Job
Type Choice
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Figure 2: Greater Paris Area (1,300 Communes)
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Figure 3: Aggregation of Small Adjacent Communes by Number of Jobs
(950 Pseudo-Communes with More than 100 Jobs)
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Figure 4: Three-level Nested Structure of Residential Location, Workplace, and Job
Type Choice; Segmentation by Tenure and Dwelling Type
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Figure 5: Attractiveness of Communes for Workers by Gender
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Figure 6: Attractiveness of Communes for Workers by Education Level
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Figure 7: Accessibility to Jobs by Gender
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Figure 8: Accessibility to Jobs by Education Level
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