
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

  

 
 
 
Thema Working Paper n°2012-45 
Université de Cergy Pontoise, France 

 
 

       
 

    Ambiguity, Data and Preferences for Information-A 
Case-Based Approach 

 
 
 

  
    Ani Guerdjikova 
    Jürgen Eichberger 
 
     

 
     
    
     
     

 

 

     April, 2012 
 

 

  

 



Ambiguity, Data and Preferences for Information
� A Case-Based Approach1

Jürgen Eichberger2 and Ani Guerdjikova3

This version: April 3, 2012

Abstract
In this paper we suggest a behavioral approach to decision making under ambiguity based on
available information. A decision situation is characterized by a set of actions, a set of out-
comes, and data consisting of action-outcome pairs. Decision-makers express preferences over
actions and data sets. We derive a representation of preferences, which separates utility and be-
liefs. While the utility function is purely subjective, the beliefs of the decision maker combine
objective characteristics of the data (number and frequency of observations) with subjective fea-
tures of the decision maker (similarity of observations and perceived ambiguity). We identify
the subjectively perceived degree of ambiguity and separate it into ambiguity due to a limited
number of observations and ambiguity due to data heterogeneity. We also determine the deci-
sion maker's attitude towards ambiguity. The special case of no ambiguity represents beliefs as
similarity-weighted frequencies and provides a behavioral foundation for Billot, Gilboa, Samet
and Schmeidler's (2005) representation.
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1 Introduction
Since Hume's (1748) "Enquiry Concerning Human Understanding", it has been recognized that

the notion of induction is fundamental to human knowledge. "Reasoning rests on the princi-

ple of analogy", writes Knight (1921, p. 199), "we judge the future by the past". In practice,

decisions are often informed by data consisting of past observations. Randomized statistical

experiments represent an ideal method of data collection, since the recorded information can be

directly aggregated into a probability distribution over outcomes. In contrast, in real-life deci-

sion situations, the available data might contain a limited number of heterogenous observations

with differing degrees of relevance for the decision situation at hand. Ellsberg (1961, p.657)

summarizes the problem as follows: "What is at issue might be called the ambiguity of this in-

formation, a quality depending on the amount, type, reliability, and "unanimity" of information,

and giving rise to one's degree of "con�dence" in an estimate of relative likelihoods."

This naturally raises the question of how decision makers aggregate information from data into

beliefs over outcomes. In this paper, we pursue a behavioral approach to this issue. We use

the case-based framework pioneered by Gilboa and Schmeidler (2001) to study agents who

choose actions in the face of data. The natural primitives of the model are the decision maker's

preferences over pairs of actions and data sets. We impose axioms which allow us to deduce

agents' beliefs about uncertain outcomes and directly relate them to the content of the available

data. In particular, we identify the perceived ambiguity of information and decompose it into

two parts: ambiguity due to limited number of observations and ambiguity due to data hetero-

geneity. We also derive a representation of preferences which shows how data in�uence the

evaluation of actions. Furthermore, our approach allows us to determine how decision makers

value information of different type.

The analysis of decisions based on data is important, since data represent a major source of

information, but do not �t the standard classi�cation of information into risk and uncertainty.

While data carry objective information about the stochastic process of outcomes, this informa-

tion might be insuf�cient to point-identify the probability distribution of outcomes. Limited

number of observations, heterogeneity of observations and missing data are the main reasons

for this ambiguity, see Manski (2000). Hence, the agent's beliefs will have to combine objective
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characteristics of the data (such as number, frequency and type of observations) with subjective

considerations (such as perception of ambiguity and similarity between observations).

The two common approaches towards beliefs cannot capture this type of considerations. The

state-based approach established by Savage (1954) derives a purely subjective probability distri-

bution over states. It thus completely detaches prior beliefs from objectively given information

and leaves no room for using data inductively in the process of belief formation.

The objective approach integrates available probabilistic information directly into the decision

maker's beliefs. When such information is not directly available, non-Bayesian statisticians use

observed frequencies in the data to infer probabilities of outcomes. In this case, the number and

the relevance of observations become an issue.

These two approaches represent limit cases of our analysis: beliefs based on a large data set

resulting from a randomized statistical experiment will be (almost) objective, while purely sub-

jective beliefs seem appropriate when the data set is small or contains cases of limited relevance.

By considering the set of all possible data sets, our model spans a universe of possible scenarios,

in which both objective and subjective factors determine beliefs.

Decision theory has so far treated the issues of data and ambiguity separately. Following

Knight's (1921) work, the literature deals with two types of situations: risk and uncertainty. In

the expected utility framework developed by von Neumann andMorgenstern (1944) and by Sav-

age (1954), this distinction is inconsequential. The models of Knightian uncertainty, which have

emerged in response to Ellsberg's (1961) experiments, highlight the importance of ambiguity

and ambiguity aversion for human behavior. Different models of ambiguity and ambiguity atti-

tude have been provided by Bewley (1986), Schmeidler (1989), Gilboa and Schmeidler (1989),

Ghirardato, Maccheroni and Marinacci (2004), Klibanoff, Marinacci and Mukerji (2005) and

Chateauneuf, Eichberger and Grant (2007). In this literature, both perceived ambiguity and am-

biguity attitude are purely subjective concepts, and, hence, unrelated to any potentially available

information. At the opposite end of the spectrum, several recent papers, Stinchcombe (2003),

Gajdos, Hayashi, Tallon and Vergnaud (2007) (henceforth, GHTV (2007)), Ahn (2008), assume

that ambiguity can be related to an objectively given set of probability distributions. This allows

them to separate the "objective ambiguity" from the "subjective attitude" towards ambiguity.

Case-based decision theory developed by Gilboa and Schmeidler (2001) incorporates data di-
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rectly into the decision making process4. It allows for heterogeneity of observations and intro-

duces the concept of similarity to capture the different relevance of these observations for the

evaluation of a given action. The different representations fail, however, to separate beliefs over

outcomes from the evaluation of these outcomes. Billot, Gilboa, Samet and Schmeidler (2005)

(henceforth, BGSS (2005)) represent beliefs as similarity-weighted frequencies of observations.

However, their method is not behavioral, i.e., the existence of such beliefs is postulated. More-

over, it does not take into account ambiguity of data and attitude towards such ambiguity.

The empirical relationship between ambiguity and data is largely unexplored. Some recent

experimental studies by Arad and Gayer (2010) and Hau, Pleskac and Hertwig (2010) exam-

ine, however, behavior when information is provided in the form of data. Both studies report

signi�cant behavioral effects of the form in which data is provided.

In this paper, we combine the case-based approach to information processing with the literature

on ambiguity. We model a decision maker who chooses from a �nite set of actions knowing the

set of possible outcomes. As in the case-based theory of Gilboa and Schmeidler (2001), the in-

formation context of the decision situation is speci�ed by a data set containing past observations

of actions and their outcomes. Similar to GHTV (2007), we assume that the decision maker can

compare pairs consisting of an action and an information context. Based on behavioral ax-

ioms, we derive a representation of preferences by an �-MEU functional, as in Ghirardato,

Maccheroni and Marinacci (2004) and Chateauneuf, Eichberger and Grant (2007):

V (a;D) = � max
p2Ha(D)

X
r2R

u (r) p (r) + (1� �) min
p2Ha(D)

X
r2R

u (r) p (r) .

A pair (a;D), consisting of an action a and a data setD, is evaluated by the convex combination

of the maximal and minimal expected utility over outcomes r 2 R,
P

r2R u (r) p (r) obtained

on a set of probability distributions Ha (D). The beliefs over outcomes Ha (D) are set-valued,

thus capturing the fact that information might be ambiguous. They depend on the action a

and on the characteristics of the data D. The decision maker's attitude towards ambiguity is

described by a degree of optimism �, the weight assigned to the maximal expected utility, and

the degree of pessimism (1� �), the weight assigned to the minimal expected utility.
Our �rst contribution is to deduce the sets of probability distributions over outcomes, Ha (D),

associated with a speci�c action a in a given information contextD. Thus, we provide a behav-

4 See also Gilboa and Schmeidler (1997, 2001) and Gilboa, Schmeidler and Wakker (2002) for
alternative axiomatizations.
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ioral foundation for the work of BGSS (2005) and Eichberger and Guerdjikova (2010). The set

Ha (D) combines objective criteria, such as the frequency and the number of observations in the

data, with subjective features of the decision maker, such as the perceived degree of ambiguity

and the similarity of observations. The representation obtained generalizes the idea of beliefs

as similarity-weighted frequencies in BGSS (2005) by allowing for ambiguity.

Our second contribution is to identify the degree of ambiguity associated with a particular data

set and behaviorally separate it from ambiguity attitude captured by �. Perceived ambiguity

can be separated into two parts: vanishing ambiguity due to a limited number of observations

and persistent ambiguity due to the heterogeneity of cases in the data set. Since cases contain

the observation of a single action, correlation across actions cannot be learned from the data.

Hence, there is ambiguity associated with predictions about the performance of a given action a

using cases containing actions different from a and this ambiguity is persistent. We thus capture

the well-known insight of identi�cation theory: if relevant characteristics are unobservable,

the model might not be identi�able, Manski (2000). The distinction between vanishing and

persistent ambiguity corresponds to a similar distinction in Epstein and Schneider (2007). Our

model also extends the approach of Coignard and Jaffray (1994) and Gonzales and Jaffray

(1998) to incorporate data heterogeneity.

Our third contribution is to demonstrate that the representation obtained in this paper can serve

to model preferences for additional information. In particular, we show that the degrees of opti-

mism and pessimism determine the decision maker's preferences for more precise information:

the more pessimistic the decision maker, the more he values precision of information.

The rest of the paper is organized as follows. The next section describes the framework and

provides several examples which illustrate the scope of our approach. Section 3 states the

axioms. Section 4 contains the main representation theorem, relates it to other representations,

and considers important special cases. The notion of preferences for more precise information

is discussed in Section 5. All proofs are collected in the Appendix.

2 Framework and Motivating Examples
We start this section by presenting the framework for our analysis.

2.1 Framework
Consider a decision problem (A;R) consisting of a �nite set of actions A and a �nite set of
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outcomes R. The decision maker's information is given in form of data. A data set consists of

cases c which are tuples of an action a 2 A and the outcome r 2 R observed as a consequence
of this action, c = (a; r). The set of all cases is C = A�R. An information context is identi�ed
with a data set D. A data set of length T ,

D = (c1:::cT ) = ((a1; r1) ; ::: (aT ; rT )) ,

is a vector of T cases. The set of all data sets of length T 2 N, is denoted by DT := CT .

D := [
T�1
DT denotes the set of data sets of �nite length. The empty data set denotedD? does not

contain any cases and captures a situation in which no information is available. D� =: D[fD?g
is the set of all data sets including the empty one.

We remain agnostic as to how the information context D has been generated. The presumption

is that the decision maker trusts that the data is objective and reproducible and that the process

determining the outcomes of the actions has not changed. Furthermore, we assume that an

observation of an action per se (i.e., without reference to its outcome) does not carry additional

information about the desirability of this action5.

A decision situation is completely described by the triple (A;R;D�), i.e., a decision problem

and the set of possible information contexts arising from it.

Decision makers compare actions belonging to different information contexts. Given a decision

situation (A;R;D�), they rank pairs of actions and data sets, expressing preferences of the type

(a;D) % (a0;D0). Hence, A� D� is the domain of the decision maker's preference order %.

2.2 Discussion of the Preference Order %
We are not the �rst to include the information context of an action in the domain of preferences.

GHTV (2007) model preferences over pairs of Savage acts and sets of probability distributions

over states. The interpretation of the two preference relations is similar. As GHTV (2007, p.29)

note, it can be best understood using Ellsberg's two urn example. In Urn 1, there are 50 black

and 50 white balls. The composition of urn 2 is unknown. The decision maker chooses the

color and the urn to bet on. We can describe Urn II by the empty data set and Urn 1 by a

very large data set, in which the frequency of success is 1
2
for both bets. While the bets are the

same, the information context of the bet varies across the two urns, rendering natural the idea

of preferences on action-data-set pairs.

5 E.g., if the observations refer to past choices, the presumption is that these choices were not made
based on superior information which is not available to the decision maker.
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Describing urns by data sets suggests a generalization of the Ellsberg experiment. Given two

urns characterized by equal frequencies, but different number of observations, would the de-

cision maker prefer the longer data set, regardless of the bet? By incorporating comparisons

across information contexts, we can model such preferences for information precision.

More generally, information contexts can describe distinct economic environments (markets,

locations, see Section 2.3 for examples), which offer the same set of choices, but differ with

respect to available information. Since data provide information about the process governing

the outcome realizations of actions, they affect the decision maker's beliefs about the outcomes

of a given action in a given information context. The preference (a;D) % (a;D0) means that

the decision maker feels more con�dent choosing a based on the information in D than in D0.

This might re�ect a higher frequency of good outcomes, better information precision, or higher

relevance of observations in the environment described by D, or some combination of all of

these. % can be elicited in an experimental setting by asking decision makers to make choices
between urns characterized by different sets of past observations, or, more generally, between

information contexts characterized by different data sets6.

2.3 Examples
The following examples illustrate the notion of preferences we have in mind
Example 1 Betting on a draw from an urn

A decision maker is offered to bet on the color of the ball drawn from one of two urns. Each
of the urns contains the same total number of black and white balls. A bet on white (black), aw
(ab) pays 1 if the ball drawn is white (black) and 0, otherwise. Hence, the set of actions is A =
faw; abg and the set of outcomes is R = f0; 1g. An information context speci�es the available
information about urn i, i 2 f1; 2g. It is given by a data set Di =

�
(ai1; r

i
1) ; :::

�
aiT i ; r

i
T i

��
and

contains records of bets and their outcomes based on drawings from urn i.

Suppose that there are 10 observations available for urn 1 as summarized in data set D1:
D1 = ((aw; 1) ; (aw; 1) ; (ab; 0) ; (aw; 0) ; (aw; 1) ;

(aw; 0) ; (aw; 0) ; (ab; 1) ; (ab; 1) ; (aw; 1)) .

6 An alternative approach is to use preferences over Savage acts conditional on a data set. The
corresponding state-space is the set of all sequences of outcome realizations. The set of acts contains all mappings
from in�nite sequences of outcome realizations into outcomes and is quite different from the original set of actions
A. Rather than assuming that decision makers can formulate preferences on this set of acts, we
favor the case-based formulation and enrich it by introducing preferences over pairs of actions and data sets.
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If the order of the draws does not matter, D1 can be represented by the following table:
R

A
1 0

ab 2 1
aw 4 3

(1)

The data set for urn 2, D2, contains 300 observations, summarized in the following table:
R

A
1 0

ab 80 90
aw 60 70

(2)

The data set associated with urn 1 implies that out of the 10 available observations, half
involved a white ball being drawn and half � a black one. The data set for urn 2 also implies
equal empirical frequencies for black and white, but with a larger set of observations (300).

Preferences % are de�ned on the set A�D� with the natural interpretation that the decision
maker decides which urn to bet on and which bet to place. E.g., the decision maker may express
preferences of the type (ab;D2) � (ab;D1) and (aw;D2) � (aw;D1), indicating that he prefers
to bet on urn 2, regardless of the color of the ball. As in the Ellsberg two-urn paradox, such
behavior could be due to the fact that data set D2 contains more precise information than D1.

Example 2 Loan market

Consider an economy, in which entrepreneurs invest in risky projects a 2 A, such as starting
an internet retail company, opening a fast food restaurant, etc. The set of possible �nancial
returns r is given by R. Entrepreneurs do not possess capital, but can borrow from lenders. In
order to start a project, an entrepreneur needs one unit of capital.

Each lender has exactly one unit of capital. A standard loan contract speci�es a �xed re-
payment q, which is due whenever the payoff of the project exceeds q. Otherwise, the lender
receives the entire return of the project.

Lenders and entrepreneurs can decide in which of two markets to be active, a well established
market in a Western country (market 1), or an emerging market in an Eastern European country
(market 2). The set of projects A and the set of outcomes R are identical for both markets.
The information about each market i 2 f1; 2g is summarized in a data set Di containing the
observed returns of projects in this market, Di =

�
(ai1; r

i
1) :::

�
aiT i ; r

i
T i

��
.

