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Abstract

This paper investigates the connection between grade repetition and school outcomes. It uses
the fact that pupils need to meet class-specific standards to pass to the next grade. It measures
the differences in the link between learning achievement and grade repetition between classes with
different requirements to pass to the next grade. This double difference identifies the effect of grade
repetition. The results show a negative effect of the grade repetition decision on the probability to be
enrolled at school the next year, and on the probability to start secondary school.

Despite this mechanism, pupils from schools with tough grade repetition policies are on average
more likely to be enrolled during the follow-up survey and to start secondary school. These schools do
not seem to be located in particularly favorable places for this. This emphasizes that grade repetition
policies might have other consequences than affecting repeating pupils.

∗I am grateful to Sylvie Lambert for detailed comments on many versions of this paper. Luc Behaghel, Christelle
Dumas, Paul Glewwe, Marc Gurgand, Marco Manacorda and Sandrine Mesplé-Somps should also be praised for very
useful comments and help on earlier versions of this paper.
†Université de Cergy-Pontoise, THEMA, F-95000 Cergy-Pontoise, pierre.andre@u-cergy.fr
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1 Introduction

Primary education in many African countries is characterized by particularly high repetition rates.
Some 7.5% of the pupils enrolled in Senegalese primary schools in 2011 were repeating their grades in
2005,1 whereas the African average is 13% (in 2002)2. Besides, dropouts before completion of primary
school are frequent in these countries: some 40% of the Senegales children enrolled in the first grade
of primary school (and 32% of African pupils) do not achieve the last one.1,2 Using a cross-country
regression, Manacorda (2012) remarks that grade repetition is more widespread in countries where
gross enrolment rates in secondary school are low, raising the question of the causality behind this
correlation.

High repetition rates in primary school can decrease national school attainment rates because grade
repetition is very expensive for the state and households alike. Indeed, for a given final grade, a grade
repetition increases the time spent at school. Hence both private and public costs of schooling increase
with a grade repetition, and grade repetition decreases the returns to human capital investments.

Besides, grade repetition can decrease school attainment because it is discouraging for children.
Some psychologists as Jimerson, Carlson, Rotert, Egeland, and Sourie (1997) consider that early grade
repetition has a negative effect on socio-emotional adjustment. In economic terms, grade repetition
may be a negative signal about a child’s ability. If the parents observe their children’s ability noisily,
then grade repetition diminishes parents’ belief in their children’s ability (and/or the children’s beliefs
on their own abilities).

The discouraging effect of grade repetition can be mitigated by its pedagogic effect. The peda-
gogic benefits of grade repetition are nevertheless uncertain. When children repeat grades, they may
consolidate the skills taught at those grades. However, it is unclear whether this offsets their failure
to acquire the skills taught at the next grade. The net effect of grade repetition on the acquisition of
knowledge is therefore ambiguous.

Jacob and Lefgren (2004) control for this potential bias using a discontinuity in school policy in
Chicago. Pupils there take standardized tests at the end of grades 3, 6 and 8. They were promoted if
their test score was higher than a minimum score. Regression-discontinuity analysis revealed a small
and positive effect of grade repetition on academic achievement after one year. Doing the same with a
similar retention policy in Florida, Greene and Winters (2007) find a positive effect of grade repetition
in third grade on reading ability after two years.

Grade repetition policies may also have pedagogic effects on non-repeating pupils. Jacob (2005)
studies the test-based grade repetition policy in Chicago. An accountability policy has simultaneously
been implemented, and made teacher and schools accountable for student achievement. He uses a
diff in diff strategy, and shows that the policy increased learning achievement in classes where a
lot of pupils where likely to repeat ex-ante, and increases learning achievement for at-risk students.
This is consistent with the fact that the grade repetition policy changes the incentives in the class.
Unfortunately, it is impossible in this case to disentangle the effect of incentives for pupils caused by
grade repetition from the effect of the incentives for teachers caused by the accountability policy.

This paper inquires whether frequent early school dropout in Senegal is in part a consequence
of high repetition rates. The question of dropouts induced by grade-repetition is important for at
least two reasons. First, education provides the individuals with basic capabilities: dropping out from
primary school is per se an element of poverty. This is the reason why the Millenium Development
Goals include universal completion of primary school. In addition, under imperfect information, school
dropout decisions are probably inefficient. Two recent controlled experiments in developing countries

1Ministry of Education, Senegal (2005)
2www.poledakar.org
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(Nguyen, 2008 and Jensen, 2007) have shown that further information on the returns to schooling
affect the school enrollment decisions. In the end, both political commitment and economic efficiency
make it necessary to fight against endogenous primary school dropout.

The effect of grade repetition on school attainment in developing countries has been extensively
studied with control-based identification strategies.3 However, conditional on a test-score prior to
the grade repetition decision, teacher’s grade repetition decisions are probably not taken as random.4
Manacorda (2012) uses the Uruguayan grade retention policy in junior high schools to estimate the
effect of grade repetition on dropout. Grade repetition was automatic when a pupil had failed more
than 4 subjects. Using a regression discontinuity design based on the number of failed subjects, he
finds that grade repetition decreases school achievement by 1 grade on average.5

This paper estimates the effect of grade repetition decision on immediate school dropout, and
mid-term academic achievement. It controls for the potential correlation between the children’s un-
observable characteristics and grade repetition with an original instrumental variables strategy. My
instrumental strategy is based on the fact that grade repetition probability is strongly non-linear be-
tween pupils whose learning achievement are above and below the learning achievement to pass to the
next grade. I use a double difference strategy, between learning achievement and between classes with
tough or lenient grade repetition policies, to identify the effect of grade repetition on school dropout.

The results reveal a negative effect of grade repetition on the probability of enrollment at school the
next year. The estimated effect is fairly high: the estimations show that grade repetition increases the
probability of school dropout by approximately 13 percentage points on average. In the mid-term, the
results show that grade repetition decreases the probability to reach secondary school by the follow-up
survey.

This paper’s second result is that schools with tough grade repetition policies are relatively suc-
cessful: pupils from these schools are on average more likely to be enrolled during the follow-up survey
and to start secondary school. These schools are not located in places with particularly favorable
observable characteristics. Therefore, this mitigates the conclusion that grade repetition is harmful
for school outcomes.

Section 2 presents the dataset used to identify the causal effect of grade repetition on school
dropout. Section 3 presents the strategies used here for identifying this effect while brief remarks are
made by way of conclusion.

2 The data

This paper uses two datasets, PASEC6 and EBMS.7 Both contain detailed information about
schooling and are combined here to estimate the effect of grade repetition.

3See, for example, PASEC (2004) or Glick and Sahn (2009) with the same data than this paper or King, Orazem,
and Paterno (2008).

4Glick and Sahn (2009) claim that for a given test score, differences in grade repetition decisions depend on variations
across schools in test score thresholds for promotion. Grade repetition may nevertheless also depend on pupils’ motivation
at school for a given test score. Motivation at school can be correlated with parental preferences for education.

5The number of failed subjects being an integer, one can still discuss the validity of regression discontinuity designs
in this context.

6Programme d’analyse des systèmes éducatifs set up by CONFEMEN Conférence des ministres de l’éducation des
pays ayant le français en partage.

7Education et Bien-être des Ménages au Sénégal. This survey was designed in collaboration by a team from from
LEA-INRA, France and from Cornell University, USA. It was implemented in association with the Centre de Recherche
en Economie Appliquée (Dakar, Senegal). I thank Sylvie Lambert and Christelle Dumas for having made the data
available.
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2.1 The PASEC panel

The PASEC conducted a panel survey among primary school pupils of 98 Senegalese schools
between 1995 and 2000. Twenty second grade students were chosen at random in randomly chosen
second grade classes in each school at the beginning of the 1995-1996 school year. They passed learning
achievement tests at the end of each school year, and were monitored throughout their school careers
(including grade repetitions) until the first of them finished primary school (sixth grade) in 2000. The
tests were marked by the PASEC team. Consequently, test scores could not be influenced by teachers.

Whenever a child took a PASEC test in a given school year, the information includes his cur-
rent grade. Grade repetitions are inferred from this longitudinal information on the school careers.
The pupil questionnaire also included some information about living conditions. In particular, the
household wealth index used in this paper is based from the PASEC information.

2.2 EBMS Survey

The EBMS survey provides additional information about a sample of PASEC pupils in 2003. It
includes some of the pupils from 59 of the schools surveyed between 1995 and 2000. The objective
was to resurvey households in each community (village or urban districts) with children who had
been in the PASEC panel. Of the 1177 pupils attending the 59 schools surveyed by PASEC, 921
are in EBMS data after deletion of questionable matches. Information was collected about the living
conditions and educational levels of the household members. Retrospective data about the school
careers of the children surveyed by PASEC meant dropout could be differentiated from other causes
of attrition. Consequently, school-leaving dates are known for almost every child re-surveyed (if they
had left in 2003). In addition, the EBMS data include the parent’s education of the PASEC pupils
and retrospective information about living conditions includes self-reported shocks on harvests.

2.3 Aggregate dataset

Both datasets provide reliable retrospective information about enrollment. Together they give
enough information to reconstruct most instances of grade repetition. This information is necessary
for evaluating the impact of repetition on drop out. Another advantage of the aggregate dataset is
that it evaluates the individual learning achievement (test scores), which is a crucial determinant of
grade repetition. Definition of all the variables used in this paper can be found in appendix A.

3 Empirical strategy and results

This paper seeks to identify the effect of grade repetition, denoted Rik, on school dropout (enrol-
ment during the next school year is denoted Eik,t+1 for child i of group k8, at date t+ 1), which is the
coefficient γ in the equation (1) below. The other determinants of dropout are the PASEC test score
Sik, and a vector of covariates Xik.9

Eik,t+1 = 1l [βe1Sik +Xikβe2 + γRik + uik > 0] (1)

The main difficulty in identifying γ is to control for the potential endogeneity of grade repetition.
This paper uses an original instrumental variables strategy to control for the potential correlation
between the children’s unobservable characteristics (and the measurement error) and grade repetition.

