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Abstract: This paper proposes a two-regime Bounce-Back Function augmented Self-Exciting

Threshold AutoRegression (SETAR) which allows for various shapes of recoveries from the recession

regime. It relies on the bounce-back effects first analyzed in a Markov-Switching setup by Kim, Morley

and Piger [2005] and recently extended by Bec, Bouabdallah and Ferrara [2011a]. This approach is

then applied to post-1973 quarterly growth rates of French, German, Italian, Spanish and Euro area

real GDPs. Both the linear autoregression and the standard SETAR without bounce-back effect null

hypotheses are strongly rejected against the Bounce-Back augmented SETAR alternative in all cases

but Italy. The relevance of our proposed model is further assessed by the comparison of its short-term

forecasting performances with the ones obtained from a linear autoregression and a standard SETAR.

It turns out that the bounce-back models one-step ahead forecasts generally outperform the other ones,

and particularly so during the last recovery period in 2009Q3-2010Q4.
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Introduction

Since the early contributions by e.g. Neftci [1984], Hamilton [1989], Luukkonen and

Terasvirta [1991], Anderson and Terasvirta [1991] or Beaudry and Koop [1993], the

asymmetric dynamics of real output growth over the business cycle has been widely

acknowledged by empirical studies. Evidence of long and soft expansion epochs fol-

lowed by short and sharp recession times is generally found in nonlinear empirical work.

Nevertheless, such a crude two-phase characterization of the business cycle may be too

restrictive. This view is supported by more recent analysis both in a Markov-Switching

(MS hereafter) framework (as in e.g. Sichel [1994] or Clements and Krolzig [1998])) or

from threshold models (for instance in Tiao and Tsay [1994], Pesaran and Potter [1997],

Van Dijk and Franses [1999] or Kapetanios [2003]). These studies share the feature of

introducing at least one additional regime. More precisely, most of them retain a three-

regime framework in which the expansion phase is decomposed in a high-growth recovery

phase immediately following the trough of a cycle and a subsequent moderate-growth

phase.4 This “bounce-back” phenomenon has been put forward by Sichel [1994] for US

real output data and confirmed in Kim, Morley and Piger [2005].

These authors propose an extension of the two-regime Markov-switching which allows

for such bounce-back effects, without introducing a third regime. Beyond the parsimony

of their proposed two-regime specification, it has also the desirable feature of allowing the

bounce-back effect to depend on the duration and/or the depth of the previous recession,

which is not the case of the multiple regimes models mentioned above. Recently, Bec,

Bouabdallah and Ferrara [2011a] propose a generalization of the bounce-back functions

used by Kim et al. [2005] which allows for more flexible shapes of recoveries as well as

for simple statistical testing of specific shapes.

The main contribution of this paper is to develop a two-regime Self Exciting Thresh-

old Auto-Regressive (SETAR) model allowing for this general bounce-back function.

Actually, this threshold class of non-linear models has mainly two advantages compared

to the MS class of models. First, contrary to the MS model whose maximum likelihood

estimation outcome might depend heavily on the choice of the parameters values ini-

tialization, the SETAR model’s estimates can be easily obtained by the non-linear least

4Tiao and Tsay [1994] consider a four-regime SETAR model allowing for worsening/improving re-
cession/expansion.
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squares method. Second, when modeling the output growth rate from a SETAR frame-

work, the switching variable which governs the regime switches is the lagged output

growth rate itself and hence is perfectly observable, contrary to the unobserved state

variable in the MS model. Consequently, the SETAR class of models allows the regime

switches to depend explicitly on the business cycle state. This probably explains the

co-existence of both classes of models since more than two decades.

We then present linearity tests as well as specific recovery shapes tests against our

general bounce-back augmented SETAR model alternative. When applied to French,

German, Italian, Spanish and European (Euro Area) post-1973 quarterly real GDP

growth rates, it turns out that the linear null hypothesis is strongly rejected in all cases

but Italy. Similarly, the null of no bounce-back effect is strongly rejected in the four

remaining cases. Moreover, according to our tests results, the same shape of recoveries is

retained for France, Germany, Spain and the Euro Area. The relevance of our proposed

model is further confirmed by comparing its short-term forecast accuracy with the ones

obtained from linear or standard SETAR models.

The paper is organized as follows. Section 1 presents and discusses the bounce-back

extensions of the SETAR model. Section 2 describes the data and presents the linearity

test before reporting the bounce-back models estimation results. Section 3 presents the

short-term forecasts evaluation exercise and Section 4 concludes.