Agents' preferences % are de�ned on the set A � D� expressing the idea that each of them
has to choose a project and a market, in which to invest. E.g., a preference of an entrepreneur
(a1;D1) % (a2;D2) means that he prefers to invest in project a1 in market 1 described by infor-
mation context D1 to investing in a2 in market 2 described by D2. The two data sets can differ
with respect to the number, type and frequency of observations. The informational characteris-
tics of the two markets will determine the market participation decisions of the agents.

Example 3 Financial investment

Consider an investor who can invest 1 unit of money into assets of one out of several compa-
nies located either in his home country (H), or in a foreign country (F ). The investor considers
three companies, A =

�
aH1 ; a

H
2 ; a

F
1

	
, all of which are active in the same industry (e.g., internet

retail). aH1 and aF1 are relatively large and listed in the stock exchange of their respective coun-
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tries, while aH2 is a small company traded only across the counter in the home country. The set
of possible returns is R. The investor has access to past returns summarized in a data set D:

D =
��
aH1 ; r1

�
:::
�
aH1 ; rTH1

�
;
�
aH2 ; ~r1

�
:::
�
aH2 ; ~rTH2

�
;
��
aF1 ; r̂TH2

�
:::
�
aF1 ; r̂TF1

���
(3)

Given the information in D, the investor can compare an investment in a listed company aH1
in his home market to an investment in the foreign company aF1 , expressing preferences of the
type

�
aH1 ;D

�
%
�
aF1 ;D

�
. Note that D contains the performance of aH2 , which does not pro-

vide direct evidence about aH1 or aF1 . However, since aH2 is a company in the same industry,
observations of its returns might be relevant for the evaluation of aH1 and aF1 . In particular,
the information about aH2 might be considered more relevant for the prediction about the listed
home company aH1 than for the prediction about the listed foreign company aF1 . If the informa-
tion about the returns of aH2 is favorable for the evaluation of aH1 , preferences may exhibit the
well-known home-bias phenomenon7.

Example 4 Medical treatment

A doctor has to choose a treatment for a patient with a particular disease. The possible treat-
ment options, A = fa1; a2; a3g, are a1 � administering a new drug, a2 � using the traditional
treatment, and a3 � applying a placebo. The potential outcomes are R = fr1; r2; r3g, with r1
complete recovery, r2 several weeks of illness, and r3 long-term chronic disease.

The information context can capture the doctor's personal experience, results of clinical stud-
ies or records from hospitals. It can be represented by a data set D consisting of cases (a; r) of
observed treatments and their outcomes. The following table summarizes a particular data set
D by listing the number of occurrences for each case:

R

A

r1 r2 r3
a1 15 20 0
a2 35 80 10
a3 5 70 15

The data in this table re�ect a limited experience with the new drug a1 as compared to the
traditional treatment a2 and the placebo a3. The doctor's choice of a treatment will re�ect her
preferences over actions in the light of the information inD, e.g., (a1;D) � (a2;D) % (a3;D).
The doctor can also express preferences for additional information. E.g., given the small

sample of cases containing observations of the new drug a1, she might decide to conduct an
additional study or buy another data set. If the so obtained data set, D0, contains more ob-
servations of a1, she might feel more con�dent in the positive impact of the new treatment:
(a1;D

0) % (a1;D). Note that such preferences for data sets related to a given action a1 do
not imply the availability of both data sets. While the doctor can specify the type and quan-
tity of observations, she cannot control the outcomes in the new data set. Hence, the decision
to collect additional observations will depend on the perceived bene�ts from potential data sets
generated by such a study. Such preferences for information are thus hypothetical, but experi-
mentally testable.

7 The empirical fact that cross-country asset returns are uncorrelated is the main reason for expecting a risk-averse
decision-maker to choose an internationally diversi�ed portfolio. Quality of information is usually
neglected in this argument.
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2.4 Notation
We conclude this section by introducing some notation which will be used throughout the paper.

We use N to denote the set of natural numbers, which does not include 0. For a case c, ac is the

action observed in case c. For a data setD = (c1:::cT ), and k 2 N, Dk denotes the k-fold ofD:

Dk =

0@c1:::cT ; c1:::cT ; :::; c1:::cT| {z }
k-times

1A .
ck is the data set with k observations of case c. The frequency ofD 2 DT for T 2 N is given by

fD = (fD (c))c2C =:

�
jft j ct = cgj

T

�
c2C

:

Note that the length of the empty data set D? is 0 62 N and its frequency is not well de�ned. �c
denotes the Dirac measure on case c. It represents the frequency of a data set containing only

observations of case c. The set of frequencies of all data sets of length T is given by:

F T =:

�
f 2 �jCj�1 with f (c) 2

�
0;
1

T
:::
k

T
:::
T � 1
T

; 1

�
for all c 2 C

�
.

For a given � 2 [0; 1], a convex combination of two frequencies f and f 0 is de�ned as:

�f + (1� �) f 0 = (�f (c) + (1� �) f 0 (c))c2C .

Note that the convex combination of two frequencies need not be a frequency of a data set.

Da is the set of data sets containing only observations of action a,

Da = fD 2 D jfD (a0; r) = 0 for all a0 6= a and all r 2 Rg :

DTa =: Da\DT stands for the set of data sets of length T containing only observations of action
a. F Ta is the corresponding set of frequencies. Finally, �r is the Dirac measure on outcome r.

3 Axioms
We now suggest a set of axioms on preferences which characterize an �-MEU representation,

in which the set of probabilities over outcomes of a given action depends on the data.

The following ten axioms can be roughly divided into three categories: Axiom 1 (Complete

order), Axiom 2 (Invariance), Axiom 6 (Most preferred and least preferred outcome) and Ax-

iom 7 (Continuity) are standard in the literature. Axioms 3, 4, 5 and 10 all imply some sort of

separability of preferences. The last group of axioms, Axioms 8 and 9, deal with the issues of

ambiguity and the value of information. Axiom 8 (Neutral outcome) is the key axiom which

allows us to calibrate the decision maker's attitude towards ambiguity by determining the eval-
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uation of an action in absence of information. Axiom 9 (Decreasing ambiguity) ensures that

perceived ambiguity decreases as the number of observations grows.
Axiom 1 Complete order

The preference relation % on A� D� is complete and transitive.

Axiom 1 is standard and without it a real-valued representation is impossible. While transitivity

seems to be an innocuous assumption, completeness might be too demanding in this setting. In

particular, it requires the decision maker to be able to imagine any two hypothetical data sets

D and D0 and to be able to compare the prospects of any two actions a and a0 with respect to

these two data sets8. In a given choice situation, however, only subsets of action-data set pairs

may be feasible. The examples discussed in Section 4.1 illustrate this point and demonstrate the

applicability of this approach.
Axiom 2 Invariance

For a given T 2 N, let � be a one-to-one mapping � : f1:::Tg ! f1:::Tg. Then, for any
action a 2 A and any data set D =

�
(ct)

T
t=1

�
2 DT ,�

a; (ct)
T
t=1

�
�
�
a;
�
c�(t)

�T
t=1

�
.

This is an exchangeability condition, which implies that the order in which data arrive is irrele-

vant. It is a standard assumption in case-based theory, see e.g., BGSS (2005), and ensures that

learning from data is possible. Axiom 2 implies that for any T 2 N, an information context
D 2 DT is fully characterized by its length T and the frequency of observations fD. We can
thus write D = (fD;T ). We will use the notation D and (f ;T ) interchangeably for data sets in

D. Note, however, that a combination (f ;T ) de�nes a data set only if f 2 F T .
Axiom 3 Betweenness for sets of equal length

For any a 2 A, T , T 0 2 N, f 2 F T \ F T 0 , f 0 2 F T \ F T 0 , if (a; (f ;T )) �
(�) (a; (f

0;T )), then
(a; (f ;T 0)) �

(�) (a; (f
0;T 0)), and for any � 2 (0; 1) such that �f + (1� �) f 0 2 F T 0

(a; (f ;T 0))
�
(�) (a; (�f + (1� �) f

0;T 0))
�
(�) (a; (f

0;T 0)) :

Axiom 3 suggests that the length of the data set can be separated from the frequency of observa-

tions when evaluating the information context of action a. Intuitively, the frequency determines

how much support the data provide for the choice of a, while the length determines the preci-

8 Similarly, in the Savage framework, the decision maker has to express preferences over acts he
might never be able to afford, or acts whose consequences contradict the state, Savage (1954). To avoid
such absurd examples, the sets of states and consequences, respectively, the set of cases have to be carefully chosen.
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sion of the information. Keeping the precision constant across two data sets, they can be ranked

based solely on their content. Hence, the preference between (a; (f ;T )) and (a; (f 0;T )) should

not change, if the length of the two sets is changed to T 0. Moreover, since the linear combina-

tion of the two frequencies �f + (1� �) f 0 contains the preferred evidence from f and the less
preferred one from f 0 in proportions � and (1� �), �f + (1� �) f 0 should be ranked between
f and f 0 as long as the length of all three data sets is equal.
Axiom 4 Independence

For all T , T 0 2 N, all a and a0 2 A, all f1, f2 2 F Ta , f 01, f 02 2 F T
0

a0 and all � 2 (0; 1] such that
�f1 + (1� �) f2 2 F Ta and �f 01 + (1� �) f 02 2 F T

0
a0

(a; (f1;T ))
�
(�) (a; (f

0
1;T

0)) (4)

(a; (f2;T ))
%
(-) (a; (f

0
2;T

0))

implies:
(a; (�f1 + (1� �) f2;T ))

�
(�) (a; (�f

0
1 + (1� �) f 02;T 0)) (5)

and if (a; (f2;T )) � (a; (f 02;T 0)), then the two statements (4) and (5) are equivalent.

If the evidence (f1;T ) provides more support for the choice of a than (f 01;T 0), and if (f2;T )

provides more support for the choice of a than (f 02;T 0), then the convex combination of the

frequencies f1 and f2 should give stronger support for the choice of a than the convex com-

bination (with the same coef�cient �) of f 01 and f 02. This is justi�ed since (f1;T ) and (f2;T )

have the same length and contain only observations of the same action a. If cases containing

the observation of the same action are considered equally relevant, regardless of the outcomes

observed, in the evaluation of (�f1 + (1� �) f2;T ), the weight on the evidence from (f1;T )
should be � and that of (f2;T ) should be (1� �). The same argument applies to (f 01;T 0) and
(f 02;T

0). This axiom seems reasonable if the decision maker does not consistently overweigh or

underweigh the evidence from cases based on the observed outcomes.
Axiom 5 Action-independent evaluation of outcomes

For all a, a0 2 A, (a;D?) � (a0;D?) and for all T 2 N, f 2 F Ta , f 0 2 F Ta0 such that for all
r 2 R, f (a; r) = f 0 (a0; r),

(a; (f ;T )) � (a0; (f 0;T )) .

Axiom 5 requires that preferences on actions depend only on the available observations. If two

actions have performed identically for the same number of periods, their evaluation is the same.

In absence of information,D = D?, the decision maker should be indifferent among all actions.
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Hence, the evaluation of payoffs can be separated from the action they have resulted from.
Axiom 6 Most preferred and least preferred outcome

There exist �r and r 2 R such that for all a 2 A, (a; (a; �r)) % (a;D?) % (a; (a; r)) and for
all c 2 C,

(a; (a; �r)) % (a; c) % (a; (a; r)) .
Furthermore, for all a, a0 2 A, there are r0 and r00 2 R such that

(a; (a; �r)) % (a; (a0; r0)) � (a; (a0; r00)) % (a; (a; r))
and at least one of the two weak inequalities is strict.

This axiom postulates that there is a best outcome �r such that the observation of the case (a; �r),

provides the most preferred evidence in favor of choosing a compared to any other case in C or

to obtaining no information. The least preferred outcome r is de�ned symmetrically. By Axiom

5, �r and r will coincide for all actions a 2 A, and we disregard the potential dependence on
a in the statement of the axiom. The second part of the axiom is a richness condition, which

is not necessary for the representation, but guarantees that the utility function over outcomes is

non-constant and the similarity function is unique.

Remark 3.1 Axioms 3 and 6 imply that for all a 2 A, and all T 2 N,
�
a; (a; �r)T

�
��

a; (a; r)T
�
and for all D 2 DT ,

�
a; (a; �r)T

�
% (a;D) %

�
a; (a; r)T

�
.

Axiom 7 Continuity

For all a, a0 2 A,D,D0 2 D�, if (a;D) � (a0;D0), there is a � > 0 and for each k 2 N, there
exist a �k > k and ��k1, �

�k
2 2

n
0; 1�k! ; :::

�k!�1
�k!
; 1
o
with

�����k1 � ��k2��� � � such that
(a;D) %

�
a;
�
�
�k
1�(a;�r) +

�
1� ��k1

�
�(a;r); �k!

��
�
�
a;
�
�
�k
2�(a;�r) +

�
1� ��k2

�
�(a;r); �k!

��
% (a0;D0) .

Here, ��k1 and �
�k
2 identify two data sets of length �k!, which contain only observations of (a; �r)

and (a; r) and which can be nested between (a;D) and (a0;D0). For a given �k, choosing ��k1 and

�
�k
2 so that their difference is maximized amounts to choosing the best approximations to (a;D)

and (a0;D0) on the set of data sets of length �k! containing only (a; �r) and (a; r). The axiom

requires that if preferences between (a;D) and (a0;D0) are strict, the difference between their

best approximations is bounded away from 0.
Axiom 8 Neutral outcome

There exists an r̂ 2 R such that for all a 2 A and all k 2 N, (a;D?) �
�
a; (a; r̂)k

�
.

Axiom 8 postulates the existence of an outcome r̂ such that the observation of (a; r̂) is identical

13



to receiving no information about the performance of a. Hence, additional observations of (a; r̂)

do not change the evaluation of a. E.g., r̂ could indicate the missing record of an outcome of

an action, a problem often encountered in empirical analysis, see Manski (2000). This axiom

plays a key role for calibrating the decision maker's attitude towards ambiguity. It allows us to

identify the degrees of optimism and pessimism by determining the decision maker's evaluation

of an action in absence of information.
Axiom 9 Decreasing ambiguity

For all a 2 A, k 2 N and all D 2 D, (a;D) � (a;D?) implies
�
a;Dk+1

�
�
�
a;Dk

�
and

(a;D?) � (a;D) implies
�
a;Dk

�
�
�
a;Dk+1

�
.

Axiom 9 captures the idea that ambiguity decreases with increasing number of observations.

It establishes the connection between preferences for information precision and the content of

a data set. If the choice of a given D is preferred to choosing a absent any information, then

the content of D provides positive evidence for choosing a. As the number of observations

increases, while the frequency remains constant, the information in the data set becomes more

precise, thus providing stronger evidence in favor of a,
�
a;Dk+1

�
�
�
a;Dk

�
. The reverse holds

for evidence considered worse than no information at all.

The last axiom will guarantee that the utility over outcomes, the similarity of cases and the

perceived correlation between actions do not depend on the length of the data sets9. Consider an

arbitrary action a and a data setD. We wish to �nd a data set which contains only observations

of (a; �r) and (a; r), i.e, a data set
�
�aD�(a;�r) + (1� �aD) �(a;r); T̂

�
for some T̂ 2 N such that�

a;
�
�aD�(a;�r) + (1� �aD) �(a;r); T̂

��
� (a;D). Since the mixture coef�cient �aD has to be

rational-valued, such a data set may not exist for any T̂ . We can show, however that an arbitrarily

precise approximation of (a;D) is possible for large T̂ .

In order to state our last Axiom, we introduce some notation. For some T 2 N, let D 2
DT [ fD?g. For every k 2 N, k � T , de�ne �ak! (D) and �ak! (D) as the frequencies of

occurrence of (a; �r) in the data sets of length k! which best approximate D from above and

9 The �rst two properties are standard in case-based theory, see Gilboa and Schmeidler (2001). The
last property of case-based beliefs was introduced in BGSS (2005). One may question these properties, compare the
discussion in Gilboa and Schmeidler (2001) and Eichberger and Guerdjikova (2010), but it makes
sense to impose them on our representation in order to make it comparable to most of the case-based literature.
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from below. Formally,

�ak! (D) =

0BB@� 2 �0; 1k! :::k!� 1k!
; 1

�
j

�
a;
�
��(a;�r) + (1� �) �(a;r); k!