8A group is composed of all the observations from the same school, the same year and the same grade. This is an
approximation of a class, since in some schools, there are several classes per grade.

9This vector includes grade-year dummies, household wealth parents’ education, and group mean test score when not
included in the model.
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3.1 Identification strategy

The identification strategy is based on the widespread idea that a certain learning achievement is
required to pass to the next grade. This “target achievement” is denoted tk. Grade repetition is a
non-linear function of the difference between own achievement (measured by the test score Sik) and
target achievement. The grade repetition equation writes:

Rik = 1l [βr1Sik − βr2tk + fr(Sik − tk) +Xikβr4 + εik < 0] (2)

fr is a non-parametric function. In practice, it is approximated with dummy variables for intervals
of Sik − tk. Unfortunately, the “target achievement” is not observed, and probably varies between
classes. The “test score of the last passer” is used in this paper as a proxy for tk. “Passers” are those
peers of a given pupil in a given year who are admitted to the next grade. Among the passers, the
pupil with the lowest test score is called the last passer. Her test score is denoted LP−ik:

LP−ik = min{j 6=i,Rjk=0}(Sjk) (3)

This paper uses the position to the “target achievement” as an instrument for grade repetition, to
measure the effect of grade repetition on dropout in model (4):

{
Eik,t+1 = 1l[ βe1Sik +βe2LP−ik +γRik +Xikβe4 + uik > 0]
Rik = 1l[ βr1Sik −βr2LP−ik +fr(Sik − LP−ik) +Xikβr4 + εik < 0] (4)

Identification of the parameters in the Eik,t+1 equation is assured by the simple non-linearity of
the two equations (1)-(2). However, this is likely better handled via an exclusion restriction, i.e. a
variable that ideally influences the Rik equation but not the Eik,t+1 equation. This is the role of
function fr in model (4). This model controls for the test score Sik and the last passer’s score LP−ik
and uses the relative position of individual test score to the last passer’s score fr(Sik − LP−ik) as an
instrument for grade repetition. With a control for Sik, the specification compares pupils with similar
learning achievement, and potentially similar background in terms of unobservable characteristics.
With a control for LP−ik, the specification includes an homogeneous10 effect of “target achievement”
on grade repetition and dropout. Hence the function fr(Sik−LP−ik) is measured with the differences
in the effect of LP−ik on grade repetition between different levels of Sik.

In sum, we measure the double difference between the high-achievement pupils and the low-
achievement pupils and between classes with tough and soft grade retention policies. For high-
achievement pupils, an increase of LP−ik does not change fr(Sik − LP−ik). Hence it increases the
grade repetition probability only through βr2LP−ik. For low-achievement pupils, an increase of LP−ik
can change fr(Sik − LP−ik), and increase much more grade repetition probability. In other words,
the paper uses the fact that low-achievement pupils are much more vulnerable to “tough” teachers
(teachers with high target achievement).

In the equation of interest, the effect of grade repetition on dropout in model (4) is therefore identi-
fied with the same variations of grade repetition probability. The paper is based on the comparison of
the correlation between last passer’s score and enrollment for low-achievement and high-achievement
pupils. This double difference identifies the effect of grade repetition on dropout in model (4).

3.2 Identification questions

School failure or grade repetition? This paper uses a double difference strategy to measure
the effect of grade repetition on dropout. The specifications compare the correlation between test

10I mean linear in the latent variable.
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scores and dropout between classes with different requirements to pass the grade. Our results show
that students whose learning achievement lag behind teacher’s standards tend to repeat more often,
and drop out more often. Model (4) assumes this is entirely due to the effect of grade repetition on
dropout.

In this paper, the approximation for target achievement allows to disentangle:

• The link between test score and dropout

• The link between the relative position of individual test score to class mean test score and
dropout

• The link between the relative position of individual test score to the last passer’s score and
dropout

It is possible to make clear only the latter matters in terms of dropout. (This is discussed in the
last paragraph of section C.2) This can probably rule out most endogeneity issues.

However, families might directly observe the relative position of their children’s test score to the
last passer’s score. In this case, this position probably affects dropout. The specifications would
therefore identify the effect of the inability to meet teacher’s requirements on dropout, rather than the
effect of grade repetition on dropout. This paper neglects the subtle distinction between the inability
to meet teacher’s requirement and grade repetition.

Peer effects This paper uses a characteristic of the peers, the last passer’s score LP−ik, to measure
the target achievement tk. The extensive literature on peer effects in education economics emphasizes
the potential correlation between peers’ unobservable characteristics. In addition there may be a
“mirror effect”, where the outcomes of child i’s and i’s peer’s interact in both directions. In this
paper, interactions between peers can probably affect our estimations mostly through LP−ik. Child
i’s unobservable characteristics may be correlated with LP−ik due the potential correlation between
peers’ unobservable characteristics or the “mirror effect”. In that case, LP−ik can be correlated with
dropout because of peer effects.

Child i’s unobservable characteristics can theoretically affect LP−ik through 2 mechanisms: through
the identity of the last passer, and through the test score of the peers. The second mechanism is prob-
ably controlled for. Indeed, all the specifications presented in this paper control for own test score
and group mean test score. Hence there is a control for the fact that child i’s characteristics help or
prevent the last passer to learn and improve her test score. Concerning the first mechanism, grade
repetition decisions are probably partly based on a relative evaluation of pupils in Senegal (See the
discussion of Table C.1 in the end of this section). When i has favorable unobservable characteristics,
i’s peers may therefore be more likely to repeat, and LP−ik tends to increase.

In this paper, the main coefficient of interest is not the coefficient on LP−ik, but a double difference.
The specifications compare between classes with different LP−ik the correlation between test scores
and dropout. When i has favorable unobservable characteristics, i will rarely dropout even in adverse
situations (the dropout probability is ≈ 2% in the sample). Hence the link between test scores and
dropout is probably tiny, as dropout is unlikely in any situation. When i has favorable unobservable
characteristics, LP−ik is probably higher (see previous paragraph). Hence peer effects can decrease
the correlation between test scores and dropout when LP−ik is high.

In the data, when LP−ik is high, many pupils are at risk of grade repetition. In these classes,
more pupils repeat, and our estimations predict that repeaters are likely to dropout. Hence the link
between test scores and dropout is greater. This may be slightly attenuated by peer effects.

Can the coefficients on LP−ik be interpreted as causal? This paper measures the effect of
children’s unability to meet teacher’s requirements in classes. The most challenging way to fight
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against this is to help children to meet those requirements. It is obviously desirable, but hard to
reach. The policy recommendation that could be easily addressed is to change teacher’s requirements,
or in other words to decrease grade repetition rates for a given learning achievement.

Grade repetition policy might nevertheless have direct effects. Firstly, the threat of grade failure
may be an incentive to learn for low-achievement pupils. In addition, a grade repetition may be
less discouraging when grade repetition rates are low; and passing the grade may be a signal for high
learning ability only when grade repetition rates are high. Besides, a consistent grade repetition policy
may decrease variability of learning achievements in the class.

It is therefore desirable to identify the direct effect of grade repetition practices, measured by
the direct effect of LP−ik in model (4). In this paper, it is not possible to claim the variations
in grade repetition practices (measured by the coefficient on LP−ik) are due to a well identified and
exogenous source. However, conditionally on test scores, grade repetition practices seems uncorrelated
with individual and location characteristics. In appendix, Table C.1 shows that the proxy for grade
repetition practices strongly depends on group mean test score. The coefficient in the linear regression
is 1, as if the grade repetition rates and average learning achievement were independent. The proxy
for grade repetition practices is not correlated with either observable community characteristics or
observable household characteristics. Hence, conditionally on group mean test score, grade repetition
practices does not seem to be correlated with the context.

However, all the traits of teacher’s pedagogy are likely to be correlated with each other, and to
cause dropout. Conditional on test scores, grade repetition practices may be one of these traits, and
hence correlated with other determinants of dropouts. To illustrate this, assume dropout rates are
lower with tough teachers. It is hard to say whether this is due to their grade repetition practices or to
some other trait of tough teachers. In the general case, it is hard to give the sign of the potential bias.
So it is not possible to prove the coefficients on the proxy grade repetition practices in the estimations
are causal. However, the proxy for grade repetition practices seems uncorrelated with the context:
the estimations fail to reject the exogeneity of grade repetition policy.

3.3 Selection issues

Selection on test participation Although children were randomly selected among the second
grade pupils of the schools in 1995, attrition and grade repetition meant that the children in the same
grade-year were increasingly selected as time elapsed.

There were two causes for attrition in this panel. First, dropouts did not take the PASEC tests.
Second, the PASEC team organized the tests and collected the data in each of the schools on a given
day in each school year. Children missing school that day or no longer attending the surveyed school
were not tested.

Table 1 shows the number of children attending each test in the sample and reveals children often
missed a test even though still enrolled. All 921 children were enrolled in school year 1995-1996
although only 817 attended the test. Our regressions are based on test scores, so when a child does
not take a test, this year of observation is excluded from the panel. This can pose a selection bias.
We do not correct this potential bias in the paper, but its sign is probably predictable.

The paper measures the effect of the difference between pupil’s achievement and grade repetition
standards on dropout. Dropouts are potentially less likely to take the test: pupils expecting to drop
out at the end of the school year may have irregular school attendance. Hence some dropouts due to
grade repetition may be selected from the sample because they have anticipated their dropout. The
magnitude of the effect of grade repetition on dropout may therefore be underestimated.

Selection on grade repetition observation Not all grade repetition decisions can be observed in
the EBMS-PASEC data. The information for grade repetition is mostly inferred from this longitudinal
information on the school careers. The Figure 1 summarizes the timing of the PASEC panel survey.
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Table 1: Number of children attending the tests during the panel, by grade and school year
214 Sixth grade

(CM2)

357 236 Fifth grade
(CM1)

412 204 86 Fourth grade
(CE2)

594 154 53 15 Third grade
(CE1)

789 817 102 no test Second grade
(CP)

789 817 696 566 614 551 Total atten-
dance

Initial tests
(1995)

school year
1995 - 1996

school year
1996 - 1997

school year
1997 - 1998

school year
1998 - 1999

school year
1999 - 2000

Note: This table reports the attendance among the 921 children of PASEC sample resurveyed by EBMS

Figure 1: Sequence of the main events during the PASEC panel
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It provides us with an exclusion restriction for selection: rainfall shocks. Indeed, the rainfall season
happens to be after the end of the school year. Hence rainfalls cannot affect grade repetition decisions.