1 A two-regime SETAR with bounce-back effects

1.1 The basic SETAR model

Let yt denote the log of real output and Δyt its growth rate. The basic SETAR model

we will consider throughout this paper is the following:

Φ(L)(Δyt − μt) = et, (1)

with μt defined by:

μt = γ0(1 − st) + γ1st, (2)

and where Φ(L) is a lag polynomial of order p with roots lying outside the unit circle

and et i.i.d. N (0,σ). Let st denote the transition function which takes on the value zero
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or one. In our SETAR model, st is defined as:

st = 0 if Δyt−1 > κ and 1 otherwise. (3)

The model given by equations (1) to (3) allows for an asymmetric behavior across

regimes. It implies that the intercept in equation (1) is γ0 if Δyt−1 is larger than

the threshold κ and γ1 otherwise. Here, st = 1 is identified as the recession regime by

assuming κ < 0.

1.2 Introducing bounce-back functions

As stressed in the introduction, the main drawback of the basic two-regime SETAR

model presented above is that it precludes any high-growth phase following a trough

before switching back to the moderate-growth phase. For this reason, a multiple regime

extension of this model was considered in e.g. Tiao and Tsay [1994], Pesaran and Potter

[1997] or Kapetanios [2003]. Nevertheless, this approach is not parsimonious and one

could soon run out of degrees of freedom when analyzing most macroeconomic time

series. This is particularly true for the topic under consideration here since, as suggested

by Sichel [1994] or Kim et al. [2005], the high-growth rate phase seems to be rather short

on average — with a duration shorter than two years. Yet, it is necessary that enough

observations belong to each regime to get accurate estimates of the regime-dependent

parameters.

Recently, Kim et al. [2005] and Bec et al. [2011a] have proposed extensions, within

the two-regime class of MS models proposed by Hamilton [1989], which allow for the

length and/or depth of each recession to influence the growth rate of output in the

periods immediately following the recession. Kim et al. [2005] consider three kinds of

bounce-back functions, which correspond respectively to “U”- or “V”- shaped reces-

sions, or “Depth” non-linear bounce-back models. Bec et al. [2011a] develop a more

general bounce-back frame, hereafter denoted BBF, which includes the “U”, “V” and

“D” bounce-back functions as special cases.

The BBF-augmented SETAR model is defined by replacing equation (2) in the SE-
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TAR model by the following equation:

μt = γ0(1 − st) + γ1st

+λ1st

�+m∑
j=�+1

st−j + λ2(1 − st)
�+m∑

j=�+1

st−j + λ3

�+m∑
j=�+1

Δyt−j−1st−j, (4)

where et and st are defined as in equations (1) and (3) and � and m are non-negative inte-

gers. The model defined here by equations (1), (4) and (3) will be denoted BBF(p, m, �)

hereafter.

Let us first isolate the first term of the bounce-back function: λ1st

∑�+m
j=�+1 st−j , by

assuming λ2 = λ3 = 0. So as to simplify further the interpretation, let � be fixed to zero,

as in Kim et al. [2005]. A positive value of parameter λ1 will contribute to enhance the

growth rate of yt, compared to model (1), as soon as one period after the dynamics of

Δyt enters the recession regime and stays therein for at least two consecutive periods.

For instance, starting from a long expansion epoch, i.e. if st−j = 0 for j = 1, 2 . . . h with

h large enough, let us consider a four-quarter recession, i.e. st + j = 1 for j = 0, 1, 2, 3.

Then, neglecting the autoregressive terms in Δyt, the extra growth imputable to this

bounce-back effect is 0 at time t, λ1 at time t + 1, 2λ1 at time t + 2, 3λ1 at time t + 3

before going back to zero at time t+4, when the recession is over. Hence a bounce-back

effect requires that λ1 > 0. As proposed in Bec et al. [2011a], this period of extra growth

may be delayed by a positive value of �. Finally, its duration may vary according to the

value of parameter m.

The BBU function is quite close to that case, since it is obtained from equation (4)

by setting the following restrictions:

HU
0 : λ1 = λ2 = λ and λ3 = 0. (5)

Hence, in the BBU case, the bounce-back term is λ
∑�+m

j=�+1 st−j . Contrary to the first

term of the bounce-back function in equation (4) commented above, this BBU term can

last longer than the recession if the bounce-back effect duration, measured here by the

parameter m, or delay, governed by �, is long enough.

The BBV function is also a special case of equation (4) in that it corresponds to the

second term of the bounce-back function, λ2(1−st)
∑�+m

j=�+1 st−j, and hence it is obtained

from the restrictions:

HV
0 : λ1 = λ3 = 0. (6)
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The specificity of the BBV-like bounce-back effect is that it activates only after the

recession is over, when the system switches back to the expansion regime. Here again,

this term will enhance the growth rate for positive values of λ2.