��
% (a;D)

and there is no �0 2
�
0; 1

k!
:::k!�1

k!
; 1
	
such that�

a;
�
��(a;�r) + (1� �) �(a;r); k!

��
�

�
�
a;
�
�0�(a;�r) + (1� �0) �(a;r); k!

��
% (a;D)

1CCA
(6)

and, similarly,

�ak! (D) =

0BB@� 2 �0; 1k! :::k!� 1k!
; 1

�
j

(a;D) %
�
a;
�
��(a;�r) + (1� �) �(a;r); k!

��
and there is no � 0 2

�
0; 1

k!
:::k!�1

k!
; 1
	
such that

(a;D) %
�
a;
�
� 0�(a;�r) + (1� � 0) �(a;r); k!

��
�

�
�
a;
�
��(a;�r) + (1� �) �(a;r); k!

��
1CCA .
(7)

We denote the common limit of �ak! (D) and �ak! (D) by �aD and call it the unambiguous equiva-

lent of data set D with respect to a, or the unambiguous equivalent of (a;D).

De�nition 3.1 The unambiguous equivalent of (a;D), �aD, is the common limit of �ak! (D) and
�ak! (D) as k !1.

The repeated observation of cases (a; �r) and (a; r) represents an outcome of a statistical ex-

periment with respect to a. As the number of observations k! grows, the ambiguity caused by

a limited number of observations vanishes. The limit prediction about a associated with the

sequence of data sets �ak! (D) should assign a probability �aD to �r and (1� �aD) to r. Since this
limit distribution is considered to provide the same information for the choice of a as D, the

two are regarded as equivalent.

In the Appendix, we prove the following lemma, which shows that under Axioms 1-9 the un-

ambiguous equivalent �aD exists for any a 2 A and any D 2 D�.

Lemma 3.1 Under Axioms 1-9, for any D 2 D� and any a 2 A, the sequences �ak! (D) and
�ak! (D) converge to a common limit �aD. Hence, the unambiguous equivalent of (a;D) exists.

Lemma A.1 in the Appendix shows that under Axioms 1-9, the function V (a;D) =: �aD can

be used to represent % on A� D�. Consider three data sets with equal number of observations
T , and frequencies, f , f 0 and f 00 2 F T such that (a; (f ;T )) � (a; (f 00;T )) � (a; (f 0;T )). The
corresponding unambiguous equivalents satisfy �a(f ;T ) > �a(f 00;T ) > �a(f 0;T ). This allows us to

state:
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De�nition 3.2 For any a 2 A, any T 2 N and any three frequencies f , f 0 and f 00 2 F T such
that (a; (f ;T )) � (a; (f 00;T )) � (a; (f 0;T )), the coef�cient � (f ; f 0; f 00;T ) 2 (0; 1) is de�ned
by:

� (f ; f 0; f 00;T )�a(f ;T ) + (1� � (f ; f 0; f 00;T ))�a(f 0;T ) = �a(f 00;T ).

The so-de�ned coef�cient � (�) has different meanings depending on the speci�c frequencies
of the three data sets. For data sets with frequencies which are averages of other frequencies,

f 00 = �f + (1� �) f 0 for some � 2 (0; 1), the weight � (f ; f 0; f 00;T ) re�ects the relative

similarity between the action under consideration a and the different actions observed in the two

data sets (f ;T ) and (f 0;T ). In particular, if f = �(a;r), f 0 = �(a0;r) and f 00 = 1
2
�(a;r) +

1
2
�(a0;r),

the similarity between a and a0 is the weight put on the evidence from the observation of a0 in

the evaluation of a and is given by sa (a0) = 1��(f ;f 0;f 00;T )
�(f ;f 0;f 00;T ) .

For three data sets, each of which contains only observations of a with a single outcome, e.g.,

f = �(a;�r), f 0 = �(a;r) and f 00 = �(a;r), �
�
�(a;�r); �(a;r); �(a;r);T

�
represents the evaluation of

outcome r relative to the best and the worst outcome. Normalizing the utility of �r to 1 and that

of r to 0, the utility of r is given by �
�
�(a;�r); �(a;r); �(a;r);T

�
.

Finally, for three data sets with frequencies f = �(a;�r), f 0 = �(a;r) and f 00 = �(a0;r0) with a0 6= a,
�
�
�(a;�r); �(a;r); �(a0;r0);T

�
represents the evaluation of action a given the observation (a0; r0).

Hence, it re�ects the perceived correlation between the outcomes of a and a0.
Axiom 10 Length independence

Let a 2 A. Suppose that for some f , f 0 and f 00 2 F T , (a; (f ;T )) � (a; (f 00;T )) �
(a; (f 0;T )) and
(i) either �f + (1� �) f 0 = f 00 for some � 2 (0; 1),
(ii) or f = �(a;�r), f 0 = �(a;r) and f 00 = �c for some c 2 C.

Then, for any T 0 such that f , f 0 and f 00 2 F T 0 , � (f ; f 0; f 00;T ) = � (f ; f 0; f 00;T 0).

Axiom 10 requires that the coef�cient � (f ; f 0; f 00;T ) is independent of T . Consider �rst case

(i). Intuitively, the relevance of a case for the evaluation of an action is based on some a priori

information, which is encoded in the structure of the action set A and which cannot be learned

from the data. Hence, � (f ; f 0; f 00;T ) should not depend on the number of observations. In case

(ii), if f = �(a;�r), f 0 = �(a;r) and f 00 = �(a0;r0), the weight �
�
�(a;�r); �(a;r); �(a0;r0);T

�
re�ects

the perceived utility of an outcome relative to the best and the worst outcome (if a = a0) or

a perceived correlation between the realizations of a and a0 (if a 6= a0), neither of which can

be learned from the data. Hence, in this case �
�
�(a;�r); �(a;r); �(a0;r0);T

�
is also a subjective
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characteristic of the decision maker which should not depend on the length of the data set T .

In Appendix B, we state a behavioral version of Length Independence, which does not make

use of De�nition 3.2 and is shown to be equivalent to Axiom 10.

Showing independence is straightforward10 for axioms A1, A3�A9 and (the behavioral version

of) A10. A2 (Invariance) implies that only the frequency and the length of the data set determine

preferences. It allows us to use the notation (f ;T ) to write the rest of the axioms in a more

concise form. In this sense, the rest of the axioms are not independent of A2.

4 The Representation
In this section, we derive an �-MEU representation of preferences over action-data-set pairs.

We identify the utility function over outcomes and the decision maker's beliefs and show how

beliefs can be represented as a combination of the objective characteristics of the data set and the

subjective characteristics of the decision maker such as similarity and perception of ambiguity.

To state the main theorem, we assume that there are more than three outcomes11, jRj > 3.

Theorem 4.1 Let jRj > 3. A preference relation% onA�D� satis�es Axioms 1�10 if and only
if there exist a utility function over outcomes u : R! R, a prediction function � : A�C ! R,
a family of similarity functions sa : A ! R++, a 2 A, degrees of optimism, �, and pessimism,
(1� �), a sequence of perceived degrees of ambiguity (
T )T2N, and minimal coef�cients of
perceived ambiguity depending on cases and actions, 
ca : A � C ! [0; 1) such that % can be
represented by the function:

V (a;D) = � max
p2Ha(D)

u � p+ (1� �) min
p2Ha(D)

u � p, (8)

where for all a 2 A, Ha (D?) = �jRj�1 and for a given action a and a data set D 2 D with
frequency fD and length T , the set of probability distributions Ha (D) is de�ned as:

Ha (D) =

"

T +

(1�
T )
P
c2C


cafD(c)sa(ac)P
c02C

fD(c0)sa(ac0 )

#
�jRj�1 +

(1�
T )
P
c2C

(1�
ca)sa(ac)fD(c)P
c02C

sa(ac0 )fD(c
0)

( P
c2C

(1�
ca)fD(c)sa(ac)��caP
c2C

(1�
ca)sa(ac)fD(c)

)
(9)

The elements of the representation satisfy the following conditions:

(i) u is unique up to af�ne-linear transformations;

(ii) � is unique up to indifference12 and satis�es �(a;r)a = r for all a 2 A and all r 2 R;

10 Proofs are available from the authors upon request.
11 This condition is not necessary for the representation and, hence, does not restrict the application of our model.
Combined with Axiom 6, it ensures that the similarity function is unique. We can also prove the
statement of the main Theorem for jRj = 3, and a somewhat more restrictive assumption on the
preference order. Details are available from the authors upon request.
12 Lemma A.5 and its proof provide more details.
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(iii) the functions sa are unique up to a multiplication by a positive number;

(iv) � 2 [0; 1] is unique and for all a 2 A, V (a;D?) = u (r̂) = �u (�r) + (1� �)u (r),
where �r is the best, r is the worst and r̂ is the neutral outcome;

(v) the sequence (
T )T2N is unique, strictly decreasing with 
T 2 (0; 1) and limT!1 
T = 0;

(vi) the minimal coef�cients 
ca are unique and satisfy 

(a;r)
a = 0 for all a 2 A and r 2 R;

(vii) for all a, a0 2 A, there are r0 and r00 2 R such that V (a; (a; �r)) � V (a; (a0; r0)) >
V (a; (a0; r00)) � V (a; (a; r)) and at least one of the weak inequalities is strict.

4.1 Interpretation of the Representation
The �-MEU representation in (8) says that when evaluating the choice of a for a given data

set D, the decision maker considers a set of probability distributions over outcomes Ha (D).

He assigns a weight of � (his degree of optimism) to the expected utility derived using the

best probability distribution in this set and a weight (1� �) (his degree of pessimism) to the
expected utility derived using the worst probability distribution inHa (D). These weights re�ect

the evaluation of an action in absence of information, i.e., given the empty data set D?.

The �-MEU approaches in the literature13 differ from ours in two respects. First, they use the

Savage framework and, thus, derive a single set of priors over the states of the world. The

case-based framework does not specify states of the world, nor are these observable in the data.

Hence, uncertainty cannot be dissociated from the actions. Ha (D) is thus a set of probability

distributions over payoffs for a given action a. It is comparable to a marginal probability dis-

tribution obtained in the Savage framework by conditioning the prior on the choice of a given

action. Without additional assumptions specifying a state space, there is no sense in which such

beliefs should be consistent across actions. While a general analysis falls outside the scope of

this paper, in Section 4.5 below, we use the example of a randomized statistical experiment to

show how a notion of states can be introduced in this framework.

The second important distinction between the standard models of ambiguity and our approach

lies in the fact that the set of probability distributions over outcomes Ha (D) depends on the

evaluated action and on the information context and incorporates objective features of the data

set14. In particular, we take the stand that if the number of observations is large, frequencies

13 There does not seem to exist an axiomatisaton for the general �-MEU representation in the Savage framework.
Ghirardato, Maccheroni and Marinacci (2004) and Eichberger, Grant, Kelsey and Koshevoy (2011)
are relevant references. A special case has been axiomatised in Chateauneuf, Eichberger and Grant (2007).
14 In this sense, our representation resembles Carnap's (1980) inductive approach to probabilities.
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alone determine beliefs. The frequencies of observations in the data can then be taken as a

benchmark of unambiguous beliefs15. Deviations from this benchmark are interpreted to mean

that the agent perceives ambiguity. In absence of any information, this ambiguity is maximal

and the derived representation coincides with the Hurwicz criterion, Hurwicz (1951).

It is worth having a closer look at how beliefs depend on data. We restate (9) giving interpreta-

tion to its various elements:

Ha(D)=

26666664 
T|{z}
vanishing
ambiguity

+

(1� 
T )
P
c2C


cafD (c) sa (ac)P
c02C

fD (c0) sa (ac0)| {z }
persistent ambiguity

37777775
| {z }

perceived ambiguity

�jRj�1+

(1� 
T )
P
c2C

(1� 
ca) sa (ac) fD (c)P
c02C

sa (ac0) fD (c0)| {z }
perceived con�dence

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

P
c2C

(1� 
ca) fD (c) sa (ac) ��caP
c2C

(1� 
ca) sa (ac) fD (c)| {z }
prediction

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

Observe �rst that Ha (D) is a convex combination of the simplex, �jRj�1 with a probability

distribution referred to as prediction, which is computed based on the frequency of D, fD. It

aggregates the observations in the data set by assigning to each case c an unambiguous pre-

diction about the outcome of a given the observation of this case, �ca 2 R. The probability

distribution concentrated on such an unambiguous prediction �ca, ��ca , is weighted by the fre-

quency of case c in the data, fD (c), by its similarity to the action a, sa (ac), as well as by the

degree of con�dence, (1� 
ca) assigned by the decision maker to this prediction.
�ca is interpreted as the decision maker's unambiguous prediction about the outcome of a based

on a very large data set containing only observations of case c. If c contains the action under

consideration, i.e., c = (a; r), the agent should be persuaded that the payoff of a is r upon

observing D =
�
cT
�
for large values of T . His con�dence in this prediction should be 1.

Hence, �(a;r)a = r and 
(a;r)a = 0, re�ecting the objective character of the data. In contrast, when

c contains an action different from a, the lack of objective information about the correlation

between the actions means that the unambiguous prediction �ca is subjective and the con�dence

in it may be less than 116, i.e., 
ca > 0. By choosing 
ca to be minimal for each a 2 A and c 2 C,
we implicitly assume that the decision maker adopts the prediction he is most con�dent in.

The weight assigned to the simplex captures the subjectively perceived ambiguity about the out-

come of a given data set D. It is composed of vanishing ambiguity due to a limited number of

For a family of conditional preferences over acts, Wakker (2002) provides an axiomatic foundation
for Carnap's formula. We are grateful to Peter Wakker for referring us to this strand of literature.
15 This is similar, e.g., to GHTV (2007), who choose the Steiner point of the set of priors as a
benchmark for ambiguity-neutrality.
16 Eichberger and Guerdjikova (2010) provide an example.
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observations in the data, 
T and of persistent ambiguity due to unobservable correlation, i.e., to

the heterogeneity of cases in the data, captured by the weighted average of the coef�cients 
ca.

For the empty data set, the number of observations is 0 and the corresponding degree of ambi-

guity can be set to 1, implying that the Ha (D?) coincides with the simplex �jRj�1. In general,

when the number of observations T is small, 
T is close to 1 and the impact of ambiguity due

to unobservables is relatively small. As T increases, the ambiguity due to limited number of

observations goes to 0 and the entire ambiguity can be attributed to data heterogeneity.

4.2 Special cases
The representation in Theorem 4.1 is very general. It combines elements from the case-based

decision theory and the �-max-min approach. Hence, we expect special cases to be of particular

interest for applications in economics and other �elds. Without claim to completeness, we

discuss some cases which correspond to well-known representations.
1. Objective probabilities as limit frequencies: Assume that D contains only observations of a
given action a, fD 2 Fa and the number of observations T is large. According to Theorem
4.1, �(a;r)a = r and 
(a;r)a = 0. As T grows, limT!1 
T = 0 and ambiguity completely
vanishes. We obtain:

lim
T!1

V (a; (fD;T )) =
X
r2R

u (r) fD (a; r)

Hence, for statistical experiments with a large number of observations, beliefs coincide with
the limit frequencies of outcomes. Preferences are represented by EU with respect to these
limit frequencies.

2. Similarity-weighted frequencies: Assume that the decision maker perceives no ambiguity
about unobservables, i.e. 
ca = 0 for all a 2 A, c 2 C. As the number of observations in a
data set D with frequency fD grows, we obtain

lim
T!1

V (a; (fD;T )) =
X
r2R

u (r)
X
c2C

fD (c) sa (ac) ��ca (r)P
c02C fD (c

0) sa (ac0)
.

SinceD contains heterogeneous cases (ac 6= ac0 for some c, c0 2 D), limit beliefs have to take
into account the similarity between different observations17. The representation then corre-
sponds to EU with respect to similarity-weighted frequencies. For an arbitrary T , beliefs are
centered around the similarity-weighted frequencies and given by:

Ha (D) = 
T�
jRj�1 + (1� 
T )

(X
c2C

fD (c) sa (ac) ��caP
c02C fD (c

0) sa (ac0)

)
.

This is an extension of BGSS (2005) to the case in which the decision maker perceives
ambiguity due to the limited number of observations in the data.

17 BGSS (2005) discuss why decisions may have to be based on heterogeneous data sets.
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3. Hurwicz criterion: If the decision maker has no information, i.e., D = D?, we obtain:
V (a;D?) = � max

p2�jRj�1
u � p+ (1� �) min

p2�jRj�1
u � p.