Information on grade repetition decision at the end of school year t is known if a child took the
tests in school year t and school year t+1.11 Grade repetition decisions are not known for the children
who dropped out immediately after this decision: if a child dropped out before the tests of school
year t+ 1, there is no way of knowing what the repetition decision was at the end of school year t, as
grade repetition is inferred from the school career. The structure of the data is therefore summarized
in Table 2.

This selection problem makes questionable the identification of the effect of grade repetition deci-

11The details and other cases are explained in appendix A.

Table 2: Observation of grade repetition decision
date t date t+ 1

Enrolled

Enrolled } Grade repetition decision
is observed

Enrolled } Grade repetition decision
is not observed: did not
take the tests of year t+1

Drops out
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sions on school dropout: if grade repetition causes dropout, then it causes its own selection. However,
this selection bias can probably be corrected. This paper claims it is possible to control for the selec-
tion and hence to identify the determinants of grade repetition and the effect of grade repetition on
school dropout in model (5):


Eik,t+1 = 1l[ βe1Sik +βe2LP−ik +βe3Zs +γRik +Xikβe4 + uik > 0]
Rik = 1l[ βr1Sik −βr2LP−ik +fr(Sik − LP−ik) +Xikβr4 + εik < 0]

selection = 1l[ βs1Sik +βs2LP−ik +βs3Zs +γsRik +Xikβs4 + vik > 0]

(5)

Zs is a dummy taking value 1 when the household head reported negative shocks on harvests during
the calendar year. It is an exclusion restriction to ensure the identification of the selected equation
predicting grade repetition. These shocks are not expected to be a determinant of grade repetition
because the rainfall season in Senegal is from July to September, during the school vacations (see
Figure 1). Accordingly, grade repetition is known when the rainfall season begins. Theoretically,
then, it can be ruled out that teachers might use this information for grade repetitions.

Appendix B.1 proves that in model (5):

• If (εik, uik, vik) is independent of (Sik, ZR, Zs, Xik)

• If λ2 6= 0 and βs3 6= 0

• Under certain technical assumptions12

all the coefficients of model (5) could be identified without any parametric assumption about the
distribution of (εik, uik, vik). This is based on a simple intuition: there is an instrument for grade
repetition and an instrument for selection. In this case the system of all the probability function
derivatives has a single solution. γ and γs are not identified by this system, since Rik is binary.
However, a simple adaptation of Vytlacil and Yildiz (2007) show the coefficient for the endogenous
variable is identified.

Appendix B.2 even shows that under much simplier hypotheses and without Zs, the sign of the
effect of grade repetition on dropout is still identified. The intuition for that is rather simple. Indeed,
the derivative of the probability of grade repetition towards fr(Sik−LP−ik) gives the sign of α regard-
less of selection. Therefore the effect of grade repetition on enrollment is positive if the derivatives of
the probability of grade repetition and of the probability of enrollment towards fr(Sik − LP−ik) have
the same sign, and negative if they have opposite signs.

This paper does not intend to identify model (5) semiparametrically. All the models in this
paper are estimated using a standard maximum likelihood method. However, this result shows that
there is enough information to identify the effect grade repetition on dropout in the EBMS-PASEC
data without parametric assumption. Hence appendix B.1 suggests the results rely essentially on the
information from the data, and not so much on the distributional assumptions of the models.

3.4 Main results

Table 3 gives the estimation of model (5). The model is estimated with a maximum likelihood
method, as a “trivariate probit” specification. The distribution of the error terms follow a trivariate
normal distribution, simulated with a GHK simulator. The three columns of Table 3 correspond to
the model’s three equations. The data are pooled for the various grades and years. Each specification
includes grade-year dummies in each equation.

12Hypotheses about the support of the distribution of (εik, uik, vik) and of the distribution of the observables.
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Table 3: Joint estimation of the determinants of grade repetition, selection and school dropouts
corresponding to the model (5)

repetition enrolledt+1 selection
(1) (2) (3)

Test score -.223 -.023 -.238
(.223) (.149) (.123)∗

LP−ik .074 .379 .305
(.207) (.137)∗∗∗ (.095)∗∗∗

Sik − LP−ik < −1 .695
(.407)∗

−1 < Sik − LP−ik < −0.75 1.131
(.347)∗∗∗

−0.75 < Sik − LP−ik < −0.5 .631
(.262)∗∗

−0.5 < Sik − LP−ik < −0.25 .485
(.193)∗∗

−0.25 < Sik − LP−ik < 0 .269
(.155)∗

0 < Sik − LP−ik < 0.25 Ref.

0.25 < Sik − LP−ik < 0.5 -.379
(.159)∗∗

0.5 < Sik − LP−ik < 0.75 -.451
(.192)∗∗

0.75 < Sik − LP−ik < 1 -.401
(.226)∗

1 < Sik − LP−ik < 1.5 -.492
(.274)∗

1.5 < Sik − LP−ik -.815
(.451)∗

Negative shock on harvests .150 .569
(.254) (.207)∗∗∗

Grade repetition -2.259 -2.740
(.337)∗∗∗ (.463)∗∗∗

Average marginal effect of grade repetition -.138
(.051)∗∗∗

Household wealth and Parents’ education, Pre-
vious year’s test score, Groupa mean test score Yes Yes Yes

Grade*year dummies Yes Yes Yes
Obs. 1818 1818 1818
log likelihood -1258.516 -1258.516 -1258.516
χ2 exclusion restrictions 30.290 7.575
corresponding p value .0008 .006
The model is estimated with a maximum likelihood method, as a “trivariate probit” specification. The distribu-
tion of the error terms follow a trivariate normal distribution, simulated with a GHK simulator (25 iterations).
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and
10% level. The standard deviations of the estimators are corrected for the correlation of the residuals between
different observations of the same child.
a: A group is composed of all the observations from the same school, the same year and the same grade. This
is an approximation of a class, since in some schools, there are several classes per grade.
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Determinants of grade repetition In the grade repetition equation, the effect of test score on
enrollment is not significant. This does not mean that good pupils have the same probability to
repeat grades than the others. This means that the effect of learning achievement on grade repetition
is entirely captured by the other coefficients in the regression. In other words, grade repetition
probability is not a function of learning achievement per se, but a function of the difference between
learning achievement and teacher’s standards. Similarly, last passer’s test score does not seem to affect
grade repetition likelihood, which means that its effect is captured by the difference between learning
achievement and last passer’s score.

The difference between own learning achievement and last passer’s score is strongly correlated with
grade repetition. The corresponding variables are strongly significant, the χ2 test for the significance
is about 30. The reference is pupils with a test score higher than the last passer’s score by 0 to 0.25
points. Pupils with a test score lagging behind the last passer’s score by more than 0.5 point have
a higher probability of grade repetition, by 0.5 to 1 probit point. Pupils with a test score higher
than the last passer’s score by more than 0.25 point have a lower probability to repeat the grade
by approximately 0.5 probit point. The magnitude of the effect is substantial: on average, changing
Sik − LP−ik can change the grade repetition risk from 70% to 10%.

The effect of grade repetition on school dropout Table 3 considers that the only reason why
lagging behind teacher’s standard affects dropout is the effect of grade repetition on dropout. Using
this identification restriction, Table 3 finds a negative effect of grade repetition on dropout. The
average marginal effect is -14%, which is impressive given that the average dropout rate is 2% in our
sample. The specification simply predicts that all the dropouts have failed to pass their grade. Indeed,
in the fitted model, the sample average of the probability of dropout without grade repetition is 0.15%
and the sample average of the probability of dropout with grade repetition is 14%.

This result means that all dropouts in the sample dropped out because of grade repetition. This
is not completely unlikely. First, all the dropouts observed here took place during primary school,
and not between primary school and secondary school. School dropouts during school cycles are the
most likely to be due to grade repetition. In addition, during the follow-up EMBM survey in 2003,
household members told the reason of their dropout. Most of the dropouts in our sample13 told why
they dropped out. According to them, 60% dropped out because of school failure, and 27% for “other
reasons”. Only 13% of them gave a precise answer uncompatible with grade repetition. It is therefore
credible that dropout within a school cycle is massively associated with grade repetition.

Appendix B.1 suggests the results presented in Table 3 rely on the information from the data,
and not so much on the distributional assumptions of the models. So as to make it even clearer, it is
possible to identify the reduced-form results corresponding to Table 3. This is done in appendix C.2,
Table C.2. This appendix shows there is a link between school dropout and the position relative to
the last passer in a reduced-form estimation. This links mirrors the link between the position relative
to the last passer and grade repetition (see Figure C.1).

Potential direct effect of grade repetition practices In the enrollment equation, LP−ik, the
proxy for grade repetition practices, is positively associated with the probability of being enrolled at
school the next year. It is necessary to be cautious with a causal interpretation of this coefficient.
However, should this interpretation be valid, this would dramatically change the consequences of a
limitation of grade repetition.

Simulations illustrated in Figure 2 illustrate this (The full results are in Table D.1). The thick line
shows the dropout probability for the full sample. The thin lines split the sample in 3. The “good
pupils” (0.25 < Sik − LP−ik) probably pass. The “leaning” pupils might pass if the teacher is more
lenient (−1 < Sik −LP−ik < 0.25). The “low-achievers” probably repeat anyway (Sik −LP−ik < −1).