The third term of the bounce-back function (λ3

∑�+m
j=�+1 Δyt−jst−j) corresponds to

the BBD bounce-back effect and hence to the joint restrictions below:

HD
0 : λ1 = λ2 = 0. (7)

For this last effect to affect positively the output growth rate, the value of λ3 must be

negative since in the recession regime, the Δyt−j’s are negative. This is a very simple

way to introduce the idea first advocated by Friedman in 1964 that “a large contraction

in output tends to be followed on by a large business expansion; a mild contraction, by

a mild expansion” (see Friedman [1993]), i.e. that the vigour of the recovery is positively

related to the depth, or magnitude of the contraction.

1.3 Estimation and testing

First, p is chosen as the smallest integer value for which the estimated residuals of the

non-linear model are not serially correlated. Then, for this value of p, the triple (m, �, κ)

estimate is obtained from a triple-grid search as the one maximizing the likelihood of the

BBF model. Concretely, the grid retained for the duration parameter is m ∈ {2, ..., 8}
while the one for the bounce-back delay parameter is � ∈ {0, ..., 4}. The grid interval,

denoted K, for the threshold parameter κ is chosen so as to leave at least 10% of

the observations in the recession regime. As noted earlier, we further constrain this

grid interval to include non-positive values only because negative values of the output

growth rate are considered as signals of a recession. Then, for these maximum likelihood

estimates (m̂, �̂, κ̂), the γ̂i’s, Φ̂i’s, i = 0, 1, and λ̂j , j = 1, 2, 3, are obtained by non-linear

least squares.

Before investigating further the estimated BBF-augmented SETAR model, we first

test the null of linearity, using the SupLR = supκ∈K LR(κ) statistics corresponding to

the hypothesis γi = γ, Φi = Φ, ∀i = 0, 1, and λj = 0, ∀j = 1, 2, 3 in equation (4).

Even though the distribution of this test depends on nuisance parameters under the null

of linearity, its asymptotic distribution derives from Hansen [1996]. The corresponding

critical values cannot in general be tabulated since this distribution depends on un-
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known moment functionals. Therefore, we use a residual bootstrap method calculated

by simulation to compute the corresponding p-values5.

For the countries for which the linearity hypothesis is rejected, we then proceed to the

tests of the specific recovery shapes described earlier. Actually, it is worth noticing that

the tests of all the null hypotheses HU
0 , HV

0 and HD
0 above are nuisance-parameter free.

Hence, they can be tested using a standard Likelihood Ratio — or Lagrange Multiplier,

or Wald — test statistics which in turn is asymptotically Chi-squared distributed with

two degrees of freedom for HU
0 , HV

0 and HD
0 . It is also possible to use a standard LR

statistics to test the following null hypothesis of no bounce-back effect:

HN
0 : λ1 = λ2 = λ3 = 0, (8)

which amounts to test the null of the SETAR model given by equations (1)-(2) against

the BBF model defined by equations (1)-(4). Again, the distribution of this test is

nuisance-parameter free under the null and hence the corresponding LR statistics is

asymptotically distributed as a χ2(3).

2 Estimation results

2.1 The data

For France, Germany, Italy, Spain and the Euro Area, the data used for the empirical

investigation are seasonally adjusted quarterly real GDP from the OECD (Main Eco-

nomic Indicators) database. Since most of these countries display significant slowdowns

in trend productivity growth during the early 1970s, we follow Kim et al. [2005] in con-

sidering data for a sample period beginning in 1973Q1. The last available observation

for our international sample is 2010Q4. The GDP growth rate data, denoted Δyt, are

then computed as the first difference of the logarithm of the original series multiplied

by 100 — see Figure 1 in Appendix.

2.2 Linearity tests

Since the linearity tests are performed from SupLR tests, they first involve the estimation

of (m̂, �̂, κ̂) in equation (4). As already mentioned, these parameters estimates are chosen

5A detailed description of the method can be found in Hansen [1996] or Hansen and Seo [2002].
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from a triple-grid search so as to maximize the log-likelihood of the BBF(p, m, �) model.

Consequently, they also correspond to the maximum value of the SupLR statistics since

they do not affect the log-likelihood of the linear model. The p-values of these statistics

are then obtained by simulation, using a residuals bootstrap method. For given initial

conditions, 10,000 random draws are made from the residual vectors under the linear null.

From these bootstrap residuals, one can create a simulated sample of series using the

linear autoregression, and for each sample, calculate the corresponding SupLR statistics.