In this case, the representation coincides with the Hurwicz criterion, Hurwicz (1951), ap-
plicable to the case of complete ignorance about the true probability distribution.

4. NEO-additive capacity: Assume that all observations are equally relevant, sa (a0) = 1 for
all a, a0 2 A and that there is no ambiguity about unobservables, 
ca = 0 for all a 2 A,
c 2 C. We can then de�ne a state space, which coincides with the set of cases, S = C. The
outcome of action a in state sc = c is given by the unambiguous prediction �ca. For a data set
D = (fD;T ), the representation can be written as:

V (a;D) = � max
p2�(D)

X
c2C

u (�ca) p (sc) + (1� �) min
p2�(D)

X
c2C

u (�ca) p (sc) ,

�(D) := 
T�
jCj�1 + (1� 
T ) ffDg .

This representation is equivalent to Choquet expected utility with respect to a NEO-additive
capacity �D on S = C, �D(E) := �
T + (1 � 
T )

P
fcjsc2Eg

fD (c) for ? 6= E $ S, �(S) =

1, �(?) = 0, with a frequency-based additive belief on S given by fD (sc) = fD (c), see
Chateauneuf, Eichberger and Grant (2007).

We conclude by stating an alternative way of writing the representation in (8), which will be

useful in the applied examples in Section 4.4.

Remark 4.1 Since R is �nite, for D 2 D, the representation in (8) can be rewritten as18

V (a;D) =

 

T +

(1�
T )
P
c2C


cafD(c)sa(ac)P
c02C

fD(c0)sa(ac0 )

!
[�u (�r) + (1� �)u (r)] +

(1�
T )
P
c2C

(1�
ca)fD(c)sa(ac)u(�ca)P
c02C

fD(c0)sa(ac0 )

(10)

4.3 Comparative Statics and Parameter Independence
Our representation has multiple parameters. In this section, we show that these parameters

are independent, i.e., that different parameters affect the evaluations of distinct action-data-set-

pairs. W.l.o.g., we normalize u (�r) = 1 and u (r) = 0. For concreteness, we �x two actions a,

a0 2 A, T 2 N and r 2 R and consider the following data sets and their evaluations:

18 See, e.g., Chateauneuf, Eichberger, and Grant (2007, p.543, Remark 3.2).

21



D1 = D? V (a;D1) = �

D2 = (a; �r)
T V (a;D2) = �
T + (1� 
T )

D3 = (a; r)
T V (a;D3) = �
T

D4 = (a
0; r)T V (a;D4) = �
T + (1� 
T )

h
�


(a0;r)
a +

�
1� 
(a

0;r)
a

�
u
�
�
(a0;r)
a

�i
D5 =

�
(a; r̂)T�k ; (a0; r)k

�
V (a;D5) = �
T + (1� 
T )

"
(T�k)�+sa(a0)k

�
�

(a0;r)
a +

�
1�
(a

0;r)
a

�
u

�
�
(a0;r)
a

��
T�k+sa(a0)k

#
We summarize the comparative statics in the following table:

V (a;D1) V (a;D2) V (a;D3) V (a;D4) V (a;D5)
� + + + + +


T 0 0 if �=1
� if �<1

+ if �>0
0 if �=0

+ if u
�
�
(a0;r)
a

�
<�

� if u
�
�
(a0;r)
a

�
>�

+ if u
�
�
(a0;r)
a

�
<�

� if u
�
�
(a0;r)
a

�
>�



(a0;r)
a 0 0 0

+ if u
�
�
(a0;r)
a

�
<�

� if u
�
�
(a0;r)
a

�
>�

+ if u
�
�
(a0;r)
a

�
<�

� if u
�
�
(a0;r)
a

�
>�

sa (a
0) 0 0 0 0

+ if u
�
�
(a0;r)
a

�
>�

� if u
�
�
(a0;r)
a

�
<�

Each of the parameters �, 
T , sa (a0) and 

(a0;r)
a affects the evaluations of a different subset

of
�
(a;Dn)

5
n=1

	
. Hence, we can distinguish between changes caused by these parameters by

observing which of the values V (a;Dn) have changed as a result of an exogenous shock.

4.4 Examples Resumed
In this section we reconsider the examples introduced in Section 2 and show how the represen-

tation derived in Theorem 4.1 can be applied to these decision problems.
Example 1 (resumed) Betting on a draw from an urn

Our �rst example shows how the Ellsberg paradox can be generalized to account for different
degrees of information precision. Instead of stating that "there are 50 white and 50 black balls
in urn 2" and providing no information about urn 1, we provide data for both urns and ask the
agent about his preferred color-urn combination.

An important characteristic of this example is that counterfactuals are observable, i.e., the
observation of the outcome of a given bet, say (aw; 1), uniquely identi�es the color of the ball
drawn from the urn (white), and with this the (counterfactual) outcome of the other bet, ab, 0.
We thus make the following assumptions about the parameters of the representation:

(i) all observations are equally relevant for the prediction to be made:
sab(ab) = sab(aw) = saw (ab) = saw (aw) = 1;

(ii) for i, j 2 fb;wg, i 6= j, the unambiguous predictions �cai satisfy:

�cai =

�
1 for c = (ai; 1) or c = (aj; 0)
0 for c = (ai; 0) or c = (aj; 1)

;

(iii) there is no ambiguity due to heterogeneity of cases, 
ca = 0 for all a 2 A and c 2 C.
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The following expressions describe the sets of probabilities assigned to r = 1,Ha (D) (1) for
a given data set D of length T :
Hab (D) (1) = [(1� 
T ) (fD (ab; 1) + fD (aw; 0)) ; (1� 
T ) (fD (ab; 1) + fD (aw; 0)) + 
T ]

(11)

Haw (D) (1) = [(1� 
T ) (fD (aw; 1) + fD (ab; 0)) ; (1� 
T ) (fD (aw; 1) + fD (ab; 0)) + 
T ] .
(12)

Note that beliefs are centered around the empirical frequencies and converge to them as the
number of observations becomes large, i.e., limT!1 
T = 0.

Let urn 1 be characterized by data set D1 in (1), and let urn 2 be described by D2 in (2). For
a given degree of optimism �, we obtain:

V (ab;D1) = V (aw;D1) = 
10 [�u(1) + (1� �)u(0)] + (1� 
10)
u(1) + u(0)

2
;

V (ab;D2) = V (aw;D2) = 
300 [�u(1) + (1� �)u(0)] + (1� 
300)
u(1) + u(0)

2
:

Since the empirical frequencies of D1 and D2 are equal and 
10 > 
300, the comparison
between the bets on urn 1 and urn 2 is completely determined by �. Any of the two bets on
urn 2 is preferred to any of the two bets on urn 1 if and only if the decision maker's degree of
pessimism exceeds his degree of optimism, � < 1

2
. A purely pessimistic decision maker with

� = 0, exhibits the usual Ellsberg preferences, choosing to bet on the less ambiguous urn,
regardless of the bet:

V (aw;D2) = V (ab;D2) > V (aw;D1) = V (ab;D1) .

Intuitively, a pessimist overweighs the probability of the worst outcome, 0, relative to its
frequency in the data. As the number of observations increases, the weight assigned to the
worst outcome diminishes. Hence, controlling for the frequency of observations, a pessimistic
decision maker prefers longer data sets.

This example shows how the Ellsberg paradox can be extended to deal with various degrees of

information precision. Information differences regarding the urns are a characteristic feature

of the Ellsberg paradox. The notion of a data set allows us to capture the "amount, quality,

and unanimity of information", Ellsberg (1961, p.657) as objective characteristics of a decision

problem and incorporate this objectivity in the beliefs of the decision maker. The parameters of

our model, the degrees of optimism and pessimism as well as the perception of ambiguity, can

then be used to characterize the decision maker's behavior in face of imprecise information.
Example 2 (resumed) Loan market

Reconsider the loan market, in which entrepreneurs (E) and lenders (L) choose projects
from the set A to obtain returns in R. Agents can invest either in a well established market 1
or in an emerging Eastern European market 2. All agents have identical utility functions over
outcomes, u (�) and, for a data set of a given length T , the same degree of perceived ambiguity

T . The degree of optimism for an agent of type i 2 fE;Lg is given by �i, where �i = 1 stands
for a pure optimist, and �i = 0 for a pure pessimist.
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To simplify the model, we assume that there is only one type of project, A = fag, and two
outcomes, high, �r, and low, r. Hence,R = f�r; rg. Data setD1 describes the established market
1, whereasD2 contains the information about the emerging Eastern European market. In order
to focus on the effect of information precision on market outcomes, we assume that bothD1 and
D2 contain the same frequency of high payoff realizations, f := f (�r) 2 (0; 1), but differ in
length, D1 2 DT1 , D2 2 DT2 with T1 > T2.
For an agreed upon repayment in market j 2 f1; 2g, qj 2 (r; �r), the payoff of a lender is

given by minfqj; rg, and the payoff of an entrepreneur is maxf�r � qj; 0g. Using equation (10)
in Remark 4.1, the evaluation of project a in a given information context Dj , j 2 f1; 2g, is:

VL (a;Dj j qj) = 
Tj
�
�Lu (qj) +

�
1� �L

�
u (r)

�
+
�
1� 
Tj

�
[fu (qj) + (1� f)u (r)]

for the lender, and

VE (a;Dj j qj) = 
Tj
�
�Eu (r � qj) +

�
1� �E

�
u (0)

�
+
�
1� 
Tj

�
[fu (r � qj) + (1� f)u (0)]

for the entrepreneur.

If the repayment is identical for both markets, q1 = q2 = q, both types of agents will prefer to
invest in the established market 1, if and only if the following two conditions are satis�ed:

[fu (q) + (1� f)u (r)] >
�
�Lu (q) +

�
1� �L

�
u (r)

�
[fu (r � q) + (1� f)u (0)] >

�
�Eu (r � q) +

�
1� �E

�
u (0)

�
.

Both conditions will be satis�ed for suf�ciently low degrees of optimism �L and �E . In
particular, if �L = �E = 0, both types will prefer the market with more precise information
D1, regardless of the frequency f . In this case, there will be trade only in the well established
market and no transactions in the emerging market19.

More interesting is the case, in which the two types differ signi�cantly in their degrees of
optimism �. We assume that lenders are more conservative than entrepreneurs and consider
the extreme case where the entrepreneurs are pure optimists and the lenders pure pessimists,
1 = �E > �L = 0. Lenders will provide funding for entrepreneurs investing in both economies
only if the agreed upon repayment q2 in the market with more ambiguous information D2 is
suf�ciently higher than the repayment q1 for D1. Assuming that there are no other investment
opportunities, an equilibrium system of repayments (q�1; q�2) must be such that both types of
agents are indifferent between investing in the two markets:

VL (a;D1jq�1) = VL (a;D2jq�2) and VE (a;D1jq�1) = VE (a;D2jq�2) .
For the case of a linear utility function, u(r) = r for r 2 R, straightforward computations

yield the explicit solution for the equilibrium prices
q�1 =

�
1� 
T2

�
[(1� f) r + fr] + 
T2r

and

q�2 =

�

T2 � 
T1

�
[(1� f) r + fr] + 
T1q�1


T2
.

19 The assumption that repayment is equal across markets is inconsequential for this result. Increasing the price of
credit in market 1 relative to market 2 would only increase the incentives of lenders to participate in market 1.
Decreasing the relative price of credit in market 1 would give more incentives to entrepreneurs to
choose this market. Hence, the only equilibrium involves both lenders and entrepreneurs participating in market 1.
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It is easy to check that q�2 2 (r; �r), while q�1 2 (r; q�2).
It follows that the cost of credit is lower in the more informative market. If one were to

compare the empirical distribution of returns without taking into account the informativeness
of data, one would expect that both markets would be served at the same price, i.e., 
T1 = 
T2
implies q�1 = q�2 .

Example 2 shows how our approach can be used to model market participation choices based on

informational differences across markets. It allows us to generate new and testable hypothesis

about market outcomes which could not be obtained with expected utility theory. Given identi-

cal frequencies of outcomes and equal price of credit in the two markets, a Bayesian expected

utility maximizer prefers to trade in the market with more observations, D1, if and only if the

realized frequency f of the better outcome exceeds her prior. In contrast, a purely pessimistic

decision maker always trades in the more informative market, regardless of f .

Our next example will focus on the impact of similarity.
Example 3 (resumed) Financial Investment

Suppose that the investor considers investing in the listed company in his home market, aH1 ,
or the listed company in the foreign market, aF1 , given the information in D, equation (3). To
examine the effect of information about the non-listed home company aH2 on this decision, we
assume that the two listed assets aH1 and aF1 are essentially identical, except for their similarity
to aH2 . In particular, we consider an observation of aH2 to be more relevant for the evaluation
of aH1 than for the evaluation of aF1 . We thus assume:

(i) The number and frequency of observations of aH1 , aF1 and aH2 satisfy: TH1 = T F1 =: T1,
TH2 =: T2, fD

�
aH1 ; r

�
= fD

�
aF1 ; r

�
=: fD (a1; r) and fD

�
aH2 ; r

�
=: fD (a2; r) for all r 2 R.

(ii) The unambiguous predictions satisfy: �(a
0;er)

a = er, whenever a, a0 2 faH ; aFg and
�
(aH2 ;er)
aF1

= �
(aH2 ;er)
aH1

=: �(a
H
2 ;er) for all ~r 2 R,

(iii) The similarity function satis�es: saH1 (a
H
1 ) = saH1 (a

F
1 ) = saF1 (a

H
1 ) = saF1 (a

F
1 ) = 1 and

saH1 (a
H
2 ) = sH > saF1 (a

H
2 ) = sF ,

(iv) The coef�cients of perceived ambiguity do not depend on the observed outcomes ~r and
satisfy 
(a

0;~r)

aH1
= 
a

0

aH1
= 
a

0

aF1
= 


(a0;~r)

aF1
=: 
a

0 for all a0 2 A, ~r 2 R. Hence, by property (vi) of
Theorem 4.1, we obtain 
aH1 = 
aF1 = 0 and 
aH2 2 [0; 1).
Note that under these assumptions, given the data set D of length T =: 2T1 + T2, the sets of

beliefs associated with action ai1, i 2 fH;Fg satisfy:

Hai1 (D) =

"

T +

P
r2R(1�
T )


aH2 sifD(a2;r)P
r02R

[2fD(a1;r0)+sifD(a2;r0)]

#
�jRj�1 +

(1�
T )
P
r2R

"
2fD(a1;r)f�rg+

�
1�
a

H
2

�
sifD(a2;r)

(
�
�
(aH2 ;r)

)#
P
r02R

[2fD(a1;r0)+sifD(a2;r0)]

It is easy to show that under the assumptions made above, the comparison between aH1 and aF1
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depends on the sign of the expression:

V
�
aH1 ;D

�
� V

�
aF1 ;D

�
= 2T1T2(sH�sF )

[2T1+sHT2][2T1+sFT2]

"�
1� 
aH2

�
u �

P
r2R

fD(a2;r)�
�
(aH2 ;r)P

r02R
fD(a2;r0)

� u �
P
r2R

fD(a1;r)�rP
r02R

fD(a1;r0)

#

Since by assumption, sH > sF , aH1 is preferred to aF1 , if the expected utility of aH1 predicted
based on the information about aH2 and discounted by the degree of con�dence in this prediction�
1� 
aH2

�
exceeds the expected utility based on the prediction from the directly relevant data

about aH1 and aF1 . Hence, favorable information about a non-listed asset in the home country
may induce a strict preference for the listed company in the home country if this information is
not too ambiguous. For sH = sF , the two assets have the same evaluation. Hence, similarity
perceptions alone can explain the strict preference for home assets.

Example 3 highlights the role of similarity among actions showing that it can help explain the

home bias in portfolio choice without appealing to differences in perceived ambiguity, which in

turn may further re-enforce the effect.