13Those who lived in 2003 in the same household than during the PASEC panel starting in 1995.
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Figure 2: Simulations: effect of a decrease of last passer’s score on dropout probability

Notes: Simulations based on the estimates of Table 3. Figures in Table D.1.
LP stands for last passer’s score. The unit for test scores is the standard deviation of distribution of the test
for the year-grade.
“low-achievers”: Sik − LP−ik < −1
“at risk”: −1 < Sik − LP−ik < 0.25
“good pupils”: 0.25 < Sik − LP−ik

No “direct effect of grade repetition policy”: The simulation assesses the consequences of decreasing LP−ik

on grade repetition, and measures the indirect effect on enrollment due to “the effect of grade repetition on
enrollment”
With “direct effect of grade repetition policy”: The simulations assess the consequences of decreasing LP−ik on
grade repetition. It measures the sum of the direct effect of LP−ik measured in the enrollment equation and of
the indirect effect on enrollment due to “the effect of grade repetition on enrollment”.
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With the estimates of Table 3, Figure 2 simulates the consequences of a decrease in LP−ik, the
proxy for grade repetition practices, by 0.25, 0.5, 0.75 and 1 standard deviation of the test scores.14

In the simulations, this represents a fairly substantial decrease of the number of failing pupils, from
26% to 15%.

The dotted lines in Figure 2 show the consequences of lenient grade repetition practices due to
the effect of grade repetition on dropout. It means we model the consequences of a decrease of LP−ik
(the proxy for grade repetition practices) on grade repetition, and assume the only consequences
on dropout are due to the subsequent decrease of grade repetition rates.14 The dropout probability
decreases sharply, from 3.2% to 1.9%. This is especially strong for the “leaning” pupils, whose dropout
probability decreases from 5.7% to 2.6%.

The solid lines in Figure 2 show the consequences of a decrease of LP−ik (the proxy for grade
repetition practices) if we assume the direct effect of grade repetition practices are measured in Table
3.14 It shows a totally different picture: dropout rates do not decrease with lenient grade repetition
practices. Indeed, the direct effect of grade repetition practices measured in Table 3 completely offset
by the gains due to fewer grade repetitions. For example, among the “low-achievers”, decreasing
lenient grade repetition practices does not decrease much grade repetition risk. On the contrary,
it increases dropout risk conditional on grade repetition. The dropout risk for the “low-achievers”
increases from 7.1% to 10.7%.

Determinants in the selection equation The estimation of selection in model (5) is intended
to control for selection bias in the observation of Rik. The determinants of selection may be the
determinants of moving or missing school the day of the tests in addition to the determinants of
dropout. Accordingly there is no particular interpretation of these coefficients.

Nevertheless, it is necessary to focus on the effect of the negative shocks on harvests, since this
variable is the exclusion restriction in the equation for Rik. These shocks positively affect selection:
when there is a negative shock, the child is more likely to take the test the next year. Negative shocks
on harvests may decrease opportunity costs, so children may be more likely to take the tests when
there is a shock. The F-test for the significance of this instrument is 7.2.

Non-linearities in the coefficients of other variables In Table 3, the effect of the difference
(between own test score and last passer’s score) is non-linear, and we assume that the effect of all the
other explanatory is linear (in the latent variable). Hence, our measure of the effect of the difference
may catch some other non-linearities of the model. It is nevertheless possible to check this is not
the case. In Table C.3 in appendix, the effect of some of the other explanatory variables is treated
as non-linear in a reduced-form estimation. The results are very similar to the main reduced-form
estimation in Table C.2 (see Figure C.2). In addition, the non-linearities added in this specification
are not statistically significant.

4 Mid-term consequences of grade repetition

Section 3 identifies the short-term effect of grade repetition on dropout. This effect is of limited
interest if not persistent. For example, grade repetition could push out of school only pupils who
intended to stay in school for a single additional school year. The retrospective information on educa-
tion in the EBMS data can give an insight on this. Precisely, grade repetitions studied in this paper
take place between 1996 and 2000, and the EBMS can give information on the retrospective school
trajectory as of 2003. This section assesses the mid-term consequences of grade repetition. Table 4
uses the same specifications as Table 3, changing the dependent variable.

14Details are given in appendix D.1.
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Sik,t+δ = 1l[ βe1Sik +βe2LP−ik +βe3Zs +γRik +Xikβe4 + uik > 0]

Rik = 1l[ βr1Sik −βr2LP−ik +fr(Sik − LP−ik) +Xikβr4 + εik < 0]
selection = 1l[ βs1Sik +βs2LP−ik +βs3Zs +γsRik +Xikβs4 + vik > 0]

(6)

In equation (6), Sik,t+δ is an outcome related to school enrollment of child ik at date t+ δ, δ years
after the grade repetition decision. Table 4 estimates this model with 8 variables. enrolledt+1 is the
same variable as in Table 3, and Table 4, column 1 recalls the main quantitative results of Table 3.

Table 4 measures the effect of grade repetition on enrollment 2 years, 3 years and 4 years after the
grade repetition decision and finds no effect. It finds no effect of grade repetition on the probability
to be enrolled at school during the follow-up survey in 2003.

A grade repetition increases the age for grade. Hence, if grade repetition does not affect dropout
date in the mid-term, it may still affect the last grade attended. Table 4 finds that grade repetition
decreases the likelihood to reach grade 7 (the first grade of secondary school) and grade 8 until 2003
by 19 and 12 percentage points. However, these estimates may be polluted by completions of grade 7
and 8 posterior to 2003.

The specifications in Table 4 also measure whether our proxy for grade repetition practices (LP−ik)
is correlated with long-term achievement (conditionally on grade repetition). Indeed, it is positively
correlated with the likelihood to be enrolled in 2003, and with the likelihood to reach grade 5, 6 and 7.
Again, there is no strict evidence that this is a causal effect. Should it be a causal effect, the estimated
negative effect of lenient grade repetition practices would override the estimated positive effects.

The simulations in Table 4 estimate the consequences of lenient grade repetition policies, with a
decrease of LP−ik by 0.25 pt. This represents a decrease in the share of failing students from 26% to
22% (see Table D.1).

The first row of simulations shows the mid-term benefits of lenient grade repetition practices due
to the effect of grade repetition. They find that it would increase the probability to be enrolled the
next year by 0.5 percentage points, and the probability to reach the first and second grade of secondary
school (grade 7 and 8) by 0.7 and 0.4 percentage points.

The second row of simulations in Table 4 shows the consequences of lenient grade repetition
practices with a direct effect of grade repetition practices. It assumes this direct effect is measured by
the coefficients of LP−ik in the first row of Table 4. The results are in the opposite direction: lenient
grade repetition practices would decrease the share of pupils enrolled in 2003 by 1.5 percentage points,
and decrease the share of pupils reaching grades 7 and 8 by 1.4 and 1.1 percentage points.

Table C.4 in appendix checks the reduced-form counterpart of these simulations. In other words,
it checks the correlation between mid-term outcomes and grade repetition practices (with probit
specifications). It finds the same results: conditionally on test scores, tough grade repetition practices
(high LP−ik) are correlated with better long-term outcomes.

5 Conclusion

This paper assesses whether grade repetition can deteriorate school outcomes. Its instrumental
strategy measures the differences in the link between learning achievement and grade repetition be-
tween classes with different requirements to pass to the next grade. This double difference identifies
the effect of grade repetition, and shows grade repetition negatively affects school outcomes. Indeed,
the probability to be enrolled at school the next year and the probability to start secondary school by
the follow-up survey are negatively affected by grade repetition.

However, grade repetition policies can have other consequences than affecting repeating pupils, and
it is hard (and probably not achieved in this paper) to find a convincing statistical identification of these
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effects. Schools with tough grade repetition policies emphasize similar or better mid-term outcomes
than other schools. I did not find any evidence that their environment is particularly favorable to
these outcomes. Hence claims that lenient grade repetition policies improve school outcomes are based
on incomplete evidences.
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A Variables

A.1 Dependant variables

Enrolled is the fact that the child is still enrolled at school in a given year. The information is
inferred from the EBMS dataset so as to distinguish attrition in the panel from school dropout.

Last grade is the last grade attended. Grade 6 is the last grade of primary school. The information
is inferred from the EBMS dataset.

Repetition is a dummy taking value 1 if the child repeated the grade, and 0 otherwise. Information
is from the PASEC panel. In each case, I tried to infer each year whether the child passed at the end
of the school year. Table A.2 sums up the various possible cases in the PASEC data and specifies
whether anything can be learned about the child’s progression. Case 1 is the basic case: the child took
all the tests. He repeated after school year 1995 - 1996, and has passed all the subsequent grades. In
case 2, the child did not take the tests in 1996 - 1997. The reason why he did not take the test is
not reported. Consequently, whether he repeated the second or the third grade is unknown. In case
3, the child dropped out in 1996. Consequently whether he was admitted to third grade after school
year 1995 - 1996 is unknown. In case 4, the child is not in the sample after 1997 - 1998, so whether
he repeated during the subsequent grades remains unknown. In cases 5 and 6, grade repetitions are
not ambiguous: we know the child repeated twice (case 6) or passed twice (case 5) when he was not
observed.

A.2 Test scores

Test scores are a proxy for learning achievement at the end of the current school year. In fact the
PASEC panel contains school tests at the end of each academic year until the end of the survey.15 The
tests were marked by the PASEC team. Consequently, test scores could not be influenced by teachers.
Table 1 reports the number of children taking each test.

The tests were designed to ensure easy comparisons within grade-years. They nevertheless differed
between different grades and years of the panel. The test scores have a mean of 0 and a standard
deviation of 1 within each grade-year.

Group mean test score A group is composed of all the observations from the same school, the
same year and the same grade. This is an approximation of a class, since in some schools, there are
several classes per grade.

Last passer’s test score is a proxy for the “target achievement”, i.e. the learning achievement is
required to pass to the next grade. “Passers” are those peers of a given pupil in a given year who are
admitted to the next grade. Among the passers, the pupil with the lowest test score is called the last
passer. Her test score is denoted LP−ik:

LP−ik = min{j 6=i,Rjk=0}(Sjk)

15The second grade classes were not surveyed from 1997 - 1998, so pupils still in this grade at that time were not
surveyed until they passed the third grade.
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Table A.1: Descriptive statistics
N mean standard deviation min. max.