The bootstrap p-value then obtains as the percentage of simulated statistics which exceed

the actual statistics. Finally, for all countries, the autoregressive lag order p is chosen

so as to eliminate serial correlation in the BBF model, which leads to retain two lags for

France and Italy, four lags for Germany, three lags for Spain and one lag for the US6. The

results of the linearity tests, as well as the corresponding p, m̂, �̂ and κ̂ are reported in

Table 1. From the p-values reported in the last column of this Table, it appears that the

Table 1: Linearity tests results

Country p m̂ �̂ κ̂ SupLR p-value
FR 2 4 2 -0.059 16.94 0.005
GE 4 7 2 -0.557 19.58 0.000
IT 2 4 0 -0.287 9.63 0.245
SP 3 5 2 -0.160 21.57 0.000
EA 1 5 2 -0.132 10.80 0.030

null of linearity is strongly rejected for France, Germany, Spain and the Euro Area. By

contrast, the linear AR model does not imply a significant log-likelihood loss compared

to the BBF model for the Italian GDP growth rate: the corresponding p-value is 24%.

Nevertheless, if the true DGP of this series is a non-linear constrained version of the

more general model (4), the linearity test could gain power if it was computed from a

restricted non-linear alternative. For this reason, in the Italian case, we also considered

the BBU, BBV, BBD and standard SETAR without bounce-back alternatives instead

of the BBF: all these non-linear alternatives failed to improve the linearity test p-value.

Hence, the countries retained for the subsequent analysis are France, Germany and

6Even though the BBF model residuals were found not serially correlated with zero lag in the German
case, it turns out that the fourth lag provides significant information regarding the non-linear dynamics
of the GDP growth rate and hence, it is kept for the subsequent analysis.
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Spain, together with the Euro Area. It is worth noticing that in these four nonlinear

cases, the estimated delay for the bounce-back to become active after the regime switch

is two quarters: �̂ = 2. Then, the estimated duration of the bounce-back effect lies

between four quarters for France and seven quarters for Germany.

2.3 Tests for the presence and shape of the bounce-back effect

Table 2 reports the log-likelihood of the BBF model and the LR test statistics cor-

responding to the restrictions HU
0 , HV

0 , HD
0 and HN

0 presented above: np denotes the

number of parameters while BBFc denotes a constrained version of the BBF model which

does not correspond to one of the four null hypotheses already tested.

First, it is worth emphasizing that our results provide strong support in favour of

the presence of a bounce-back effect following a recession in all the countries considered.

Actually, the LR tests of HN
0 , i.e. the standard SETAR model without bounce-back

effect, against the BBF alternative, do not reject the null at the 1% level in the four

cases. Then, it can be seen that the specific BBU, BBV and BBD functions are also

strongly rejected. By contrast, after inspection of the general BBF model estimation

results, it appeared that the null HC
0 : λ2 = λ3 = 0 was likely not to be rejected in

most cases. This is confirmed by the LR-test statistics for this hypothesis reported in

the bottom panel of Table 2: the null HC
0 is never rejected at the conventional level.

Consequently, this constrained version of the BBF model, hereafter denoted BBFc, is

retained in the following analysis. This constrained model corresponds to the following

definition for μt in the SETAR model given by equation (1):

μt = γ0(1 − st) + γ1st + λ1st

�+m∑
j=�+1

st−j , (9)

As noticed in section 1.2, this specific form of the bounce-back function implies that it

is active when st = 1 only and becomes inactive as soon as the recession time is over.

Hence, it is likely to play a role in the close neighbourhood of a trough. Moreover, and

contrary to the empirical evidence found in Kim et al. [2005], Morley and Piger [2009]

and Bec et al. [2011a] from US data, the depth of the recession does not seem to affect

the strength of the recovery in Europe.

The nonlinear least squares estimates of the selected bounce-back SETAR models

are reported in Table 3. For France, Spain and the Euro Area, the estimation sample
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Table 2: Testing for the presence and shape of the bounce-back effect

FR GE SP EA

H1: BBF
np 7 9 8 6
Log-Lik -99.84 -189.46 -138.84 -108.59

HN
0 : SETAR

np 4 6 5 3
Log-Lik -106.98 -198.04 -144.73 -114.15
LR stat (p-val) 14.28 (0.00) 17.16 (0.00) 11.78 (0.01) 11.12 (0.01)

HU
0 : BBU

np 5 7 6 4
Log-Lik -104.74 -196.27 -144.06 -112.04
LR stat (p-val) 9.80 (0.01) 13.62 (0.00) 10.44 (0.00) 6.90 (0.03)

HV
0 : BBV

np 5 7 6 4
Log-Lik -106.55 -197.82 -144.69 -113.61
LR stat (p-val) 13.42 (0.00) 16.72 (0.00) 11.70 (0.00) 10.04 (0.01)