4.5 Relating the Representation to the State-Based Model of Ambiguity
Most of the de�nitions of ambiguity in the literature are related to the violation of the Savage P2

axiom for non-comonotonic acts, and, thus, rely on the notion of a state space. In the case-based

model, we de�ne perceived ambiguity as deviation of beliefs from observed frequencies. In this

section, the connection between the two approaches is illustrated for statistical experiments, for

which the de�nition of a state space is implied by the description of the problem.
Example 1 (resumed) Betting on a draw from an urn

The state-space in this example is given by the colors of the ball in the urn: S = fB;Wg. For
a given D 2 DT , de�ne �D as the probability distribution which assigns to state s 2 fB;Wg
the frequency with which this state has been observed in the data:

�D = (�D (W ) ; �D (B)) =: (fD (ab; 0) + fD (aw; 1) ; fD (ab; 1) + fD (aw; 0)) .
De�ne �(D) as

�(D) = (1� 
T ) f�Dg+ 
T�1

and observe that for a 2 A, Ha (D) de�ned by (11) and (12) gives the corresponding set of
marginal distributions over outcomes for action a 2 A. Hence, a case-based agent satisfying
A1-A10 behaves identically to an �-MEU maximizer with subjective set of priors �(D). Since
�(D) is centered around the empirical frequency of states, �D, 
T can be interpreted as the
perceived ambiguity due to an insuf�cient number of observations.

To see how the coef�cient � is related to attitude towards ambiguity, consider a data set
�D 2 DT , in which both states have occurred with equal frequency, � �D (W ) = � �D (B) =

1
2
.

Normalizing w.l.o.g. u (1) = 1 and u (0) = 0, we obtain:

V (ab;D) = V (aw;D) = 
T�+
1

2
(1� 
T ) .

If � = 1
2
, these evaluations are consistent with EU with additive beliefs � (W ) = � (B) = 1

2
.
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Such a decision maker perceives ambiguity described by 
T , but is neutral towards it. For � 6=
1
2
, no additive belief is consistent with these evaluations, but beliefs can be represented by the
capacity � (W ) = � (B) = �
T + 1

2

T . This capacity is convex for � < 1

2
, which corresponds

to ambiguity aversion in the Ellsberg experiment. It is concave for � > 1
2
, expressing ambiguity

loving.

Finally, to illustrate the impact of additional information, we replicate the data set �D k-times.

V
�
ab; �D

k
�
= V

�
aw; �D

k
� >
(<)

V
�
ab; �D

�
= V

�
aw; �D

�
holds iff � <

(>)
1
2
. Thus, additional information can force the evaluations of two perfectly neg-

atively correlated actions, aw and ab, to move in the same direction. The reason for this is
that incoming information decreases ambiguity for both actions (Axiom 9) and this has a posi-
tive (negative) effect on their evaluation if the decision maker is ambiguity-averse (-loving). In
contrast, for a Bayesian expected utility maximizer, additional information can never strictly
increase (decrease) the evaluations of both actions simultaneously. Since the two actions are
perfectly negatively correlated, a Bayesian, who interprets incoming information as a positive
signal for one of the actions, will necessarily consider it a negative signal for the other one.

4.6 No Ambiguity Due to the Size of Data Sets
In this section, we consider a decision maker who perceives no ambiguity regarding the number

of observations. Preferences are thus, independent of the length of the data set. We model such

preferences using a modi�cation of Axiom 3 and provide a behavioral foundation for BGSS

(2005) similarity-weighted frequencies.
Axiom 3A Betweenness for sets of arbitrary length

For any a 2 A, T , T 0 2 N, f 2 F T , f 0 2 F T 0 , if (a; (f ;T )) �
(�) (a; (f

0;T 0)), then

(a; (f ;T ))
�
(�)

�
a;

�
T

T + T 0
f +

T 0

T + T 0
f 0;T + T 0

��
�
(�) (a; (f

0;T 0)) :

Axiom 3A is the behavioral counterpart of the Concatenation axiom in BGSS (2005). It requires

a concatenation of two data sets (f ;T ) and (f 0;T 0) with frequency T
T+T 0f +

T 0

T+T 0f
0 and length

T + T 0 to be evaluated between the two original data sets. Axiom 3A has the following two

implications: �rst, for all T 2 N, f 2 F T and all k 2 N, (a; (f ;T )) � (a; (f ; kT )). Second, if
(a; (f ;T )) � (a; (f 0;T 0)) for some T and T 0 satisfying the conditions of the axiom, then�

a;
�
f ; T̂

��
�
�
a;�f + (1� �) f 0; T̂ 00

�
�
�
a;
�
f 0; T̂ 0

��
for all T̂ , T̂ 0 and T̂ 00 2 N such that f 2 F T̂ , f 0 2 F T̂ 0 and �f + (1� �) f 0 2 F T̂ 00 . Hence,
Axiom 3A strengthens Axiom 3 by requiring the comparison between two frequencies f and f 0

and their mixtures not to depend on the lengths of the three data sets. This allows us to state the

following theorem:
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Theorem 4.2 Let jRj > 3. A preference relation % on A � D� satis�es Axioms 1, 2, 3A and
4-7 if and only if there exist a utility function over outcomes u : R! R, a prediction function
� : A � C ! R, a family of similarity functions sa : A ! R++, a 2 A, degrees of optimism,
�, and pessimism, (1� �) and minimal coef�cients of perceived ambiguity depending on the
cases and the actions, 
ca : A� C ! [0; 1) such that % can be represented by the function:

V (a;D) = � max
p2Ha(D)

u � p+ (1� �) min
p2Ha(D)

u � p,

where for all a 2 A, Ha (D?) = �jRj�1 and for a given action a and a data set D 2 D with
frequency fD and length T , the set of probability distributions Ha (D) is de�ned as:

Ha (D) =

P
c2C


cafD(c)sa(ac)P
c02C

fD(c0)sa(ac0 )
�jRj�1 +

P
c2C

(1�
ca)sa(ac)fD(c)P
c02C

sa(ac0 )fD(c
0)

( P
c2C

(1�
ca)fD(c)sa(ac)��caP
c2C

(1�
ca)sa(ac)fD(c)

)
The elements of the representation satisfy the following conditions:

(i) u is unique up to af�ne-linear transformations;

(ii) � is unique up to indifference and �(a;r)a = r for all a 2 A and all r 2 R;
(iii) each of the functions sa is unique up to a multiplication by a positive number;

(iv) � 2 [0; 1] is unique and satis�es V (a;D?) = �u (�r) + (1� �)u (r), where �r is the best
and r is the worst outcome;

(v) the minimal coef�cients 
ca are unique and satisfy 

(a;r)
a = 0 for all a 2 A and all r 2 R;

(vi) for all a, a0 2 A, there are r0 and r00 2 R such that V (a; (a; �r)) � V (a; (a0; r0)) >
V (a; (a0; r00)) � V (a; (a; r)) and at least one of the weak inequalities is strict.

This representation can be obtained from the representation derived in Theorem 4.1 by setting


T = 0 for all T 2 N. A decision maker whose preferences satisfy Axiom 3A does not per-
ceive ambiguity related to the number of observations in the data. Hence, data sets of different

length, but identical frequencies will be associated with identical probability distributions over

outcomes. Ambiguity is entirely due to the unobservable correlation between actions and is

captured by the coef�cients 
ca. The evaluation of an action in absence of information gives

insight about the decision maker's attitude towards ambiguity. Hence, the degrees of optimism

and pessimism are naturally related to the evaluation of the empty data set D?, as in (iv).

If, in addition, the decision maker perceives no persistent ambiguity, i.e., if 
ca = 0 for all a 2 A
and all c 2 C, he behaves like an EU-maximizer with beliefs given by similarity-weighted

frequencies as in BGSS (2005):

V (a;D) = u �
X
c2C

fD (c) sa (ac)P
c02C fD (c

0) sa (ac0)
��ca .

This special case obtains if, in addition to Axioms 1, 2, 3A, 4-7, the following condition holds:
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for any a 2 A and any c 2 C, there is a �ca 2 R such that (a; c) � (a; (a; �ca)).

4.7 Intuition for the Proof: Identifying the Components of the Representa-
tion

In this section, we provide some intuition for the proof of Theorem 4.1. The detailed proof is

contained in Appendix A.

In Lemma A.1, we show that �aD represents % on A � D. De�ne V (a;D) =: �aD. The utility
function over outcomes u : R! R is determined by

u (r) =: lim
T!1

V
�
a; (a; r)T

�
= lim

T!1
�a
(a;r)T

.

Intuitively, for a very large data set containing only observations of the same case (a; r) the

decision maker believes that a pays r with certainty. Hence, V
�
a; (a; r)T

�
converges to u (r).

For any a and a0 2 A, the similarity coef�cient sa (a0) can be identi�ed from the equation:

V
�
a; (a; r)2T

�
+ sa (a

0)V
�
a; (a0; r0)2T

�
1 + sa (a0)

= V
�
a;
�
(a; r)T ; (a0; r0)

T
��
.

Axioms 4 and 10 imply that sa (a0) is independent of r, r0 and T .

Axiom 8 yields the equation u (r̂) = �u (�r) + (1� �)u (r) which uniquely determines �.
Identifying 
T relies on the fact that ambiguity based on a limited number of observations

disappears as T !1. Hence, the difference between V
�
a; (a; r)T

�
and u (r) determines 
T ,

V
�
a; (a; r)T

�
= 
Tu (r̂) + (1� 
T )u (r) :

Axioms 5 and 10 imply that 
T is independent of r and on a and, by Axiom 9, 
T is strictly

decreasing. For D 2 DTa , Axiom 4 thus implies:

V (a;D) = 
T [�u (�r) + (1� �)u (r)] + (1� 
T )
X
r2R

u (r) fD (a; r) .

We de�ne the predicted outcome of a based on data consisting only of observations of the case

c, �ca 2 R, by

�ca =: argmin
r2R

����� limT!1 V
�
a; cT

�
� u (r)

u (r̂)� u (r)

����� .
Obviously, this �ca is unique up to indifference. The perceived ambiguity with respect to this

prediction, 
ca, is now determined from the equation


cau (r̂) + (1� 
ca)u (�ca) = lim
T!1

V
�
a; cT

�
:

By construction, the perceived degree of ambiguity 
ca is minimal for each a and c, i.e., �ca is the

best guess of the decision maker as to the outcome to be expected from a given the observation
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of case c. Note that imposing the condition of minimal ambiguity uniquely identi�es 
ca.

This allows us to write V (a;D) as in (4.1). Noting that

[�u (�r) + (1� �)u (r)] = � max
p2�jRj�1

u � p+ (1� �) min
p2�jRj�1

u � p,

and de�ning Ha (D) as in (9) gives us the representation in Equation (8).

5 Optimism, Pessimism and Preferences for More Precise
Information

The novel aspect of our approach is the domain of preferences: the decision maker can rank

information contexts in which a given action is chosen. Such preferences can re�ect different

criteria for evaluation of information, such as number of observations, as in Examples 1 and 2,

or type and relevance of observations, as in Example 3.

Increasing the length of the data set, while keeping frequencies unchanged increases the preci-

sion of information in an objective sense. More precise information, i.e., less ambiguity, must

not necessarily be desirable. Grant, Kaji and Polak (1998, p. 234) quote the New York Times:

"There are basically two types of people. There are �want-to-knowers� and there are
�avoiders.� There are some people who, even in the absence of being able to alter out-
comes, �nd information of this sort bene�cial. The more they know, the more their anx-
iety level goes down. But there are others who cope by avoiding, who would rather stay
hopeful and optimistic and not have the unanswered questions answered."

We now show how preferences for more precise information can be directly related to the deci-

sion maker's degrees of optimism and pessimism in the spirit of the quotation above.

Consider two decision makers, i and j whose preferences %i and %j on A�D� satisfy Axioms
1-10 and can, therefore, be represented as in Theorem 4.1. To compare i and j with respect to

their preferences for information precision, we have to control for the other parameters of the

representation, which are unrelated to information precision � the utility functions over out-

comes, u, the similarity functions, s, the prediction functions � and the coef�cients of perceived

ambiguity 
ca. The following Lemma provides conditions under which these elements of the

representation can be taken to be identical for two preference relations %i and %j .

Lemma 5.1 Let%i and%j be preference relations onA�D� satisfying Axioms 1-10. Suppose
that for any a 2 A and any D and D0 2 DT for some T 2 N, we have that (a;D) %i (a;D0)
if and only if (a;D) %j (a;D0) and let �i (f ; f 0; f 00) = �j (f ; f 0; f 00) for any three frequencies
satisfying the conditions of Axiom 10. Then ui is an af�ne-linear transformation of uj , for
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all a 2 A, sia = Kas
j
a for some positive constants Ka, the prediction functions �i and �j

are identical up to indifference and the coef�cients of perceived ambiguity 
i;ca and 
j;ca satisfy

i;ca = 
j;ca for all a 2 A and all c 2 C.

We say that i values information precision more than j if, whenever j prefers to obtain a longer

data set to a shorter one with the same frequency of observations, so does i:

De�nition 5.1 For two preference relations %i and %j on A � D� satisfying the conditions
of Lemma 5.1, we say that %i values information precision more than %j if for every a 2 A,
D 2 D, k 2 N,

�
a;Dk

�
�j (a;D) implies

�
a;Dk

�
�i (a;D).

Our next Proposition shows that this de�nition is equivalent to i having a smaller optimism

parameter than j, i.e. �i � �j:

Proposition 5.2 Let %i and %j be preference relations on A�D� satisfying the conditions of
Lemma 5.1. i values information precision more than j if and only if �i � �j .

We use Example 4 to illustrate these ideas:
Example 4 (resumed) Medical treatment

Consider again the medical doctor choosing a treatment inA given her informationD 2 DT .
Suppose that there is a new study offering a data set D0 2 DT 0 . For a data set D, let a� (D)
denote the optimal action given D. Acquiring the new study results in a new data set with
length T + T 0 and frequency

�
T

T+T 0fD +
T 0

T+T 0fD0
�
, denoted D �D0. The new study is valuable

if V (a� (D �D0) ;D �D0) > V (a� (D) ;D), i.e., if it increases the value of the optimal choice.

When deciding whether to acquire new information, the doctor might have control over the
type and number of additional observations. However, she cannot in�uence the observed out-
comes. To determine whether the additional information is valuable, she has to form a predic-
tion about the resulting data set D0, which in turn will determine her beliefs about the perfor-
mance of the actions upon acquiring the information. In general, these beliefs will depend both
on the frequency and on the type of cases, i.e., on the similarity of the new cases to those in the
original data set. If similarity considerations do not play a role, it seems natural to assume that
the doctor will not expect the new information to alter her initial prediction.

If the data sets D and D � D0 differ only with respect to their length, but have identical
frequencies, fD = fD�D0 , the predictions associated with any action a 2 A for the two data sets
coincide: P

c2C (1� 
ca) fD (c) sa (ac)P
c02C (1� 
c

0
a ) fD (c

0) sa (ac0)
��ca =

P
c2C (1� 
ca) sa (ac) fD�D0 (c)P
c02C (1� 
c

0
a ) sa (ac0) fD�D0 (c0)

��ca .

Hence, the optimal choices in the two information contexts are identical, a� (D �D0) =
a� (D) =: a�.
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It is straightforward to check that V (a� (D �D0) ;D �D0)� V (a� (D) ;D) > 0 iff�

T � 
T+T 0

� "
u �
P

c2C (1� 
ca�) fD (c) sa� (ac) ��ca�P
c02C

�
1� 
c0a�

�
fD (c0) sa� (ac0)

� u � (���r + (1� �) �r)
#
> 0.

Since 
T � 
T+T 0 > 0, i.e., additional information reduces perceived ambiguity, the doctor
prefers obtaining the additional information inD0 if the expected utility of a� with respect to the
prediction based on fD exceeds the evaluation of a� under complete ignorance. In particular, a
pure pessimist with � = 0 prefers an increase in the precision of information, regardless of its
content. A pure optimist (� = 1) always prefers to avoid additional information.�

Example 4.2 illustrates minimal conditions under which additional information in form of data

is of value for the doctor. In this example, it might be realistic to assume that the doctor is a pure

pessimist, who associates ignorance with the worst outcome and thus, prefers to receive all pos-

sible evidence, both favorable and unfavorable, in order to best evaluate the different treatment

options. In contrast, an optimistic patient, who is about to undergo a certain treatment might try

to avoid additional negative information, since it would make her "feel worse". As in example

3, we could also consider preferences for particular type of information, and model preferences

for including observations of treatments similar (but not identical) to the new treatment a1. This

is a further �eld which can be explored using our approach.