Enrolled next year 1823 .979 0 1
enrolledt+2 1454 .959 0 1
enrolledt+3 1454 .920 0 1
enrolledt+4 1454 .882 0 1
Still enrolled (2003) 1794 .673 0 1
Last Grade > 5 1782 .749 0 1
Last Grade > 6 1782 .437 0 1
Last Grade > 7 1782 .291 0 1
Grade repetition 1823 .148 0 1
Selection (on grade repetition observation) 1823 .867 0 1
Negative shocks on harvests 1823 .087 .308 0 2
Test score 1823 -.055 .953 -3.20 3.34
LP−ik 1818 -.770 .849 -3.20 2.63
Previous year’s test score 1823 .00481 1.01 -2.34 3.81
Groupa mean test score 1823 -.0709 .536 -1.58 1.91
Household wealth 1823 -.591 2.07 -3.12 4.38
Parent’s education 1823 2.05 1.47 1 8
Head is not Muslim (Christian or Animist) 1820 .0335 0 1
Ethnic group of the head: Wolof 1813 .398 0 1
Ethnic group of the head: Pulaar-Halpulaar 1813 .187 0 1
Ethnic group of the head: Serere 1813 .250 0 1
Ethnic group of the head: Dioola 1813 .0281 0 1
Ethnic group of the head: Mandingue-Sose 1813 .102 0 1
Ethnic group of the head: Others 1813 .0342 0 1
Community: mean asset index 1823 .0884 1.68 -2.29 3.33
Community: mean education index 1823 2.20 .730 1.19 4
log(Village or city population) 1714 10.0 2.81 5.60 14.6
Community main activity: trade (ref:agri.) 1823 .404 0 1
Community has electricity 1823 .813 0 1
Rural 1823 .535 0 1
Distance to health center 1823 .0730 .260 0 1
Distance to hospital 1823 1.63 1.26 0 3

Notes: Standard deviations are not reported for binary variables.
a: A group is composed of all the observations from the same school, the same year and the same grade. This is an
approximation of a class, since in some schools, there are several classes per grade.
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Table A.2: Grade attended during the PASEC panel for six imaginary cases
case 1 case 2 case 3 case 4 case 5 case 6

2 2 2 2 2 2 school year
1995 - 1996

2 2,3 drop. 3 3 3 school year
1996 - 1997

3 3 3,4 4 3 school year
1997 - 1998

4 4 3,4,5 5 3 school year
1998 - 1999

5 5 3,4,5,6 6 4 school year
1999 - 2000

(When the child did not take the tests, the possible grades are in grey)

Previous year’s test scores are a proxy for learning achievement prior to the current school year.
During the panel, the children took tests at the end of each school year. In each grade-year of the
panel, most of the children had been in the preceding grade the year before. The others had been
in the same grade the year before, and were currently repeating their grade. The tests for currently
repeating children and others had been different. Yet, some items had been common to both, and
those items are used to compare the knowledge of the pupils prior to the current school year. Again,
this variable has a mean of 0 and a standard deviation of 1 within each grade-year. This comparison
relies exclusively on skills acquired in the preceding grade, since the tests never included items about
the skills supposed to be acquired in the following grades.

A.3 Other explanatory variables in main regression

Household wealth is a composite indicator for possession of durable goods, obtained by a principal
component analysis (see Filmer and Pritchett, 2001). It is based on children’s declarations in 1995,
and so avoids reverse causality due to the children’s education.

Negative shocks on harvests is a dummy taking value 1 if the head of the household reports a
negative shock on harvests during the current calendar year or the next. These shocks are taken into
account if the child or his parents were still in the household visited by EBMS in 2003. Otherwise this
dummy equals 0, because the child was not really affected by these shocks. (140 cases out of 1823)

Parents’ education is the mean of both parents’ education. The education of an individual is 1 if
the individual never went to school, 2 if the person began but did not finish primary school, 3 if he
finished primary school but did not begin secondary school, etc. It takes the highest value, 8, if the
individual attended to higher education. If information about the father’s education or the mother’s
education was missing, it is replaced by the mean education of the other adults (aged more than 25
in 1995) in the household.

A.4 Other variables

Community has electricity is from the community questionnaire of the EBMS survey

Community main activity is from the community questionnaire of the EBMS survey

Distance to health center is from the community questionnaire of the EBMS survey
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Distance to hospital is from the community questionnaire of the EBMS survey

Religion, ethnic group of the head are taken from the EBMS survey

Village or city population is taken from the EBMS survey for rural area, and from the national
census for cities.

B Proofs for the semiparametric identification of model (5)

B.1 model (5)

This section proves that model (5) can be semiparametrically identified.
The model (5) is : 

r = 1l(Xβr + γrZ1 +εr > 0)
s = 1l(Xβs + γsZ2 +αsr +εs > 0)
e = 1l(Xβe + γeZ2 +αer +εe > 0)

(B.1)

(For simplicity r is repetition, s is selection, and e is enrolledt+1. For the same reason, the
equations have been written in a simple form Xβ + γZ + ε.)

Let us recall r is observed if and only if s = 1. f(εr, εs, εe) is the distribution function of (εr, εs, εe).
Manski (1988) shows that in the one-dimensional binary model case, the parameters are identified by
the derivatives of the distribution function. This idea is used to show that all the parameters of model
(5) are identified without any parametric assumption on f(εr, εs, εe).

Θ is the support of (X,Z1, Z2). Let us make the following assumptions:

1. The distribution of (εr, εs, εe) is independent of (X,Z1, Z2).

2. γr 6= 0 and γs 6= 0

3. ∀j ∈ {r, s, e}, βj1 = 1

4. ∃(X0, Z10, Z20) ∈ Θ verifying :

(a) In the neighborhood of (X0, Z10, Z20), (X,Z1, Z2) ∈ Θ

(b)
(

dIP(r=1,s=1)
dZ1

(X0, Z10, Z20) dIP(r=1,s=1)
dZ2

(X0, Z10, Z20)
dIP(r=0,s=1)

dZ1
(X0, Z10, Z20) dIP(r=0,s=1)

dZ2
(X0, Z10, Z20)

)
has full rank

(c) ∀(X,Z1, Z2) in the neighborhood of (X0, Z10, Z20), 0 < f(−Xβr−γrZ1,−Xβs−γsZ2,−Xβe−
γeZ2) <∞

5. ∃(a = (Xa, Z1a, Z2a), b = (Xb, Z1b, Z2b)) ∈ Θ2

(a)


Xaβr + γrZ1a = Xbβr + γrZ1b
Xaβs + γsZ2a + αs = Xbβs + γsZ2b
Xaβe + γeZ2a + αe = Xbβe + γeZ2b

(b) In the neighborhood of a and b, (X,Z1, Z2) ∈ Θ and 0 < f(−Xβr − γrZ1,−Xβs −
γsZ2,−Xβe − γeZ2) <∞
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Assumption 1 is necessary in Manski (1988) and is still necessary here. It ensures that the
derivatives of the probability functions with respect to X, Z1 or Z2 are not caused by variations
of f(εr, εs, εe).

Assumption 2 ensures the instruments have a real causal effect on the endogenous variables.
In model (5), only the signs of the latent variables (Xβr + γrZ1 + εr, Xβs + γsZ2 + αsr + εs and

Xβe + γeZ2 +αer+ εe) are observed. Accordingly, the parameters are identified up to the scale of the
parameter vector. Assumption 3 easily fixes that scale.

Assumption 4a ensures it is possible to compute the derivatives of the probability functions with
the data since the points in the neighborhood of (X0, Z0) are in the support of (X,Z). It is certainly
possible to extend the identification result when X contains some binary variables.

Assumption 4b ensures some of the derivatives of the probability functions are not all zero and
that they are not collinear, so that the systems are fully identified in (X0, Z10, Z20).

Assumption 4c ensures the other derivatives of the probability functions with respect to the co-
variates are not null in (X0, Z10, Z20).

Assumption 5 ensures the support Θ is large enough to contain a pair of points with similar
characteristics for s and e when the former has r = 1 and the latter has r = 0.

This proof has three steps: first, it is shown that the coefficients β and γ of the first two equations
of model (5) are identified, second, it is shown that the coefficients β and γ of the last equation are
identified, and finally, it is shown that the α are identified.

• Identification of the first two equations of the model
Let us compute the derivatives of IP(r = 1, s = 1|X,Z1, Z2). This probability and its derivatives
can be estimated with the data in (X0, Z10, Z20) if assumption 4a is true:

P (11) = IP(r = 1, s = 1|X,Z1, Z2)

=
∫ ∞
−Xβr−γrZ1

∫ ∞
−Xβs−γsZ2−αs

∫
IR
f(εr, εs, εe)dεrdεsdεe

= F (11)(−Xβr − γrZ1,−Xβs − γsZ2 − αs)

We note F
′(11)
1 and F

′(11)
2 the derivatives of F (11) with respect to its two arguments. The

derivatives are:

dP (11)

dX1
= F

′(11)
1 + F

′(11)
2 (B.2)

dP (11)

dXi
= βriF

′(11)
1 + βsiF

′(11)
2 (∀i ∈ {1..K}) (B.3)

dP (11)

dZ1
= γrF

′(11)
1 (B.4)

dP (11)

dZ2
= γsF

′(11)
2 (B.5)

This is clearly not sufficient to identify β and γ. In fact, these four equations contain six unknown
parameters, since F ′(11)

1 and F ′(11)
2 are unknown. So the derivatives of IP(r = 0, o = 1|X,Z1, Z2)

are necessary to identify γ and β.
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P (01) = IP(r = 0, s = 1|X,Z1, Z2)

=
∫ Xβr−γrZ1

−∞

∫ ∞
−Xβs−γsZ2

∫
IR
f(εr, εs, εe)dεrdεsdεe

= F (01)(−Xβr − γrZ1,−Xβs − γsZ2)

We note F ′(01)
1 and F

′(01)
2 the derivatives of F (01) towards its two arguments.

dP (01)

dX1
= F

′(01)
1 + F

′(01)
2 (B.6)

dP (01)

dXi
= βriF

′(01)
1 + βsiF

′(01)
2 (B.7)

dP (01)

dZ1
= γrF

′(01)
1 (B.8)

dP (01)

dZ2
= γsF

′(01)
2 (B.9)

From equation (B.2) rearranged with (B.4) and (B.5), and (B.6) rearranged with (B.8) and
(B.9), we get the two equations system:

 dP (11)

dX1
= 1

γr

dP (11)

dZ1
+ 1

γs

dP (11)

dZ2
dP (01)

dX1
= 1

γr

dP (01)

dZ1
+ 1

γs

dP (01)

dZ2

Under assumptions 4b and 2, this identifies γs and γr. We can then easily compute F ′(11)
1 , F ′(11)

2 ,
F
′(01)
1 and F

′(01)
2 with (B.4), (B.5), (B.8) and (B.9). The system:

 dP (11)

dXi
= βriF

′(11)
1 + βsiF

′(11)
2

dP (01)

dXi
= βriF

′(01)
1 + βsiF

′(01)
2

identifies βri and βsi. In fact, assumption 2 ensures that
(
γrF

′(11)
1 γrF

′(01)
1

γsF
′(11)
2 γsF

′(01)
2

)
has full rank,

that
(
F
′(11)
1 F

′(01)
1

F
′(11)
2 F

′(01)
2

)
has full rank.