HD
0 : BBD

np 5 7 6 4
Log-Lik -105.04 -195.70 -144.63 -113.41
LR stat (p-val) 10.40 (0.01) 12.48 (0.00) 11.58 (0.00) 9.64 (0.01)

HC
0 : BBFc

np 5 7 7 –
Log-Lik -102.32 -191.16 -141.40 -110.16
LR stat (p-val) 4.96 (0.08) 3.39 (0.18) 5.12 (0.08) 3.14 (0.21)
BBFc stands for HC

0 : λ2 = λ3 = 0.
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is 1973Q1-2010Q4, but due to the large values of the lag order, m̂ and �̂ in the German

case, the largest sample we could use is 1973Q4-2010Q4. It is worth noticing that all the

bounce-back parameters have the expected sign (λ1 > 0) and are significantly different

from zero at the 5%-level. The data together with the estimated thresholds are reported

in Figure 1 in the Appendix.

Table 3: Bounce-back SETAR estimates

FR GE SP EA
BBFc(2,4,2) BBFc(4,7,2) BBFc(3,5,2) BBFc(1,5,2)

λ1 0.57 (3.08) 0.51 (3.68) 0.35 (2.56) 0.60 (2.83)
γ0 0.53 (5.32) 0.51 (4.95) 0.61 (4.12) 0.50 (5.41)
γ1 0.06 (0.34) -0.69 (-2.12) -0.03 (-0.13) 0.37 (1.99)
φ1 0.26 (3.08) -0.03 (-0.27) -0.11 (-1.21) 0.55 (7.15)
φ2 0.34 (4.35) 0.08 (0.93) 0.45 (6.62) –
φ3 – 0.02 (0.29) 0.31 (3.88) –
φ4 – 0.18 (2.17) – –
σ 0.48 0.89 0.62 0.51
n0 136 132 134 137
n1 16 17 18 15
Q(4) [p-val] [0.65] [0.99] [0.06] [0.13]
t-statistics in parenthesis. Q(4) is the Ljung-Box statistics. Bold
figures denote the 5% level. n0 (resp. n1): number of observations
in expansion (resp. recession) regime.

3 BBF model short-run forecast accuracy

In this section, the one-step ahead forecasts are calculated from a pseudo-real time

analysis using recursive regressions. Actually, given that our final observation date, Tf ,

is 2010Q4, we begin the forecast performance evaluation from T0=2000Q1. Then, for all

t ∈ {T0, ..., Tf−1}, we estimate the model from the initial observation, Ti=1973Q17, until

t, and use this estimate to compute the one-step-ahead forecasts of the real GDP growth

rate, denoted Δŷt+1|t. So as to assess the added value of the nonlinear features of the

model, these forecasts are compared with those from a benchmark linear autoregression,

i.e. imposing a constant value for μt in equation (1). The added value of the bounce-

7Except for Germany where it is 1973Q4 due to the values of p, m̂ and �̂.
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back term is also assessed by comparing these forecasts to a standard SETAR model,

i.e. setting all the λi’s to zero, i = 1, 2, 3, in equation (4). In a first step, we focus on

point forecasts accuracy as measured by the Root Mean Squared Error (RMSE) criteria.

In a second step, the possible gains stemming from the asymmetrical nature of the BBF

model is further explored by computing forecasts distribution from bootstrap resampling

techniques.

3.1 One-step ahead forecasts RMSE’s

Let us begin with an evaluation of the short-run forecast accuracy of the BBF model

based on the RMSE criteria. Here, both the general unconstrained BBF and the con-

strained BBFc models are still considered. Finally, particular attention is paid to the

last recession driven by the subprime crisis. Therefore, in addition to 2000Q1-2010Q4,

the forecast assessment for each model is also carried out for period 2008Q2-2010Q4,

distinguishing the crisis period 2008Q2-2009Q2 and the recovery period 2009Q3-2010Q4.

All these results are gathered in Table 4 below. When looking at the 2000Q1-2010Q4

forecasting sample (first column of this Table), it can be seen that the BBFc model

outperforms its BBF unconstrained version for France, Spain and the Euro area. Even

though the unconstrained BBF model is preferred in Germany, its RMSE values are

very close to the ones obtained from the BBFc version. When comparing the results

across countries, the best forecast accuracy is obtained for Spanish and French data,

and to a lesser extend for the European data. Probably due to a larger volatility, the

German GDP growth rate seems more difficult to forecast. Let us now turn to the

relative forecast accuracy of the four models over the last crisis, hence focusing on the

one-step-ahead forecast errors obtained for the period 2008Q2-2010Q4. Looking at the

second column of Table 4, it turns out that the relative accuracy of the BBFc specifica-

tions is further improved over the last crisis compared to the longer baseline forecasting

sample. This evidence confirms the relevance of the bounce-back augmented model.