6 Conclusion
In this paper, we analyze decisions informed by data. Introducing preferences on action-data-set

pairs allows us to derive an �-MEU representation. In particular, we are able to separate the util-

ity over outcomes from beliefs represented by sets of probability distributions over outcomes.

We identify the subjectively perceived degree of ambiguity and separate it from the decision

maker's attitude towards ambiguity as represented by his degrees of optimism and pessimism.

We distinguish between two types of ambiguity: ambiguity due to a limited number of observa-

tions and ambiguity due to heterogeneity of cases. While the �rst type of ambiguity decreases

as the number of observations grows, the second persists even for large data sets. We show how

beliefs depend on the perceived ambiguity of information and represent them as a function of

the frequency of cases in the data set, the relevance of each of the cases for the prediction to be

made and the unambiguous prediction associated with each case. For the case of randomized

statistical experiments, beliefs converge to the frequency of observed outcomes as the number

of observations grows. Finally, we de�ne preferences for information precision and relate them
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to the decision maker's degrees of optimism and pessimism.

Assuming that the decision maker can compare pairs of actions and data sets is a novel feature

of our model. We show that the Ellsberg paradox can be easily generalized to capture such

preferences. Our examples show that preferences of this type are in principle observable. As-

sumptions about the preference relation can thus be tested in a controlled experiment. Field data

for such preferences can be obtained, e.g., from market participation decisions for markets char-

acterized by different information, from observed choices of technologies, for which different

quality and amount of data is available, or from observed decisions about data acquisition.

The value added by a new model of decision making depends foremost on its applicability to

real-life phenomena and on its ability to generate novel predictions. Our examples illustrate

the wide scope of economic situations which can be described using our approach. We demon-

strate how market participation decisions will be in�uenced by the information structure of the

markets and show that information differences across markets can have a signi�cant impact

on prices and allocations. We also illustrate the role of information heterogeneity and of sim-

ilarity perception on investment decisions. Extending these examples can provide additional

insights into the evolution of the information structure of markets and explain differences in

price dynamics across markets. An important application of our approach is to learning un-

der ambiguity. Eichberger and Guerdjikova (2011) use this framework to model technology

adoption triggered by climate change.

Preferences for information are central to our approach and allow us to derive the value of

additional information depending on its content and on the subjective characteristics of the

decision maker. Hence, our framework can be also used to evaluate the welfare effects of

different policies of information provision and to design ef�cient institutions governing the

�ow of information.

Appendix A. Proofs

Proof of Lemma 3.1:

We proceed in three steps. Step 1 proves an intermediate result, which is then used to show in step 2 that

limk!1 (�
a
k! (D)� �ak! (D)) = 0 and, in step 3, that �ak! (D) converges. These two statements imply

the result of the Lemma.

Step 1: For any a 2 A, T 2 N and �, �0 2 [0; 1] such that ��(a;�r) + (1� �) �(a;r) and �0�(a;�r) +
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(1� �0) �(a;r) 2 F T , �0 < � iff�
a;
�
��(a;�r) + (1� �) �(a;r);T

��
�
�
a;
�
�0�(a;�r) +

�
1� �0

�
�(a;r);T

��
. (13)

Proof of Step 1

Axioms 3 and 6 imply that for all T 2 N,
�
a; (a; �r)T

�
�
�
a; (a; r)T

�
. Axiom 4 then implies that for

any � 2 (0; 1], �
a;
�
��(a;�r) + (1� �) �(a;r);T

��
�
�
a;
�
�(a;r);T

��
. (14)

Let �rst �0 < �. For �0 = 0, (14) is equivalent to (13). If �0 2 (0;�), Axiom 4 gives:�
a;
�
��(a;�r) + (1� �) �(a;r);T

��
�
�
a;

�
�0

�

�
��(a;�r) + (1� �) �(a;r)

�
+

�
1� �

0

�

�
�(a;r);T

��
,

which is equivalent to (13). Now assume (13) and note that by the argument above �0 � � implies�
a;
�
�0�(a;�r) +

�
1� �0

�
�(a;r);T

��
%
�
a;
�
��(a;�r) + (1� �) �(a;r);T

��
,

a contradiction. Hence, �0 < �.�
Step 2: For any a 2 A, any T 2 N and any D 2 DT [ fD?g, limk!1 (�ak! (D)� �ak! (D)) = 0.

Proof of Step 2

By Axioms 6 and 9, sequences (�ak! (D))k2N
k�T

and (�ak! (D))k2N
k�T

satisfying (6) and (7) exist. Step 1
allows us to rewrite (6) and (7) as:

�ak! (D) = min
�2f0; 1k! ::: k!�1k!

;1g
�
� j
�
a;
�
��(a;�r) + (1� �) �(a;r); k!

��
% (a;D)

	
�ak! (D) = max

�2f0; 1k! ::: k!�1k!
;1g
�
� j (a;D) %

�
a;
�
��(a;�r) + (1� �) �(a;r); k!

��	
.

By step 1, unless �ak! (D) = �
a
k! (D), it must be that �

a
k! (D)��ak! (D) = 1

k! . Hence, �
a
k! (D)��ak! (D) �

1
k! , implying limk!1 (�

a
k! (D)� �ak! (D)) = 0.�

Step 3: For any a 2 A, any T 2 N and any D 2 DT [ fD?g, (�ak! (D))k2N
k�T

converges.

Proof of Step 3

By Axiom 8, there is an outcome r̂ such that (a; (a; r̂)) � (a; (a; r̂)n) for any n 2 N. Suppose that

(a;D) % (a; (a; r̂)). By (6),�
a;
�
�ak! (D) �(a;�r) + (1� �ak! (D)) �(a;r); k!

��
% (a;D) % (a; (a; r̂)) .

By Axiom 9, this implies�
a;
�
�ak! (D) �(a;�r) + (1� �ak! (D)) �(a;r); (k + 1)!

��
%
�
a;
�
�k! (D) �(a;�r) + (1� �k! (D)) �(a;r); k!

��
.

Since �a(k+1)! (D) 2
n
0; 1
(k+1)! :::

(k+1)!�1
(k+1)! ; 1

o
, by step 1 we obtain �a(k+1)! (D) � �

a
k! (D). Hence, the

sequence (�ak! (D))k2N
k�T

is bounded and decreasing and, thus, it converges. For the case (a; (a; r̂)) �

(a;D), a symmetric argument shows that �ak! (D) converges and, by Step 2, so does �
a
k! (D).�

Proof of Theorem 4.1:

It is straightforward to verify necessity of the axioms. Suf�ciency is proved in four consecutive Lemmas.
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Lemma A.1 shows that the axioms imply a utility representation

V (a;D) = u � ĥa (D) .

Here, u : R ! R is a utility function over outcomes. ĥ : A � D�!�jRj�1 is any selection of a

maximal with respect to set inclusion correspondence Ĥ : A � D� � �jRj�1, with the property that

u � ĥa (D) = u � ĥ0a (D) for all ĥa (D) and ĥ0a (D) 2 Ĥa (D). In Lemma A.2, we use the result proved

in Eichberger and Guerdjikova (2010) to show that V (a;D) on A� D can be expressed as:

V (a;D) = u �
X
c2C

sa (ac) fD (c) ĥa
�
cT
�P

c02C
sa (ac0) fD (c0)

,

where T is the length of D and where for a 2 A, sa : A ! R++ is a family of similarity functions

across actions, each of which is unique up to a multiplication by a positive number and ĥa
�
cT
�
is any

element of Ĥa
�
cT
�
. In Lemma A.4, we identify the coef�cients � and (
T )T2N and show that

Ĥa
�
cT
�
=
n
h 2 �jRj�1 j u � h = u �

h

T
�
���r + (1� �) �r

�
+ (1� 
T ) ĥca

io
,

where ĥca 2 limT!1 Ĥa
�
cT
�
and ĥ(a;r)a = �r for all c 2 C, a 2 A and r 2 R. In Lemma A.5, we

identify the prediction function � and the minimal coef�cients of ambiguity 
ca and show that

u � ĥca = u �
�

ca
�
���r + (1� �) �r

�
+ (1� 
ca) ��ca

�
.

We then combine all four steps to show thatHa (D) can be chosen so as to have the desired structure in

(9) and derive the representation in (8).

Lemma A.1 The preference relation % on A� D� can be represented by a utility function
V (a;D) = u � ĥa (D)

where u : R ! R is a utility function over outcomes and ĥ : A � D�!�jRj�1 is any selection of a
maximal with respect to set inclusion correspondence Ĥ : A � D� � �jRj�1 with the property that
u � ĥa (D) = u � ĥ0a (D) for all ĥa (D) and ĥ0a (D) 2 Ĥa (D) and �r̂ 2 Ĥ (a;D?) for all a 2 A.

Proof of Lemma A.1:

We proceed to prove the Lemma in 4 steps. In step 1, we de�ne the function V using the unambiguous

equivalents �aD. In step 2, we demonstrate that the so de�ned V represents %. In step 3, we elicit the
utility function over outcomes u. In step 4, we construct the correspondence Ĥ .

Step 1: De�ne the function V : A � D�! [0; 1] as V (a;D) =: �aD. By Lemma 3.1 the unambiguous

equivalents �aD 2 [0; 1] are well de�ned and so is the function V .

Remark A.1 Note that by De�nition 3.1, lim
T!1

�a
(a;�r)T

= 1 and lim
T!1

�a
(a;r)T

= 0. Hence, the de�ni-

tion of V (a;D) implies lim
T!1

V
�
a; (a; �r)T

�
= 1 and lim

T!1
V
�
a; (a; �r)T

�
= 0.
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Step 2: The function V de�ned in Step 1 represents %.
Proof of Step 2:

To see that the function V represents %, consider two actions a and a0 2 A, and for T and T 0 2 N, two
data setsD 2 DT [ fD?g andD0 2 DT

0 [ fD?g. Let T̂ = max fT ;T 0g. By Axiom 5, for all k � T̂ :�
a0;
�
�a

0

k!

�
D0
�
�(a0;�r) +

�
1� �a0k!

�
D0
��
�(a0;r); k!

��
�
�
a;
�
�a

0

k!

�
D0
�
�(a;�r) +

�
1� �a0k!

�
D0
��
�(a;r); k!

��
(15)

Suppose (w.l.o.g.) that (a;D) % (a0;D0). Then, (6) together with (15) implies�
a;
�
�ak! (D) �(a;�r) + (1� �ak! (D)) �(a;r); k!

��
%
�
a;
�
�a

0

k!

�
D0
�
�(a;�r) +

�
1� �a0k!

�
D0
��
�(a;r); k!

��
.

By step 1 of Lemma 3.1, this is equivalent to �ak! (D) � �a
0

k! (D
0) for all k � T̂ . Hence, by Lemma 3.1

and by the de�nition of V ,

V (a;D) = �aD = lim
k!1

�ak! (D) � lim
k!1

�a
0

k!

�
D0
�
= �a

0

D0 = V
�
a0;D0

�
.

Now suppose that V (a;D) � V (a0;D0), or �aD � �a
0

D0 . If �aD > �
a0

D0 , there is a k such that�
a;
�
�ak! (D) �(a;�r) + (1� �ak! (D)) �(a;r); k!

��
�
�
a0;
�
�a

0

k!

�
D0
�
�(a0;�r) +

�
1� �a0k!

�
D0
��
�(a0;r); k!

��
Assuming that (a0;D0) % (a;D) together with (15) contradicts (6) and we conclude (a;D) � (a0;D0).
Let now �aD = �

a0

D0 and suppose that (a0;D0) � (a;D). By Axiom 7, there exists an � > 0 such that for

each k, there is a �k > k and ��k1 , �
�k
2 2

n
0; 1�k! :::

�k!�1
�k!
; 1
o
with

�����k1 � ��k2��� � � such that:
(a;D) %

�
a;
�
�
�k
1�(a;�r) +

�
1� ��k1

�
�(a;r); �k!

��
�
�
a;
�
�
�k
2�(a;�r) +

�
1� ��k2

�
�(a;r)

�
; �k!
�
%
�
a0;D0

�
.

Combining this with (13), (6) and (7), we obtain �a�k! (D) � �
�k
1 � �

�k
2 + � � �a

0

�k!
(D0) + �. Hence,

for each k, there is a �k > k such that �a�k! (D) � �
a0
�k!
(D0) � �, in contradiction to the assumption that

lim
k!1

�ak! (D) = lim
k!1

�a
0

k! (D
0) = �aD = �

a0

D0 . It follows that (a;D) % (a0;D0) if �Da = �D
0

a0 .

We conclude that (a;D) % (a0;D0) if and only if V (a;D) � V (a0;D0).�
Step 3: Eliciting the function u : R! R

For given a 2 A, T 2 N and r 2 R, let �r =: �
�
�(a;�r); �(a;r); �(a;r);T

�
, see De�nition 3.2, and thus:

V
�
a; (a; r)T

�
= �rV

�
a; (a; �r)T

�
+ (1� �r)V

�
a; (a; r)T

�
. (16)

Such a �r 2 [0; 1] exists by Axiom 6. By Axioms 5 and 10, �r is independent of a and T and is thus

well-de�ned. De�ne u : R ! R by u (r) =: �r for all r 2 R. Obviously, u (�r) = 1 and u (r) = 0. By

Remark A.1, taking T !1 on both sides of (16), we obtain for all r 2 R:

lim
T!1

V
�
a; (a; r)T

�
= u (r) . (17)
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Note that by Axiom 8, V (a;D?) = u (r̂) for all a 2 A.

Step 4: Identifying the correspondence Ĥ : A� D� � �jRj�1

For any a 2 A and D 2 D�, let ĥa (D) 2 �jRj�1 be such that

u � ĥa (D) = �aD, (18)

where u is the function de�ned in step 3. Note that such an ĥa (D) exists for all a and D, e.g., ĥa (D)

with ĥa (D) (�r) = �aD, ĥa (D) (r) = (1� �aD) satis�es (18). The set of all ĥa (D) satisfying (18) is:

Ĥa (D) =:
n
ĥ 2 �jRj�1 j u � ĥ = �aD

o
(19)

The correspondence Ĥ : A� D� � �jRj�1 satis�es the properties in the statement of the Lemma.�

Lemma A.2 The preference relation % on A� D can be represented by:

V (a;D) = u �
X
c2C

sa (ac) fD (c) ĥa
�
cT
�P

c02C
sa (ac0) fD (c0)

, (20)

for some and thus all ĥa
�
cT
�
2 Ĥa

�
cT
�
, where T is the length ofD, Ĥa

�
cT
�
are de�ned as in (19) and

(sa : A! R++)a2A is a family of similarity functions, each of which is unique up to a multiplication
by a positive number.

Proof of Lemma A.2:

We proceed in 4 steps. In step 1, we construct a correspondence P : A� D � �jRj�1 such that for all

D 2 D, u � p = u � p0 =: ~V (a;D) for all p and p0 2 Pa (D) and ~V (a;D) represents %. In step 2, we
show that the so constructed correspondence P satis�es a list of properties (B1)� (B5) stated below.

In step 3, we restate a Theorem which appears in Eichberger and Guerdjikova (2010) and which implies

that a correspondence P : A�D� �jRj�1 satisfying properties (B1)� (B5) can be represented as:

Pa (D) =
X
c2C

sa (c) fD (c)Pa
�
cT
�P

c02C
sa (c0) fD (c0)

, (21)

where T is the length of D and sa : A � R ! R++ is a family of similarity functions, each of which

is unique up to a multiplication by a positive number. In step 4, we show that all sa are independent of

r. Furthermore, for each a 2 A, (sa (ac))c2C are the unique up to a multiplication by a positive number

Ka > 0 coef�cients such that for each D 2 DT , �aD can be represented as �aD =
P

c2C �
a

cT
sa(ac)fD(c)P

c02C sa(ac0 )fD(c
0) .

This result combined with the de�nitions of V and the sets Ĥa
�
cT
�
in (19) proves the Lemma.

Step 1: Note that by Axiom 9, for any a 2 A, c 2 C, the sequence
�
�acT
�
T2N is either constant or

strictly monotonic. Since �acT 2 [0; 1], it follows that the limit limT!1 �acT exists.

For a given a 2 A, let C�a =: fc 2 C j (a; c) 6� (a; (a; �r)) and (a; c) 6� (a; (a; r))g. By Axiom 6, C�a is
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non-empty. By Axiom 6 and Remark A.1, we can choose an � 2 (0; 1) such that
�

2
< min
a2A, c2C�

a

min

�
�ac ; (1� �ac ) ; lim

T!1
�acT ;

�
1� lim

T!1
�acT

��
.