• Identification of the third equation
We compute the derivatives of IP(e = 1|X,Z1, Z2):

P (1) = IP(e = 1|X,Z1, Z2)

=
∫ ∞
−Xβr−γrZ1

∫
IR

∫ ∞
−Xβe−γeZ2−αe

f(εr, εs, εe)dεrdεsdεe

+
∫ Xβr−γrZ1

−∞

∫
IR

∫ ∞
−Xβe−γeZ2

f(εr, εs, εe)dεrdεsdεe

= F (1)(−Xβr − γrZ1,−Xβe − γeZ2,−αe)
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We call F ′(1)
1 , F ′(1)

2 and F ′(1)
3 the derivatives of F (1) with respect to its arguments. We compute

the derivatives of P (1):

dP (1)

dX1
= F

′(1)
1 + F

′(1)
2 (B.10)

dP (1)

dXi
= βriF

′(1)
1 + βsiF

′(1)
2 (B.11)

dP (1)

dZ1
= γrF

′(1)
1 (B.12)

dP (1)

dZ2
= γeF

′(1)
2 (B.13)

γr is known, so that F ′(1)
1 can be easily computed with (B.12). It is then possible to compute

F
′(1)
2 with (B.10). Under assumption 4c, F ′(1)

2 is not null in (X,Z1, Z2) ∈ Θ. That is why γe is
identified by (B.13). Knowledge of βri, F ′(1)

1 and F
′(1)
2 identifies βsi in (B.11).

• Identification of αs.

Adapting Vytlacil and Yildiz (2007), it is easy to show that:

If ∃ ((Xa, Z1a, Z2a), (Xb, Z1b, Z2b), (Xc, Z1c, Z2c), (Xd, Z1d, Z2d)) ∈ Θ4 so that16


Xaβr + γrZ1a = Xbβr + γrZ1b = κr1
Xcβr + γrZ1c = Xdβr + γrZ1d = κr2
Xaβs + γsZ2c = Xcβs + γsZ2c = κs1
Xbβs + γsZ2b = Xdβs + γsZ2d = κs2

⇔


IP(r|a) = IP(r|b)
IP(r|c) = IP(r|d)
ÎP(s|a) = ÎP(s|c)
ÎP(s|b) = ÎP(s|d)

(B.14)

0 < f(εr, εs, εe) <∞ in the neighborhood of a and of b and κr1 6= κr2.

Then

(
IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c)

= − [IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

)
⇒ κs1 + αs = κs2 (B.15)

It is obvious that the converse is true. In fact, if κs1 + αs = κs2, then:

IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) = ÎP(s = 1|b)
IP(r = 1, s = 1|c) + IP(r = 0, s = 1|d) = ÎP(s = 1|d)

because
16ÎP means that the probability is net of the effect of r on o.
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IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) =
∫ κr1

−∞

∫ ∞
−κs1−αs

∫
IR
f(εr, εs, εe)dεrdεsdεe

+
∫ ∞
−κr1

∫ ∞
−κs2

∫
IR
f(εr, εs, εe)dεrdεsdεe

=
∫

IR

∫ ∞
−κs2

∫
IR
f(εr, εs, εe)dεrdεsdεe

= ÎP(s = 1|b)

(B.14) ensures that ÎP(s = 1|b) = ÎP(s = 1|d). Finally:

IP(r = 1, s = 1|a) + IP(r = 0, s = 1|b) = IP(r = 1, s = 1|c) + IP(r = 0, s = 1|d)
⇔ IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

Proof of equation (B.15):
We write the probabilities:

IP(r = 1, s = 1|κr, κs) =
∫ ∞
−κr

∫ ∞
−κs−αs

∫
IR
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1|κr, κs) =
∫ −κr

−∞

∫ ∞
−κs

∫
IR
f(εr, εs, εe)dεrdεsdεe

Then we can easily compute the differences of (B.15):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) =
∫ −κr2

−κr1

∫ ∞
−κs1−αs

∫
IR
f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d) =
∫ −κr1

−κr2

∫ ∞
−κs2

∫
IR
f(εr, εs, εe)dεrdεsdεe

We can now rewrite the first term of (B.15):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

⇔
∫ −κr2

−κr1

(∫ ∞
−κs1−αs

∫
IR
f(εr, εs, εe)dεsdεe −

∫ ∞
−κs2

∫
IR
f(εr, εs, εe)dεsdεe

)
dεr = 0

⇔
∫ −κr2

−κr1

∫
IR

(∫ −κs2

−κs1−αs

f(εr, εs, εe)dεs
)
dεrdεe = 0

f(εr, εs, εe) > 0 in the neighborhood of a and b. As a consequence, it is strictly positive in a
subset of the integration interval with a strictly positive Lebesgue measure if κs1 +αs 6= κs2. So
κs1 + αs = κs2, QED.



25

Assumption 5 ensures that some points verifying (B.14) and (B.15) exist in Θ. In fact, points
a and b in assumption 5 verify (B.14) and the second term of (B.15). c can be found in the
neighborhood of a and d in the neighborhood of b: the hyperplanes ÎP(s|(X,Z1, Z2) = ÎP(s|a)
and ÎP(s|(X,Z1, Z2) = ÎP(s|b) necessarily contain pairs of points that have the same P (r), since
P (r|a) = P (r|b).
These points can be recognized because the validity of (B.14) and

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|b) = −[IP(r = 0, s = 1|c)− IP(r = 0, s = 1|d)]

can be evaluated with the data and previous results.

• Identification of αe.
If ∃ ((Xa, Z1a, Z2a), (Xb, Z1b, Z2b), (Xc, Z1c, Z2c), (Xd, Z1d, Z2d)) ∈ Θ4 so that



Xaβr + γrZ1a = Xbβr + γrZ1b = κr1
Xcβr + γrZ1c = Xdβr + γrZ1d = κr2
Xaβs + γsZ1a = Xcβs + γsZ1c = κs1
Xbβs + γsZ1b = Xdβs + γsZ1d = κs2
Xaβe + γeZ2a = Xcβe + γeZ2c = κe1
Xbβe + γeZ2b = Xdβe + γeZ2d = κe2

⇔



IP(r|a) = IP(r|b)
IP(r|c) = IP(r|d)
ÎP(s|a) = ÎP(s|c)
ÎP(s|b) = ÎP(s|d)
ÎP(e|a) = ÎP(e|c)
ÎP(e|b) = ÎP(e|d)

(B.16)

and
{
κr1 6= κr2
κs1 + αs = κr2

and 0 < f(εr, εs, εe) <∞ in the neighborhood of a and of b.

Then

(
IP(r = 1, s = 1, e = 1|a)− IP(r = 1, s = 1, e = 1|c)

= − [IP(r = 0, s = 1, e = 1|b)− IP(r = 0, s = 1, e = 1|d)]

)
⇒ κe1 + αe = κe2 (B.17)

For the same reason as for the identification of αs, the converse of B.17 is true. In fact, if
κe1 + αe = κe2, then:

IP(r = 1, s = 1, e = 1|a) + IP(r = 0, s = 1, e = 1|b) = ÎP(s = 1, c = 1|b)
IP(r = 1, s = 1, e = 1|c) + IP(r = 0, s = 1, e = 1|d) = ÎP(s = 1, c = 1|d)

Proof of equation (B.17):
We write the probabilities:

IP(r = 1, s = 1, e = 1|a) =
∫ ∞
−κr1

∫ ∞
−κs1−αs

∫ ∞
−κe1−αe

f(εr, εs, εe)dεrdεsdεe

IP(r = 1, s = 1, e = 1|c) =
∫ ∞
−κr2

∫ ∞
−κs1−αs

∫ ∞
−κe1−αe

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|b) =
∫ −κr1

−∞

∫ ∞
−κs2

∫ ∞
−κe2

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|d) =
∫ −κr2

−∞

∫ ∞
−κs2

∫ ∞
−κe2

f(εr, εs, εe)dεrdεsdεe
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Then we can easily compute the differences of (B.17):

IP(r = 1, s = 1, e = 1|a)− IP(r = 1, s = 1, e = 1|c)

=
∫ −κr2

−κr1

∫ ∞
−κs1−αs

∫ ∞
−κe1−αe

f(εr, εs, εe)dεrdεsdεe

IP(r = 0, s = 1, e = 1|b)− IP(r = 0, s = 1, e = 1|d)

=
∫ −κr1

−κr2

∫ ∞
−κs2

∫ ∞
−κe2

f(εr, εs, εe)dεrdεsdεe

We can now rewrite the first term of (B.15):

IP(r = 1, s = 1|a)− IP(r = 1, s = 1|c) = −[IP(r = 0, s = 1|b)− IP(r = 0, s = 1|d)]

⇔
∫ −κr2

−κr1

∫ ∞
−κs2

∫ −κe2

−κe1−αe

f(εr, εs, εe)dεrdεsdεe = 0

f(εr, εs, εe) > 0 in the neighborhood of any point of Θ (assumption 4c). As a consequence, it is
strictly positive in a subset of the integration interval with a strictly positive Lebesgue measure
if κe1 + αe 6= κe2. That is why κe1 + αs = κe2. Assumption 5 ensures that those points exist, so
αe can be identified.