Looking closer at the country-specific results, it appears quite expectedly that the fore-

cast accuracy deteriorates between the last decade and this crisis episode. Exploring

further the forecast performances of these models by splitting the crisis episode into

the contraction (2008Q2-2009Q2) and recovery (2009Q3-2010Q4) phases, the results are

more contrasted. Actually, during the contraction sub-period, all models give the less

12



Table 4: 1-step ahead forecasts (relative RMSE criterion)

Model 2000Q1-2010Q4 2008Q2-2010Q4 2008Q2-2009Q2 2009Q3-2010Q4

France

AR(2)∗ 0.481 0.746 1.050 0.317
SETAR(2) 1.03 0.98 0.96 1.19
BBF(2,4,2) 0.96 0.87 0.86 1.46
BBFc(2,4,2) 0.94 0.82 0.86 0.47

Germany

AR(4)∗ 0.970 1.710 2.330 0.906
SETAR(4) 0.99 0.98 0.98 0.96
BBF(4,7,2) 0.90 0.86 0.88 0.75
BBFc(4,7,2) 0.91 0.88 0.87 0.90

Spain

AR(3)∗ 0.467 0.878 1.240 0.368
SETAR(3) 0.96 0.96 0.89 1.47
BBF(3,5,2) 0.95 0.95 0.85 1.58
BBFc(3,5,2) 0.85 0.83 0.81 0.93

Euro Area

AR(1)∗ 0.542 0.992 1.420 0.344
SETAR(1) 1.00 1.01 1.01 1.00
BBF(1,5,2) 0.99 1.00 0.92 1.73
BBFc(1,5,2) 0.96 0.95 0.91 1.39
∗: All RMSE, but the ones of the AR models, are given relative to the AR model RMSE.

accurate one-step-ahead forecasts. Nevertheless, the BBFc models clearly outperform

both the linear and SETAR models in terms of RMSE, the gains ranging from 9% in

the Euro area to 19% in Spain. Remark that the linearity test was less favorable for

the Euro area as regards its p−value than for other retained cases, see Table 1. This

confirms Clements, Frances, Smith and Van Dijk [2003] findings that a high degree of

non-linearity (as measured by the p−value of the linearity test) is required before non-

linear models outperform the linear in terms of forecasting. For the French and German

cases, the best forecasting results are obtained during the recovery phase, their RMSE

relative to the linear one falling respectively to 47% and 75%. The reverse is true for

the Euro area, and to a lesser extend for Spain, where the BBF models relative forecast-
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ing performance deteriorates compared to the contraction phase as well as to all other

sub-periods.

3.2 Forecasts bootstrapped distribution

After having compared point forecasts, we now turn to the distributions of forecasts so

as to assess whether there is gain to use BBF models beyond RMSE measures. In this

subsection, we propose to compute distribution for the predictor stemming from the

BBF model given by equations (1)-(4), by using bootstrap resampling techniques. In

this respect, we implement two bootstrap methods, namely with and without param-

eters uncertainty8 For both methods, we generate a bootstrapped vector of length B,

(Δŷ
(b)
t+1|t)b=1,...,B, for all t ∈ {T0, ..., Tf − 1}, that will be used to assess the empirical dis-

tribution of the predictor (Δŷt+1|t). For example, a confidence interval at the 1−α level

can be computed by taking the empirical α/2 and 1 − α/2 quantiles of the bootstrap

vector (Δŷ
(b)
t+1|t)b=1,...,B. In this study, we adopt B = 1000 replications, arguing that

this number is sufficient to achieve stability of the results9. Note also that for sake of

simplicity, and in opposition to the previous forecasting experience, we only consider the

constrained version of the models, that is the BBFc models. We briefly present below

both bootstrap methods.

In a first approach, bootstrapped distributions may be constructed by using param-

eters estimates as if they were the true parameters values, i.e. without taking the pa-

rameters variability into account. This method is quite simple and not time-consuming,

as it only requires to bootstrap the residuals and to add the bootstrapped error to the

one-step-ahead predictor estimated by the conditional expectation. Let Fê denote the

empirical cumulative density function (cdf) of the residuals êt computed from equations

(1)-(9). The bootstrapped 1-step-ahead forecast, denoted Δŷ
(b)
t+1|t, for b = 1, . . . , B, is

given by

Δŷ
(b)
t+1|t = μ̂t+1|t +

p∑
i=1

φ̂i(Δyt+1−i − μ̂t+1−i) + e
(b)
t+1, (10)

where e
(b)
t+1 is randomly drawn from Fê with replacement, μ̂t is the estimated conditional

8For the latter, we extend the method proposed by Pascual, Romo and Ruiz (2004) in the linear
case and by Li (2011) in the non-linear SETAR case.