De�ne the set P � as P � =:
�
p 2 �jRj�1 j u � p = 1

2

	
and for each D 2 D, de�ne

Pa (D) =: �P
� + (1� �)

�
�aD f��rg+ (1� �aD)

�
�r
	�
. (22)

The sets Pa (D) � �jRj�1 are non-empty, convex and compact and each Pa (D) is a translation of the set

�P �+(1� �)
�
�r
	
with the property that u�p = (1� �)�aD+ �

2 for all p 2 Pa (D). Hence, the function ~V

de�ned by ~V (a;D) =: u�p for some and thus, all p 2 Pa (D), satis�es ~V (a;D) = (1� �)V (a;D)+ �
2

for all a 2 A and D 2 D, and, thus, represents % on A� D.
Step 2: Fix a 2 A and consider the projection of the correspondence P on D for this a, Pa (D) : D �
�jRj�1. Pa (D) satis�es the following properties:
(B1) Pa (D) depends only on the frequency and the length of D, but not on the order of cases in D.

(B2) Let (fi)ni=1 and f be in F T . Whenever
Pn
i=1 �ifi = f , for some �i 2 (0; 1),

Pn
i=1 �i = 1,

there are coef�cients (�i)ni=1 2 (0; 1) with
Pn
i=1 �i = 1 such that Pa (f ;T ) =

Pn
i=1 �iPa (fi;T ) :

(B3) Under the conditions listed in (B2), Pa (f ;T ) =
Pn
i=1 �iPa (fi;T ) if and only if Pa

�
f ; T̂

�
=Pn

i=1 �iPa

�
fi; T̂

�
holds for any T̂ 2 N, such that (fi)ni=1 and f 2 F T̂ .

(B4) For all c 2 C, the sequences
�
Pa
�
cT
��
T2N have a limit, limT!1 Pa

�
cT
�
.

(B5) No three of the sets limT!1 Pa
�
cT
�
of dimension 0 or 1 are collinear.

Proof of Step 2

(B1): follows directly from Axiom 2.

(B2) and (B3): Take three data sets D, D0 and D00 2 DT with corresponding frequencies f , f 0 and

f 00 2 F T such that �f + (1� �) f 00 = f 0 for some � 2 (0; 1). If (f ;T ) � (f 00;T ). Axiom 3 implies�
f ; T̂

�
�
�
f 0; T̂

�
�
�
f 00; T̂

�
for all T̂ 2 N such that f , f 0 and f 00 2 F T̂ . Hence, by step 2 of Lemma

A.1, �a(f ;T ) > �
a
(f 0;T ) > �

a
(f 00;T ) and therefore, by Axiom 10, there is a � (f ; f

00; f 0) 2 (0; 1) independent

of T such that �a(f 0;T ) = � (f ; f
00; f 0)�a(f ;T )+ (1� � (f ; f

00; f 0))�a(f 00;T ). If (f ;T ) � (f
00;T ), Axiom 3

implies
�
f ; T̂

�
�
�
f 0; T̂

�
�
�
f 00; T̂

�
for all T̂ 2 N. Hence, �a

(f ;T̂)
= �a

(f 0;T̂)
= �a

(f 00;T̂)
for all T̂ 2 N

and the coef�cient � (f ; f 00; f 0) can be chosen arbitrarily.

Applying the same reasoning inductively, we obtain that for any frequencies (fi)ni=1 and f in F T such

that
Pn
i=1 �ifi = f , for some coef�cients �i 2 (0; 1) with

Pn
i=1 �i = 1, there are coef�cients (�i)

n
i=1 2

(0; 1)with
Pn
i=1 �i = 1 such that �a(f ;T̂) =

Pn
i=1 �i�

a

(fi;T̂)
for all T̂ 2 N such that (fi)ni=1 and f 2 F T̂ .
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It follows that for all T̂ 2 N such that (fi)ni=1 and f 2 F T̂ ,

Pa

�
f ; T̂

�
= �P � + (1� �)

�
�a
(f ;T̂)

��r +

�
1� �a

(f ;T̂)

�
�r

�
=

=
nX
i=1

�i

�
�P � + (1� �)

�
�a
(fi;T̂)

��r +

�
1� �a

(fi;T̂)

�
�r

��
=

nX
i=1

�iPa

�
fi; T̂

�
.

(B4): By step 1, limT!1 �acT exists. Hence, by the de�nition of Pa
�
cT
�
,

lim
T!1

Pa
�
cT
�
= �P � + (1� �)

�
lim
T!1

�acT ��r +

�
1� lim

T!1
�acT

�
�r

�
. (23)

(B5): Note that since jRj > 3, the set P � is a subset of a hyperplane in �jRj�1 and has a dimension

2 or higher and since � 2 (0; 1), so do the sets in (23) for all c 2 C. Hence, there are no three sets of
dimension 0 or 1 and (B5) is trivially satis�ed.�
Step 3: In Eichberger and Guerdjikova (2010), we prove the following Theorem:

Theorem A.3 Let Pa be a correspondence Pa : D � �jRj�1 the images of which are non-empty
convex, and compact sets and which satis�es (B4) and (B5). Then Pa satis�es (B1), (B2) and (B3)
if and only if there exists a unique, up to multiplication by a positive number, function sa : C ! R++
such that for all T 2 N and any D 2 DT ,

Pa (D) =

P
c2C sa (c) fD (c)Pa

�
cT
�P

c02C sa (c
0) fD (c0)

. (24)

Step 4: The similarity functions sa : C ! R++ derived in Theorem A.3 do not depend on the observed

outcomes and can be written as sa : A ! R++. Furthermore, for each a 2 A, (sa (ac))c2C are the

unique up to a multiplication by a positive number Ka > 0 coef�cients such that for each D 2 DT , �aD
can be represented as �aD =

P
c2C �

a

cT
sa(ac)fD(c)P

c02C sa(ac0 )fD(c
0) .

Proof of Step 4:

Take any a, a0 2 A. Note that by Axiom 6, for any r 2 R, there is an r0 2 R such that (a; (a0; r)) 6�

(a; (a0; r0)). Hence, �a
(a0;r)T

6= �a
(a0;r0)T

and Pa (a0; r)T 6= Pa (a
0; r0)T . For some even number T 2

N, consider a data set D 2 DTa0 such that fD (a0; r) = fD (a
0; r0) = 1

2 . We will show that �
a
D =P

~r2fr;r0g

1
2�

a
(a0;~r)T

, which combined with (22) and (24) implies:

Pa (D) =
sa (a

0; r)Pa (a0; r)
T + sa (a

0; r0)Pa (a0; r0)
T

sa (a0; r) + sa (a0; r0)
=
1

2
Pa
�
a0; r

�T
+
1

2
Pa
�
a0; r0

�T ,
or, sa (a0; r) = sa (a

0; r0). Since for all r00 2 Rn fr; r0g, we have either (a; (a0; r00)) 6� (a; (a0; r0)) or

(a; (a0; r00)) 6� (a; (a0; r)), an analogous argument implies that sa (a0; r00) = sa (a0; r) = sa (a0; r0).

To see that �aD =
P

~r2fr;r0g

1
2�

a
(a0;~r)T

, construct for ~r 2 fr; r0g the sequences
�
��ak! (a

0; ~r)T
�
k2N
k�T

and�
��ak! (a

0; ~r)T
�
k2N
k�T

as in (6) and (7), however restricting them to be in
�
0; 2k! ;

4
k! :::

k!�2
k! ; 1

	
rather than�

0; 1k! ;
2
k! :::

k!�1
k! ; 1

	
. Note that since for all k � T , ��ak! (a

0; ~r)T � ��ak! (a0; ~r)
T � 2

k! , the convergence
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results obtained in Lemma 3.1 apply. Since ��ak! (a
0; ~r)T � �ak! (a0; ~r)

T � 1
k! , limk!1

��ak! (a
0; ~r)T =

lim
k!1

�ak! (a
0; ~r)T = �a

(a0;~r)T
. Furthermore, for each k � T ,

P
~r2fr;r0g

1
2�

�a
k! (a

0; ~r)T 2
�
0; 1k! ;

2
k! :::

k!�1
k! ; 1

	
.

Applying Axiom 4, we conclude that0@a;
0@ X
~r2fr;r0g

1

2

�
��ak!

�
a0; ~r

�T
�(a;�r) +

�
1� ��ak!

�
a0; ~r

�T�
�(a;r)

�
; k!

1A1A % (a;D) (25)

%

0@a;
0@ X
~r2fr;r0g

1

2

�
��ak!
�
a0; ~r

�T
�(a;�r) +

�
1� ��ak!

�
a0; ~r

�T�
�(a;r)

�
; k!

1A1A :
Note that lim

k!1

P
~r2fr;r0g

1
2�

�a
k! (a

0; ~r)T = lim
k!1

P
~r2fr;r0g

1
2�
�a
k! (a

0; ~r)T =
P

~r2fr;r0g

1
2�

a
(a0;~r)T

. Assume that

�aD >
P

~r2fr;r0g

1
2�

a
(a0;~r)T

. Then there is a k 2 N such that �ak! (D) � �ak! (D) >
P

~r2fr;r0g

1
2�

�a
k! (a

0; ~r)T , in

contradiction to (6), (7) and (25). A symmetric argument applies to the case �aD <
P

~r2fr;r0g

1
2�

a
(a0;~r)T

and

we conclude that �aD =
P

~r2fr;r0g

1
2�

a
(a0;~r)T

.

Since sa does not depend on r, (24) implies Pa (D) =
P
c2C

sa(ac)fD(c)Pa(cT )P
c02C sa(ac0 )fD(c

0) , which by the de�nition

of Pa (D) in (22) is equivalent to �aD =
P
c2C

sa(ac)fD(c)�a
cTP

c02C sa(ac0 )fD(c
0) . The uniqueness of sa (ac) is estab-

lished by Theorem A.3. Hence, V on A � D satis�es V (a;D) = u �
P

c2C sa(ac)fD(c)ĥa(c
T )P

c02C sa(ac0 )fD(c
0) for each

ĥ 2 Ĥa
�
cT
�
.�

Lemma A.4 There exist a coef�cient � 2 [0; 1] satisfying �u (�r) + (1� �)u (r) = u (r̂), a strictly
decreasing sequence (
T )T2N satisfying 
T 2 (0; 1) and limT!1 
T = 0 and a function ĥ : A �
C!�jRj�1 with ĥca 2 limT!1 Ĥa

�
cT
�
and ĥ(a;r)a = �r for all a 2 A, c 2 C and r 2 R such that

Ĥa
�
cT
�
=
n
h 2 �jRj�1 j u � h = u �

h

T
�
���r + (1� �) �r

�
+ (1� 
T ) ĥca

io
.

The coef�cient � and the sequence (
T )T2N are unique.

Proof of Lemma A.4:

Step 1: De�ne 
T =: �T + �T , with �T =: �a(a;r)T and �T =: 1��
a
(a;�r)T

. Then, 
T > 0, the sequence

(
T )T2N is strictly decreasing and converges to 0.

Proof of Step 1

Observe that by Axioms 6 and 9, (�T )T2N, (�T )T2N and (
T )T2N are decreasing. If (a; (a; r̂)) �

(a; (a; r)), �T , is strictly decreasing and converges to 0, whereas if (a; (a; r̂)) � (a; (a; r)), �T = 0

for all T 2 N. If (a; (a; �r)) � (a; (a; r̂)), then �T is strictly decreasing and converges to 0, whereas if

(a; (�; r̂)) � (a; (a; �r)), �T = 0 for all T 2 N. Since by Axiom 6, (a; (a; �r)) � (a; (a; r)), (
T )T2N is

always strictly decreasing, converges to 0 and 
T > 0.

Step 2: There is a function ĥ : A�C ! �jRj�1 such that for all a 2 A, r 2 R, c 2 C and T 2 N, ĥca 2
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limT!1 Ĥa
�
cT
�
, ĥ(a;r)a = �r and Ĥa

�
cT
�
=
n
ĥ 2 �jRj�1 j u � h = u �

h
�T ��r + �T �r + (1� 
T ) ĥca

io
.

Proof of Step 2

Consider a case c 2 C. By Axioms 6 and 10, there is a �c =: �
�
�(a;�r); �(a;r); �c

�
2 [0; 1] independent of

T such that V
�
a; cT

�
= �acT = �c�

a
(a;�r)T

+ (1� �c)�a(a;r)T = �T + (1� 
T )�c. By step 1 of Lemma

A.2, we can take limT!1 on both sides of the equation and obtain �c = limT!1 �
a
cT . Thus, for any

ĥca 2
n
ĥ j u � ĥ = limT!1 �acT

o
= limT!1 Ĥa

�
cT
�
,

V
�
a; cT

�
= u �

h
�T ��r + �T �r + (1� 
T ) ĥca

i
, (26)

and, thus Ĥa
�
cT
�
=
n
ĥ 2 �jRj�1 j u � ĥ = u �

h
�T ��r + �T �r + (1� 
T ) ĥca

io
. Since by (17), for

every a 2 A, r 2 R, �r 2 limT!1 Ĥa
�
(a; r)T

�
, we can set ĥ(a;r)a = �r.�

Step 3: The ratio �T
�T+�T

does not depend on T and equals u (r̂). De�ning � := �T
�T+�T

, we obtain:

Ĥa
�
cT
�
=
n
h 2 �jRj�1 j u � h = u �

h

T
�
���r + (1� �) �r

�
+ (1� 
T ) ĥac

io
.

Proof of Step 3

By Axiom 8, the sequence
�
V
�
a; (a; r̂)T

��
T2N

is constant and by (26), it can be written as:

V
�
a; (a; r̂)T

�
= �T + (1� �T � �T )u (r̂) = u (r̂)�a(a;�r)T + (1� u (r̂))�

a
(a;r)T

By step 1 of Lemma A.2, we can take limits on both sides and obtain limT!1 V
�
a; (a; r̂)T

�
=

V
�
a; (a; r̂)T

�
= u (r̂) for all T 2 N. It follows that: �T + (1� �T � �T )u (r̂) = u (r̂), or

� :=
�T

(�T + �T )
= u (r̂) 2 [0; 1] .� (27)

Step 4: 
T 2 (0; 1) for all T 2 N. The coef�cients � and (
T )T2N are unique.

Proof of Step 4

Using (27), we obtain for any a 2 A, r 2 R, T 2 N,

V
�
a; (a; r)T

�
= 
T�+ (1� 
T )u (r) = 
Tu (r̂) + (1� 
T )u (r) . (28)

If (a; (a; r)) � (a; (a; r̂)), Axiom 9 implies that for all T 2 N, V
�
a; (a; r)T+1

�
> V

�
a; (a; r)T

�
>

u (r̂). Since by (17) limT!1 V
�
a; (a; r)T

�
= u (r), we obtain that for all T 2 N, V

�
a; (a; r)T

�
2

(u (r̂) ;u (r)). It follows that 
T 2 (0; 1) for all T 2 N. The argument for (a; (a; r̂)) � (a; (a; r)) is

symmetric. The case in which (a; (a; r)) � (a; (a; r̂)) for all r 2 R is excluded by Axiom 6.

The uniqueness of � follows immediately from the requirement that for all T 2 N,

V
�
a; (a; r̂)T

�
= 
T [�u (�r) + (1� �)u (r)] + (1� 
T )u (r̂) = u (r̂)

together with the fact that u (�r) > u (r). Once � is determined, the uniqueness of the sequence 
T
follows from (28) and the fact that there is at least one r 2 R such that u (r) 6= u (r̂).�

Lemma A.5 There exist minimal coef�cients 
ca 2 [0; 1) and a prediction function � : A � C ! R
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such that for every c 2 C and every a 2 A,
u � ĥca = u �

�

ca
�
���r + (1� �) �r

�
+ (1� 
ca) ��ca

�
, (29)

where ĥca and � are those identi�ed in Lemma A.4. The minimal coef�cients 
ca are unique and satisfy


(a;r)
a = 0 for all a 2 A and all r 2 R. The prediction function is unique up to indifference: if � and
~� are two functions which satisfy (29), (a; (a; �ca)) � (a; (a; ~�ca)) holds for all a 2 A and all c 2 C.
Furthermore, �(a;r)a = r for all a 2 A and all r 2 R.