B.2 Model (5) without Z2

This appendix proves that Z2 is unnecessary for identifying the sign of αe. Accordingly, it is
theoretically not necessary to control for selection to identify the sign of αe semiparametrically.
The corresponding model is:


r = 1l(Xβr + γrZ +εr > 0)
s = 1l(Xβs +αsr +εs > 0)
e = 1l(Xβe +αer +εe > 0)

(B.18)

(For simplicity r is repetition, s is selection, and e is enrolledt+1. For the same reason, the
equations have been written in a simple form Xβ + γZ + ε)
Let us recall that r is observed if and only if s = 1. f(εr, εs, εe) is the distribution function of
(εr, εs, εe). Manski (1988) shows that in the one-dimensional binary model case, the parameters
are identified by the derivatives of the probability function of the dependent variable. This
idea is used to show that the sign of αe is identified in model (B.18) without any parametric
assumption on f(εr, εs, εe). Θ is the support of (X,Z). We make the following assumptions:

1. The distribution of (εr, εs, εe) is independent of (X,Z).
2. γr 6= 0
3. ∃(X0, Z0) ∈ Θ verifying :

(a) In the neighborhood of (X0, Z0), (X,Z) ∈ Θ
(b)

∫
IR
∫

IR f(−X0βr − γrZ0, εs, εe)dεsdεe <∞



27

(c) f(εr, εs, εe) > 0 in the neighborhood of (−X0βr − γrZ0,−X0βs − αs,−X0βs − αe),
called Γ

Assumption 1 is necessary in Manski (1988) and is still necessary in this case. It ensures that
the derivatives of the probability functions with respect to X or Z are not caused by variations
of f(εr, εs, εe).
Assumption 2 ensures that the instrument has a causal effect on r.
Assumption 3a ensures that it is possible to compute the derivatives of the probability functions
with the data since the points in the neighborhood of (X0, Z0) are in the support of (X,Z). It is
certainly possible to extend the identification result in the case where X contains some binary
variables.
Assumption 3b ensures that the density of εr in −X0βr − γrZ0 is finite, so that the derivatives
of the probabilities with respect to Z are finite.
Assumption 3c ensures that the derivatives of the probability functions with respect to Z are
not null.

– Proof that the sign of γr is identified
We write IP(r = 1, s = 1, e = 1|X,Z), which is identified by the data in (X0, Z0) because
of assumption 3a:

IP(r = 1, s = 1, e = 1|X,Z) =
∫ ∞
−Xβr−γrZ

∫ ∞
−Xβs−αs

∫ ∞
−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

⇒ dIP(r = 1, s = 1, s = 1|X,Z)/dZ = γr

∫ ∞
−Xβs−αs

∫ ∞
−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

0 ≤
∫ ∞
−Xβs−αs

∫ ∞
−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

Assumption 3b ensures that:

∫ ∞
−X0βs−αs

∫ ∞
−X0βe−αe

f(−X0βr−γrZ0, εs, εe)dεsdεe ≤
∫

IR

∫
IR
f(−X0βr−γrZ0, εs, εe)dεsdεe <∞

And assumption 3c ensures that:

∫
[−X0βs−αs,∞]×[−X0βe−αe,∞]

f(−X0βr − γrZ0, εs, εe)dεsdεe

≥
∫

([−X0βs−αs,∞]×[−X0βe−αe,∞])∩Γ
f(−X0βr − γrZ0, εs, εe)dεsdεe > 0

That is why

0 <
∫ ∞
−X0βs−αs

∫ ∞
−X0βe−αe

f(−X0βr − γrZ0, εs, εe)dεsdεe <∞

so that dIP(r=1,s=1,e=1|X,Z)
dZ (X0, Z0) has the same sign as γr.
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– Proof that the sign of αe is identified
Now, let us focus on IP(e = 1|X,Z):

IP(e = 1|X,Z) = IP(e = 1, r = 1|X,Z) + IP(e = 1, r = 0|X,Z)

=
∫ ∞
−Xβr−γrZ

∫
IR

∫ ∞
−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

+
∫ −Xβr−γrZ

−∞

∫
IR

∫ ∞
−Xβe

f(εr, εs, εe)dεrdεsdεe

=
∫

IR

∫
IR

∫ ∞
−Xβe

f(εr, εs, εe)dεrdεsdεe

+
∫ ∞
−Xβr−γrZ

∫
IR

∫ −Xβe

−Xβe−αe

f(εr, εs, εe)dεrdεsdεe

⇒ dIP(e = 1|X,Z)/dZ = γr

∫
IR

∫ −Xβe

−Xβe−αe

f(−Xβr − γrZ, εs, εe)dεsdεe

Again, if αe > 0, then 0 <
∫

IR
∫−X0βe

−X0βe−αe
f(−X0βr − γrZ0, εs, εe)dεsdεe < ∞, because of

hypotheses 3b and 3c. For the same reasons, if αe < 0, then −∞ <
∫

IR
∫−X0βe

−X0βe−αe
f(−X0βr−

γrZ0, εs, εe)dεsdεe < 0. This shows that dIP(e = 1|X,Z)/dZ and αeγr have the same sign.
The sign of γr is identified, so the sign of αe is identified.
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C Additional tables

C.1 Determinants of LP−ik

Table C.1: Determinants of LP−ik
Community characteristics Household characteristics

(1) (2)
Groupa mean test score 1.028 1.033

(.092)∗∗∗ (.084)∗∗∗

Community mean asset index -.110
(.083)

Community mean educations index .143
(.146)

ln(population) .036
(.034)

Community main occupation: trade (ref: agriculture) .115
(.143)

Electricity in the community .022
(.163)

Rural .041
(.192)

Distance to the next health center .201
(.175)

Distance to the next hospital -.023
(.045)

Asset index .011
(.021)

Parent’s education .006
(.016)

Household head: non-muslim .081
(.131)

Household head: Pulaar, halpulaar (ref: wolof) .097
(.062)

Household head: Serere (ref: wolof) .017
(.094)

Household head: Dioola (ref: wolof) .101
(.094)

Household head: Mandingue-Sose (ref: wolof) .029
(.086)

Household head: others (ref: wolof) .031
(.072)

Grade*year dummies Yes Yes
Obs. 1709 1805
R2 .545 .517
Joint significance community or hh. variables 1.012 .553
P-value .439 .811

Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10% level.
The standard deviations of the estimators are corrected for the correlation of the residuals between different observations
of the same community.
a: A group is composed of all the observations from the same school, the same year and the same grade. This is an
approximation of a class, since in some schools, there are several classes per grade.
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Figure C.1: Non-linear effect of the difference between test score and last passer’s score on grade
repetition and enrollment

Notes: Plot of the estimates of Table C.2. Dotted lines give the confidence intervals at the 5% level.

C.2 First stage and reduced form estimates

This section presents the equivalent of the first stage and reduced form estimates corresponding
to model (5):


Eik,t+1 = 1l[ βe1Sik +βe2aLP−ik +βe3Zs +fe(Sik − LP−ik) +Xikβe4 + uik > 0]

Rik = 1l[ βr1Sik −βr2LP−ik +fr(Sik − LP−ik) +Xikβr4 + εik < 0]
selection = 1l[ βs1Sik +βs2LP−ik +βs3Zs +fs(Sik − LP−ik) +Xikβs4 + vik > 0]

(C.1)

In this specification, we do not measure the effect of grade repetition on dropout. Instead, we
measure the effect of the position relative to the target achievement on grade repetition, and on
dropout. The effect of the position relative to the target achievement on dropout is assumed to be an
indirect effect of grade repetition on dropout in our main estimations.

Table C.2 gives the estimation of model (C.1), and Figure C.1 plots the coefficients of the differ-
ence between individual test score and last passer’s score. The model is estimated with a maximum
likelihood method, as a “trivariate probit” specification. The distribution of the error terms follow
a trivariate normal distribution, simulated with a GHK simulator. The three columns of Table 3
correspond to the model’s three equations. The data are pooled for the various grades and years.
Each specification includes grade-year dummies in each equation.

Determinants of grade repetition and of selection Similarly to Table 3, pupils are much less
likely to repeat the grade when their test score is higher than the last passer’s score in Table C.2.
The corresponding coefficients are plotted in Figure C.1, in dark red. Besides, the negative shocks
on harvests are used as an exclusion restriction in the repetition equation. Like in Table C.2, this
coefficient is positive and significant in the selection equation.
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Table C.2: Grade repetition and school dropouts as a function of a difference between own test score
and the test score of the last passer (Sik − LP−ik)

repetition enrolledt+1 selection
(1) (2) (3)

Test score -.231 -.200 .070
(.273) (.197) (.148)

LP−ik .083 .468 .047
(.242) (.201)∗∗ (.138)

Sik − LP−ik < −1 .763 -.409 -.157
(.481) (.424) (.324)

−1 < Sik − LP−ik < −0.75 .966 -.979 -.610
(.399)∗∗ (.372)∗∗∗ (.270)∗∗

−0.75 < Sik − LP−ik < −0.5 .506 -.700 -.399
(.297)∗ (.302)∗∗ (.236)∗

−0.5 < Sik − LP−ik < −0.25 .339 -.471 -.404
(.224) (.271)∗ (.187)∗∗

−0.25 < Sik − LP−ik < 0 .113 .421 -.329
(.182) (.380) (.165)∗∗

0 < Sik − LP−ik < 0.25 Ref. Ref. Ref.