9We checked randomly the robustness of our results with B = 5000.
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mean of the constrained BBFc given by

μ̂t = γ̂0(1 − st) + γ̂1st + λ̂1st

�+m∑
j=�+1

st−j , (11)

and where μ̂t+1|t is the BBFc conditional mean forecast defined by

μ̂t+1|t = γ̂0(1 − st+1) + γ̂1st+1 + λ̂1st+1

�+m∑
j=�+1

st+1−j . (12)

Thus, denoting Δŷ
α/2
t+1|t and Δŷ

α/2
t+1|t respectively the empirical α/2 and 1−α/2 quantiles of

the cdf of (Δŷ
(b)
t+1|t)b=1,...,B, the (1−α)-level bootstrapped confidence intervals are given by

CI(1−α) =
[
Δŷ

α/2
t+1|t, Δŷ

α/2
t+1|t

]
. As in the previous section related to the 1-step-ahead point

forecasts, we implement a recursive forecasting scheme to get density distributions for the

predictors from 2000Q1 to 2010Q4. As a benchmark, we are also compute a confidence

interval for the 1-step-ahead forecast Δŷt+1|t stemming from linear AR(p) models. The

theoretical interval for this one-step ahead predictor is given by
[
Δŷt+1|t ± t1−α/2σ̂e

]

where t1−α/2 is the quantile of the residuals distribution (supposed to be Gaussian) at

the confidence level 1−α and where σ̂2
e is the estimated residuals variance. This interval

is again computed assuming that the parameters are known, i.e. ignoring the parameters

uncertainty. The 90% confidence intervals constructed as described above for the BBFc

and the AR models are reported together with the observed Δyt in Appendix, Figure

4.10 It can be seen that the CI90% obtained from the BBFc models are narrower than

the ones from the linear AR in three cases out of four, namely France, Germany and the

Euro Area. We also note that during the subprime crisis, observed GDP growth rates

are out of the CI90% bounds for all models, pointing out the unexpected amplitude of

the movements that cannot be caught by auto-projective models. However, it is clear

that BBF models enable to replicate the bounce-back effects that occur at the end of

the recession in the second part of the year 2009, particularly for France and the Euro

Area, thus confirming the relevance of our proposed model. By contrast, the linear AR

model seems too rigid, especially during the recovery phase.

Notwithstanding its simplicity, the first approach could yield misleading results by

neglecting the parameters uncertainty. For this reason, we check the robustness of our

10Since the results between 2000Q41 and 2004Q4 are similar to those obtained between 2005Q1 and,
say, 2007Q2, the graphs only plot the results from 2005Q1 so as to get a better visual focus on the
subprime crisis period.
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conclusions by adapting to our model (eqs (1) to (4)) the bootstrap method recently

proposed by Li [2011] for SETAR processes. This second approach allows to incorporate

the variability due to parameters estimation into forecast distributions without assuming

any specific distribution for the innovation process. The latter is only assumed to be

i.i.d.. Compared to the first bootstrap approach described above, this one requires the

following two preliminary steps :

1) B bootstrap replicates {Δy
(b)
t }T

t=1 of trajectories {Δyt}T
t=1 are generated as Δy

(b)
t =

Δyt for t = 1, . . . , max(p, l + m), and

Δy
(b)
t = μ̂t +

p∑
i=1

φ̂i(Δy
(b)
t−i − μ̂t−i) + e

(b)
t , for T ≥ t > max(p, l + m),

with e
(b)
t and μ̂t defined as above.

2) Model (1)-(9) is then re-estimated using the B bootstrapped series {Δy
(b)
t }T

t=1

and the estimated threshold11 κ̂ in order to get (φ̂
(b)
1 , . . . , φ̂

(b)
p , γ̂

(b)
0 , γ̂

(b)
1 , λ̂

(b)
1 ), for

b = 1, . . . , B.

Finally, for a given b, the 1-step-ahead forecast denoted Δŷ
(b)
t+1|t, is given by

Δŷ
(b)
t+1|t = μ̂

(b)
t+1|t +

p∑
i=1

φ̂
(b)
i (Δy

(b)
t+1−i − μ̂

(b)
t+1−i) + e

(b)
t+1, (13)

where Δŷ
(b)
t = Δyt, for t = T, T − 1, . . . , T − p + 1, and:

μ̂
(b)
t+1|t = γ̂

(b)
0 (1 − st+1) + γ̂

(b)
1 st+1 + λ̂

(b)
1 st+1

�+m∑
j=�+1

st+1−j . (14)

Note that we compute the bootstrap forecasts conditional on the last observations of

the observed series. The bootstrap confidence intervals that integrate parameter un-

certainty are again obtained from the empirical α/2 and 1 − α/2 quantiles of the cdf

of (Δŷ
(b)
t+1|t)b=1,...,B. Obviously, if parameters variance is small, accounting for param-

eters uncertainty should not affect significantly the bootstrapped confidence intervals.