Proof of Lemma A.5:

For each a, a0 2 A de�ne the function �(a
0;r)

a as follows: for r such that (a; (a; r̂)) � (a; (a0; r)), let

�(a
0;r)

a =:

�
~r 2 R j (a; (a0; r)) % (a; (a; ~r)) and there is no r0 2 R such that

(a; (a0; r)) % (a; (a; r0)) � (a; (a; ~r))

�
, (30)

for (a; (a0; r)) � (a; (a; r̂)), let

�(a
0;r)

a =:

�
~r 2 R j (a; (a; ~r)) % (a; (a0; r)) and there is no r0 2 R such that

(a; (a; ~r)) � (a; (a; r0)) % (a; (a0; r))

�
(31)

and for r such that (a; (a0; r)) � (a; (a; r̂)), let �(a
0;r)

a = r̂. If for a given case (a0; r) several outcomes ~r

satisfy condition (30) or (31), set �(a
0;r)

a equal to one of these outcomes.

Now de�ne the coef�cients 
(a
0;r)

a so that they satisfy:


(a
0;r)

a lim
T!1

�a
(a0;r̂)T

+
�
1� 
(a0;r)a

�
lim
T!1

�a�
a;�
(a0;r)
a

�T = lim
T!1

�a
(a0;r)T

. (32)

By the de�nition of �(a
0;r)

a and Axiom 3, such 
(a
0;r)

a 2 [0; 1] always exists. If (a; (a0; r)) 6� (a; (a; r̂)),



(a0;r)
a is unique and satis�es 
(a

0;r)
a < 1. If (a; (a0; r)) � (a; (a; r̂)), set 
(a

0;r)
a = 0.

Since ĥ(a
0;r)

a 2 limT!1Ha (a0; r)T , (17) and (19) imply:

u�ĥ(a0;r)a = 
(a
0;r)

a u (r̂)+
�
1� 
(a0;r)a

�
u
�
�(a

0;r)
a

�
= u�

�

(a

0;r)
a

�
���r + (1� �) �r

�
+
�
1� 
(a0;r)a

�
�
�
(a0;r)
a

�
.

(33)
To see that the so de�ned coef�cients 
ca are minimal, suppose that there exists a ~� 6= � such that

(a; (a; ~�ca)) 6� (a; (a; �ca)) for some a 2 A and c 2 C. Let ~
ca be the corresponding set of coef�cients

which satisfy (29). Expression (33) implies that ~� and ~
ca have to satisfy (32) for all a 2 A and c 2 C.
Since (a; (a; ~�ca)) 6� (a; (a; �ca)), the de�nition of �ca together with (32) implies that ~
ca > 
ca. In

particular, for ac = a, we have �
(a;r)
a = r and, hence, 
(a;r)a = 0 for all r 2 R. Finally, by (33), if the

coef�cients 
ca have been chosen to be minimal, �
(a0;r)
a is unique up to indifference, i.e., ~r and ~r0 both

satisfy the de�nition of �(a
0;r)

a if and only if u (~r) = u (~r0), or (a; (a; ~r)) � (a; (a; ~r0)). �
For a 2 A and D 2 D, de�ne Ha (D) as

Ha (D) =

"

T +

(1�
T )
P
c2C


cafD(c)sa(ac)P
c02C

fD(c0)sa(ac0 )

#
�jRj�1 +

(1�
T )
P
c2C

(1�
ca)sa(ac)fD(c)P
c02C

sa(ac0 )fD(c0)

( P
c2C

(1�
ca)fD(c)sa(ac)��caP
c2C

(1�
ca)sa(ac)fD(c)

)
(34)

where (sa)a2A is the family of similarity functions derived in Lemma A.2, (
T )T2N is the sequence
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of perceived degrees of ambiguity derived in Lemma A.4, � is the prediction function and 
ca are the

coef�cients of perceived ambiguity derived in Lemma A.5. Let Ha (D?) = �jRj�1.

By Lemma A.1, V represents %. By Lemmas A.2, A.4 and A.5, V on A� D can be written as:

V (a;D) = (35)

= u�
X
c2C

sa (ac) fD (c)P
c02C sa (ac0) fD (c

0)

�

T
�
���r + (1� �) �r

�
+ (1� 
T )

�

ca
�
���r + (1� �) �r

�
+ (1� 
ca) ��ca

��
= �u�

 "

T + (1� 
T )

X
c2C


ca
sa (ac) fD (c)P

c02C sa (ac0) fD (c
0)

#
��r + (1� 
T )

P
c2C (1� 
ca) sa (ac) fD (c) ��caP

c02C sa (ac0) fD (c
0)

!

+(1� �)u�
 "

T + (1� 
T )

X
c2C


ca
sa (ac) fD (c)P

c02C sa (ac0) fD (c
0)

#
�r + (1� 
T )

P
c2C (1� 
ca) sa (ac) fD (c) ��caP

c02C sa (ac0) fD (c
0)

!
,

whereas by Lemma A.1, V (a;D?) = u (r̂) = �u � ��r + (1� �)u � �r.

Combining (34) and (35), we obtain V (a;D) = �maxp2Ha(D) u � p+(1� �)minp2Ha(D) u � p, which

completes the proof of the existence part of the Theorem. It remains to verify the uniqueness of the utility

function u, which follows immediately from the fact that �(a;r)a = r and, hence, �r 2 limT!1 Ĥa (a; r)T

for all a 2 A and all r 2 R.�
Sketch of the proof of Theorem 4.2:

Since the arguments of the proof follow very closely those in the proof of Theorem 4.1, we just provide

a sketch. Start, as in Lemma 3.1 by showing that the unambiguous equivalents for every data set, �aD
exist. Note that in the proof of Step 3 of Lemma 3.1, we can use Axiom 3A instead of Axiom 9 to

conclude that for all k,�
a;
�
�ak! (D) �(a;�r) + (1� �ak! (D)) �(a;r); (k + 1)!

��
�
�
a;
�
�k! (D) �(a;�r) + (1� �k! (D)) �(a;r); k!

��
and obtain the convergence result. In analogy to Lemma A.1, show that V (a;D) =: �aD represents %.
Note that by Axiom 3A, �acT = �

a
c for all a 2 A, all c 2 C and all T 2 N and hence, �r can be de�ned

as in (16). This identi�es u (r) and consequently, Ĥa (D). Use the same arguments as in Lemma A.2
to identify the similarity function. In Lemma A.4, de�ne � =: �aD?

. This � is obviously unique and

satis�es property (iv) of the Theorem. Note that since �a
(a;r)T

= const for all T , de�ning 
T as in

the proof of Lemma A.4 implies 
T = 0 for all T 2 N. The so identi�ed � and 
T = 0 can be used

to represent Ĥa
�
cT
�
as in the statement of Lemma A.4. Finally, replicate Lemma A.5 to identify the

coef�cients 
ca and the function �.�
Proof of Lemma 5.1:

Examination of the proof of Theorem 4.1 shows that the utility function satis�es u (r) = �
�
�(a;�r); �(a;r); �(a;r)

�
,

the similarity function is given by sa (ac) =
1��(�(a;r);�c; 12 �(a;r)+

1

2
�c)

�(�(a;r);�c; 12 �(a;r)+
1

2
�c)

for any r 2 R, �ca is identi�ed by

preferences on A� D1 and 
ca = �
�
�(a0;r̂); �(a;�ca); �c

�
. It follows that if two individuals have the same

preferences on the set of data sets of equal length and identical � (�)-functions, then the elements of their
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respective representations satisfy the conditions of the Lemma.�
Proof of Proposition 5.2:

Suppose that �i � �j . According to Axiom 9,
�
a;Dk

�
�j (a;D) will hold whenever

�
a;Dk

�
�j

(a; r̂j), or wheneverX
c2C

(1� 
ca) fD (c) sa (ac)u (�ca)P
c02C (1� 
c

0
a ) fD (c

0) sa (ac0)
�
�
�ju (�r) +

�
1� �j

�
u (r)

�
> 0: (36)

Since �i � �j , and therefore,
�
�iu (�r) +

�
1� �i

�
u (r)

�
�
�
�ju (�r) +

�
1� �j

�
u (r)

�
, (36) implies

that
�
a;Dk

�
�i (a;D).

Conversely, if for all (a;D),
�
a;Dk

�
�j (a;D) implies

�
a;Dk

�
�i (a;D), it follows by Axiom 9

that whenever (a;D) �j (a; (a; r̂j)), (a;D) �i (a; (a; r̂i)). Since the utility functions of i and j

are identical, this implies that u (r̂j) � u (r̂i). Normalizing u (�r) = 1, u (r) = 0 and noting that

u (r̂j) = �
j � u (r̂i) = �i, implies the result of the proposition.�

Appendix B. Behavioral Formulation of Axiom 10

In this part of the Appendix, we provide an equivalent behavioral formulation of Axiom 10. We make

use of the de�nitions of �ak! (D) and �
a
k! (D) in (6) and (7).

Axiom 10A For some a 2 A and T 2 N, let f , f 0 and f 00 2 F T be such that (a; (f ;T )) �
(a; (f 00;T )) � (a; (f 0;T )) and
(i) either �f + (1� �) f 0 = f 00 for some � 2 (0; 1),
(ii) or f = �(a;�r), f 0 = �(a;r), f 00 = �c for some c 2 C.

If there exists a � 2 (0; 1) such that for all k 2 N, k � T and all20 ��, � 2 [0; 1] such that �� � � � �,�
a;
��
���ak! (f ;T ) +

�
1� ��

�
�ak!
�
f 0;T

��
�(a;�r) +

�
�� (1� �ak! (f ;T )) +

�
1� ��

� �
1� �ak!

�
f 0;T

���
�(a;r); k!

��
(37)

%
�
a;
�
f 00;T

��
%�

a;
��
��ak! (f ;T ) + (1� �) �ak!

�
f 0;T

��
�(a;�r) +

�
� (1� �ak! (f ;T )) + (1� �)

�
1� �ak!

�
f 0;T

���
�(a;r); k!

��
then for at least one � satisfying (37), all T 0 2 N such that f , f 0 and f 00 2 F T 0 , all k 2 N, k � T 0 and
all ��, � 2 [0; 1] such that �� � � � �,�
a;
��
���ak!

�
f ;T 0

�
+
�
1� ��

�
�ak!
�
f 0;T 0

��
�(a;�r) +

�
��
�
1� �ak!

�
f ;T 0

��
+
�
1� ��

� �
1� �ak!

�
f 0;T 0

���
�(a;r); k!

��
(38)

%
�
a;
�
f 00;T 0

��
%�

a;
��
��ak!

�
f ;T 0

�
+ (1� �) �ak!

�
f 0;T 0

��
�(a;�r) +

�
�
�
1� �ak!

�
f ;T 0

��
+ (1� �)

�
1� �ak!

�
f 0;T 0

���
�(a;r); k!

��
:

20 In this and the following statement, "all ��, � 2 [0; 1]" is short for "all ��, � 2 [0; 1] such that
the frequencies of the respective data sets on the �rst and the third line of equations (37), (38) are in F k!".
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Note that differently from Axiom 10, Axiom 10A does not postulate the existence or the uniqueness of a

coef�cient � (f ; f 0; f 00;T ). Rather, it says that if for three data sets (f ;T ), (f 0;T ) and (f 00;T ) satisfying

the conditions of Axiom 10, there exists a coef�cient �, such that:
(a) the linear combination with any coef�cient larger than � of the data sets of length k! which best
approximate (a; (f ;T )) and (a; (f 0;T )) from above is weakly preferred to (a; (f 00;T )) and such that

(b) the linear combination with any coef�cient smaller than � of the data sets of length k! which best
approximate (a; (f ;T )) and (a; (f 0;T )) from below is weakly worse than (a; (f 00;T )),

then (a) and (b) should continue to hold if the length of the three data sets is changed to T 0, for at least

one such �. It is easy to show that under Axioms 1-9, a unique coef�cient � exists for any three data sets

satisfying the conditions of Axiom 10A and that it equals � (f ; f 0; f 00;T ) from De�nition 3.2. Hence,

just as Axiom 10, Axiom 10A postulates that the coef�cients � (f ; f 0; f 00;T ) are independent of T . The

interpretation of Axiom 10A is thus, exactly the same as in the discussion following Axiom 10.

Lemma B.1 Under Axioms 1-9, Axiom 10A is equivalent to Axiom 10.

Proof of Lemma B.1:

To show that Axiom 10A implies Axiom 10, note that for any a 2 A, T 2 N and f1 and f2 2 F Ta , and

any �1, �2 2 (0; 1) such that �1 + �2 = 1 and �1f1 + �2f2 2 F Ta , we have

�a(�1f1+�2f2;T ) = �1�
a
(f1;T )

+ �2�
a
(f2;T )

. (39)

The proof uses Axiom 4 and is identical to the one in step 4 of Lemma A.2, except that the sequences

(��ak! (fi;T ))k2N
k�T

and (��ak! (fi;T ))k2N
k�T

for i 2 f1; 2g have to be restricted to be in
�
0; 1
�ik!
; 2
�ik!
:::
k!� 1

�i

k! ; 1

�
rather than

�
0; 2k! ;

4
k! :::

k!�2
k! ; 1

	
.

Observe next that for every � 2 (0; 1), there is a �k such that for all k � �k,

min
�2
�
0; 1

�a
k!
(f;T )��a

k!(f
0;T)

;:::;
�a
k!
(f;T )��a

k!(f
0;T)�1

�a
k!
(f;T )��a

k!(f
0;T)

;1

� j�� �j � �. (40)

This follows from (a; (f ;T )) � (a; (f 0;T )) and Axiom 7, which implies that the cardinality of the setn
0; 1
�ak!(f ;T )��ak!(f 0;T )

; :::;
�ak!(f ;T )��ak!(f 0;T )�1
�ak!(f ;T )��ak!(f 0;T )

; 1
o
exceeds �k! for some � > 0, and, hence, the minimum

of (40) is smaller than 1
�k! for every k.

Let �a�ak!(f ;T ) =: �
a
(�ak!(f ;T )�(a;�r)+(1��ak!(f ;T ))�(a;r);k!)

and note that the data set on the �rst line of (37) has
an unambiguous equivalent given by ���a�ak!(f ;T ) +

�
1� ��

�
�a�ak!(f 0;T )

such that for every k,

���a�ak!(f ;T ) +
�
1� ��

�
�a�ak!(f 0;T ) � �

a
(f 00;T )

holds for all �� � � + 1
�k! . Since lim

k!1
�a�ak!(f ;T )

= �a(f ;T ) and lim
k!1

�a�ak!(f 0;T )
= �a(f 0;T ), it fol-

lows that ���a(f ;T ) +
�
1� ��

�
�a(f 0;T ) � �a(f 00;T ) for all �� � �. By a symmetric argument on �ak!

using (37), we obtain ��a(f ;T ) + (1� �)�a(f 0;T ) � �a(f 00;T ) for all � � �. Hence, condition (37)
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implies ��a(f ;T ) + (1� �)�
a
(f 0;T ) = �a(f 00;T ), and hence, � is unique. Condition (38) then implies

��a(f ;T 0) + (1� �)�
a
(f 0;T 0) = �a(f 00;T 0), and, hence, � (f ; f

0; f 00;T ) = � (f ; f 0; f 00;T 0) for all T 0 such

that f , f 0 and f 00 2 F T 0 .

To show that Axiom 10 implies Axiom 10A, suppose that ��a(f ;T ) + (1� �)�
a
(f 0;T ) = �a(f 00;T ). Since

(a; (f ;T )) � (a; (f 0;T )), this implies that:

���a(f ;T ) +
�
1� ��

�
�a(f 0;T ) � �

a
(f 00;T )

for all �� � �. By the de�nition of �ak! (f ;T ), we have, �a�ak!(f ;T ) � �
a
(f ;T ) and �

a
�ak!(f

0;T ) � �
a
(f 0;T ) hence,

���a�ak!(f ;T )
+
�
1� ��

�
�a�ak!(f 0;T )

� �a(f 00;T ) for all �� � � which combined with a symmetric argument

w.r.t. �ak! and (39) implies (37). The fact that � (f ; f 0; f 00;T ) = � (f ; f 0; f 00;T 0) then implies (38).�
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