0.25 < Sik − LP−ik < 0.5 -.412 .287 .205
(.177)∗∗ (.323) (.172)

0.5 < Sik − LP−ik < 0.75 -.454 .190 .275
(.222)∗∗ (.311) (.200)

0.75 < Sik − LP−ik < 1 -.554 .366 .181
(.258)∗∗ (.309) (.199)

1 < Sik − LP−ik < 1.5 -.520 1.226 .273
(.323) (.464)∗∗∗ (.216)

1.5 < Sik − LP−ik -.812 1.085 .469
(.484)∗ (.445)∗∗ (.318)

Groupa mean test score .268 -.043 -.015
(.130)∗∗ (.205) (.116)

Negative shock on harvests .256 .414
(.195) (.154)∗∗∗

Household wealth and Parents’ education, Pre-
vious year’s test score Yes Yes Yes

Grade*year dummies Yes Yes Yes
Obs. 1818 1818 1818
log likelihood -1262.328 -1262.328 -1262.328
χ2 exclusion restriction 7.211
corresponding p value .007
Notes: The model is estimated with a maximum likelihood method, as a “trivariate probit” specification. The
distribution of the error terms follow a trivariate normal distribution, simulated with a GHK simulator (25
iterations). ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5%
and 10% level. Standard errors clustered between different observations of the same child.
Sik − LP−ik stands for “Difference between own test score and last passer’s test score”.
a: A group is composed of all the observations from the same school, the same year and the same grade. This
is an approximation of a class, since in some schools, there are several classes per grade.
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Determinants of enrollment In the enrollment equation, the coefficients for the difference between
own test score and last passer’s score is given in Table C.2, and plotted in Figure C.1, in light blue.
They tend to mirror the coefficients of the repetition equation: pupils with a learning achievement
greater than teacher’s standards are the least likely to drop out. In Figure C.1, the curve is grossly
symmetric to the curve of the grade repetition equation.

C.3 Reduced form with non-linear controls

Table C.3 and Figure C.2 gives compares the estimates when several variables based on test-scores
are treated non-linearly. In sum, we add in the specification dummies for levels of own test score, of
group mean test score, of difference to group mean, and of last passer’s score. Hence these variables
are treated non-linearily. The results in Table C.3 are similar to Table C.2. Neither of the dummies
set is jointly significant. If something, Figure C.2 shows the effect of test own score relative to the
target achievement on dropout is a bit greater with the dummies set control.

Figure C.2: Comparison between the estimates of Table C.2 and Table C.3

Notes: Plot of the estimates of Table C.2 and Table C.3.
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Table C.3: Modification of Table C.2 with non-linear treatment of the control variables based on test
scores

repetition enrolledt+1 selection
(1) (2) (3)

Test score .093 -.282 .072
(.495) (.311) (.255)

LP−ik -.098 .613 .110
(.235) (.269)∗∗ (.188)

Sik − LP−ik < −1 .823 -.804 -.189
(.492)∗ (.547) (.346)

−1 < Sik − LP−ik < −0.75 .938 -1.290 -.595
(.400)∗∗ (.447)∗∗∗ (.289)∗∗

−0.75 < Sik − LP−ik < −0.5 .495 -.858 -.402
(.309) (.355)∗∗ (.247)

−0.5 < Sik − LP−ik < −0.25 .391 -.320
(.184) (.386) (.166)∗

−0.25 < Sik − LP−ik < 0 .127 .391 -.320
(.184) (.386) (.166)∗

0 < Sik − LP−ik < 0.25 Ref. Ref. Ref.

0.25 < Sik − LP−ik < 0.5 -.381 .375 .230
(.185)∗∗ (.326) (.175)

0.5 < Sik − LP−ik < 0.75 -.431 .403 .303
(.231)∗ (.287) (.205)

0.75 < Sik − LP−ik < 1 -.500 .696 .222
(.275)∗ (.323)∗∗ (.219)

1 < Sik − LP−ik < 1.5 -.400 1.541 .307
(.333) (.527)∗∗∗ (.242)

1.5 < Sik − LP−ik -.537 1.619 .457
(.507) (.546)∗∗∗ (.343)

Groupe mean test score .419 -.671 -.240
(.378) (.478) (.314)

Negative shock on harvests .156 .396
(.196) (.147)∗∗∗

χ2 test score dummiesa 6.982 7.742 .592
corresponding p value .137 .101 .964
χ2 difference to groupe mean dummiesb 1.416 5.245 1.412
corresponding p value .841 .263 .842
χ2 groupe mean dummiesc 5.695 6.128 2.189
corresponding p value .127 .106 .534
χ2 last passer’s score dummiesd 7.539 1.984 7.539
corresponding p value .184 .851 .184
Household wealth and Parents’ education, Previous
year’s test score Yes Yes Yes

Grade*year dummies Yes Yes Yes
Obs. 1818 1818 1818
log likelihood -1237.971 -1237.971 -1237.971
χ2 grade year dummies 4.958 29.208 9.239
corresponding p value .292 7.09e-06 .055
χ2 exclusion restriction 7.281
corresponding p value .007

Additional covariates in each equation: test score, group mean test score previous year’s test score, household wealth,
parents’ education, grade-year dummies.
Note: ***, ** and * mean respectively that the coefficient is significantly different from 0 at the 1%, 5% and 10% level.
The standard deviations of the estimators are corrected for the correlation of the residuals between different observations
of the same child.
a: Dummies for: test score<-1, -1<test score<-0.5, 0<test score<0.5, 0.5<test score<1, 1<test score. -0.5<test score<0
omitted
b: Difference to group mean: difference between own test score and the group mean. Dummies for: difference<-1,
-1<difference<-0.5, -0.5<difference<0, 0.5<difference. 0<difference<0.5 omitted
c: Dummies for: group mean<-0.5, -0.5<group mean<0, 0.5<group mean. 0<group mean<0.5 omitted
d: Dummies for: last passer’s score<-1.5, -1<last passer’s score<-0.5, -0.5<last passer’s score<0, 0<last passer’s
score<0.5, 0.5<last passer’s score. -1.5<group mean<-1 omitted
e: A group is composed of all the observations from the same school, the same year and the same grade. This is an
approximation of a class, since in some schools, there are several classes per grade.
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D Simulations

D.1 Formulas

The model of interest is:


Eik,t+1 = 1l[ βe1Sik +βe2LP−ik +γRik +Xikβe4 + uik > 0]

Rik = 1l[ βr1Sik −βr2LP−ik +fr(Sik − LP−ik) +Xikβr4 + εik < 0]
selection = 1l[ βs1Sik +βs2LP−ik +βs3Zs +γsRik +Xikβs4 + vik > 0]

(D.1)

Grade repetition risk For each observation, it is possible to compute the grade repetition risk:
Pred = Φ (βr1Sik − βr2LP−ik + fr(Sik − LP−ik) +Xikβr4). This risk can easily be adapted to specu-
lative situations with different LP−ik. P̃red = Φ

(
βr1Sik − βr2L̃P ik + fr(Sik − L̃P ik) +Xikβr4

)
gives

individual grade repetition risks. The simulations presented here give their sample average (and
sub-sample averages).

Dropout risk, no “direct effect of grade repetition policy” To simplify the algebra, Eik,t+1
and Rik are assumed independent. Hence the probability of Eik,t+1 writes
Penr = PredΦ (βe1Sik + βe2LP−ik + γ +Xikβe4) + (1 − Pred)Φ (Sik + βe2LP−ik +Xikβe4). The simu-
lations compute the consequences of a speculative change in LP−ik on Pred. They change dropout
risk through the change in Pred, but not through βe2LP−ik. The new probability of Eik,t+1 writes
P̃enr = P̃redΦ (βe1Sik + βe2LP−ik + γ +Xikβe4) + (1 − P̃red)Φ (Sik + βe2LP−ik +Xikβe4), where P̃red
is the new Pred.

Dropout risk, with “direct effect of grade repetition policy” Eik,t+1 and Rik are still assumed
independent. The simulations compute the consequences of a speculative change in LP−ik on Pred.
They change dropout risk through the change in Pred, and through βe2LP−ik. The new probability of
Eik,t+1 writes P̃enr = P̃redΦ

(
βe1Sik + βe2L̃P ik + γ +Xikβe4

)
+(1− P̃red)Φ

(
Sik + βe2L̃P ik +Xikβe4

)
,

where P̃red is the new Pred, and L̃P ik is the speculative LP−ik.

Precision of the estimates When presented in the paper, they derive from a Delta-method not
detailed here.
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D.2 Additional Tables

Table D.1: Simulations: effect of a decrease of last passer’s score

Reference
LP−ik

decreases
by 0.25 pt

LP−ik
decreases
by 0.5 pt

LP−ik
decreases
by 0.75 pt

LP−ik
decreases
by 1 pt

Grade repetition

Full sample 26,4% 22,5% 19,3% 16,7% 14,7%
“low-achievers” 74,1% 77,9% 74,7% 71,2% 65,5%
“leaning” 51,8% 40,8% 32,5% 27,4% 23,8%
“good pupils” 12,7% 11,4% 10,3% 8,7% 7,7%

Drop-
out
risk

No “direct
effect of g.r.
policy”

Full sample 3,2% 2,7% 2,4% 2,1% 1,9%
“low-achievers” 7,1% 7,5% 7,1% 6,7% 6,1%
“leaning” 5,7% 4,5% 3,6% 3,0% 2,6%
“good pupils” 1,9% 1,7% 1,6% 1,4% 1,2%

With
“direct
effect of g.r.
policy”

Full sample 3,2% 3,2% 3,1% 3,1% 3,2%
“low-achievers” 7,1% 8,7% 9,5% 10,3% 10,7%
“leaning” 5,7% 5,1% 4,7% 4,6% 4,5%
“good pupils” 1,9% 2,0% 2,1% 2,1% 2,2%

Notes: Simulations based on the estimates of Table 3. The unit for test scores is the standard deviation of
distribution of the test for the year-grade.
“low-achievers”: Sik − LP−ik < −1
“leaning”: −1 < Sik − LP−ik < 0.25
“good pupils”: 0.25 < Sik − LP−ik