Moreover, if the distribution of the innovation process (et)t is known, then theoretical

and bootstrapped confidence interval are equivalent. Figure 4 in the Appendix plots

11Note that both methods ignore the sampling variability of the estimated threshold κ̂, based on its
super-consistency (Chan [1993]) and on Li (2011) simulation exercises with this regard in the case of
SETAR processes.
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together the bootstrapped CI90% obtained with and without parameters uncertainty for

the BBF models. Before the beginning of the last recession, the two bootstrap methods

produce remarkably similar results, revealing a strong stability in parameters estimates.

Nevertheless, it can be seen that around the turning point, mid-2009, taking parameters

uncertainty into account widens the CI90% as expected — see France and the Euro Area

(resp. panels (a) and (d) in Figure 4), and to a lesser extent Germany. Actually, this

result originates in the large variance characterizing this period. Actually, there is a

sudden increase in the variance located in 2009 when realized growth rates were very

negative. Basically, the variance was multiplied by two for France and Spain and by

three for the euro area, reflecting the uncertainty in parameter estimates due to those

strong negative evolutions. After this shock, the variances go down to the pre-recession

level, suggesting that this sudden rise in uncertainty was only short-lived. Nevertheless,

for Spain, taking parameters uncertainty into account drastically modifies the CI90%

during the first quarters of the recovery: it hardly contains the observed value from

2009Q3 on.

From this bootstrapped distributions, the empirical skewness and kurtosis are straight-

forward to compute. It is noteworthy that these results convey very useful information

related to the shape of the distribution, especially by comparison with a linear model

with a Gaussian distribution without any asymmetry and with small tail risks. These

statistics are reported in Table 5 for the pre- and post-peak of the last recession subsam-

ples. In the German, Spanish and European cases, the slightly negative skewness values

Table 5: Bootstrapped empirical skewness and excess kurtosis (with parameters uncer-

tainty)

Sample France Germany Spain Euro Area

Skewness

2000Q1-2008Q1 0.10 -0.22 -0.04 -0.14
2008Q2-2010Q4∗ -0.07 -0.42 -0.13 -0.19

Excess Kurtosis

2000Q1-2008Q1 0.65 0.78 1.70 1.88
2008Q2-2010Q4∗ 0.66 1.22 2.14 2.01

associated to positive excess kurtosis point to a left-skewed, heavy-tailed distribution of
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Δŷt+1|t, i.e. the forecast is more likely to be far below the point-forecast (its mean) than

it is to be far above. These features amplify after the last recession: for instance the left

skewness increases by90% in Germany. The kurtosis also increases after the beginning of

the subprime crisis, indicating even more mass in the tails than a Gaussian distribution

with the same variance. This can be interpreted as higher tail risks around the central

projections, in line with the deterioration of economic conditions during the economic

recession. This is not the case in France, where the excess kurtosis was almost constant.

Note also that France is the only country where positive skewness is found in the dis-

tribution of Δŷt+1|t before the crisis, then the skewness becomes negative, pointing out

that risks are since then tilted to the downside.

4 Conclusion

In this paper, we propose to augment the standard Self-Exciting Threshold Autore-

gression by a Bounce-Back function which allows for more general and more flexible

shape of recessions, particularly in the recovery phase. When applied to post-1973 quar-

terly growth rate of real GDPs, we find evidence for a bounce-back effect in France,

Germany, Spain and the Euro area. Furthermore, the forecast accuracy analysis based

on these BBF-SETAR estimates clearly supports the relevance of this model for the

one-step-ahead forecasts, where the accuracy gains generally lie between 10% and 20%

compared to the linear autoregression forecasts. Moreover, bootstrap simulations exper-

iments reveal an improvement in the forecasts confidence intervals which are found to

be narrower for the bounce-back model than for the linear autoregression, without any

noticeable deterioration of the coverage rates.
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Figure 1: Data and estimated thresholds
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(a) France

(b) Germany

(c) Spain

(d) Euro Area

Figure 2: 90% Confidence Intervals for AR and BBFc-SETAR models (without param-

eters uncertainty)
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(a) France

(b) Germany

(c) Spain

(d) Euro Area

Figure 3: 90% Confidence Intervals for BBFc-SETAR models with and without param-

eters uncertainty
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