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Some conjectures on the two main power indices

Fabrice BARTHÉLÉMY∗ , Mathieu MARTIN † and Bertrand TCHANTCHO‡

Summary The purpose of this paper is to present a structural specification of the Shapley-

Shubik and Banzhaf power indices in a weighted voting rule. We compare them in term of the

cardinality of the sets of power vectors (PV). This is done in different situations where the quota or

the number of seats are fixed or not.

JEL classification: C7, D7.

Keywords: Shapley-Shubik, Banzhaf, power index, power vectors.

1 Introduction

A weighted voting rule is a (social, economical or political) situation where each member of a body

(such as a group of shareholders, a council, a committee or a parliament) controls a fixed number

of votes called his weight, and a certain number of votes (called the quota) is required to pass a

proposal.

Such a rule can be represented as a sequence [q; w1, ..., wn] where n is the number of agents or

(more generally) voters, wi is the weight (number of seats) of voter i, and q the relative quota with

q ≤ 1. The total number of weights is denoted by w̄, hence
∑n

i=1 wi = w̄ and we assume that

w1 ≥ w2 ≥ ... ≥ wn. A set of voters S is said to be winning if
∑

i∈S wi ≥ qw̄. Furthermore, it is

assumed that the complement of a winning set of voters is a losing set, meaning that the relative

quota is greater than 1
2 . Particular attention is given to the well-known majority rules for which

q = 1
2 . In this case, if the structure of weights is (w1, ..., wn), then a set of voters is winning if and

only if
∑

i∈S wi ≥ w̄
2 + 1 if w̄ is even and

∑
i∈S wi ≥ w̄+1

2 if w̄ is odd1. The extent of control that a

voter possesses over the decision-making process due to the decision rule alone is referred to as his

voting power. In other words, it is his constitutional power (see Felsenthal and Machover, 1998).

∗University of Cergy Pontoise, THEMA, F-95000 Cergy-Pontoise, FRANCE. E-mail: fabrice.barthelemy@u-cergy.fr
†University of Cergy Pontoise, THEMA, F-95000 Cergy-Pontoise, FRANCE. E-mail: mathieu.martin@u-cergy.fr
‡University of Yaounde I, Ecole Normale Superieure, Cameroon, PO Box 47 Yaounde, btchantcho@yahoo.fr
1Note that the real values of the quota are q = 1

2
+ 1

w̄
if w̄ is even and q = 1

2
+ 1

2w̄
if w̄ is odd. The notation q = 1

2

is clearer and shorter.
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There is an abundant literature on the a priori measure of power of each agent in such a collective

decision-making procedure. A complete description of power indices can be found in Felsenthal and

Machover (1998), Leech (2002) or in Laruelle and Valenciano2 (2008). Famous indices include

the Shapley-Shubik (1954) index and the (normalized and non normalized) Banzhaf index, both

of which are considered by scholars to be pre-eminent by virtue of their properties and various

axiomatizations3. The Shapley-Shubik index is based on the concept of the pivotal voter while the

Banzhaf index relies on the notion of the decisive voter. A voter i is said to be pivotal with respect

to a ranking of voters if the set of voters obtained by considering all the voters ranked before i is

losing while adding him in that set of voters yields a winning set. On the other hand, a voter i is

said to be decisive in a set of voters S if either i ∈ S, S is winning and S\{i} is not winning or

i /∈ S, S is not winning and S ∪ {i} is winning.

These indices do however yield different power vectors even though the relative rankings of voters

according to these indices coincide. Indeed, it is well known from Tomiyama (1987) (see Diffo and

Moulen, 2002 for a generalization) that in a weighted voting rule, given two voters i and j, i has

at least as much power as j with respect to the Shapley-Shubik index if and only if this is the case

with respect to the non normalized Banzhaf index. But this induced ranking between voters could

be quite different from the one observed regarding the structure of weights. For example, having a

positive weight does not ensure having a positive power, different weighting structures may lead to

the same voting power and so forth.

While attention has been given to the rankings of voters, nothing so far has been said neither on

different power vectors achieved by these indices nor on the total number of vectors achievable. We

shall illustrate this in a moment but we can note that it could be interesting to know all possible

distributions of power. This can be of use in seeking the most adequate voting rule for a committee

of representatives such as the European Council of Ministers, given the number of voters and a

structure of weights (Laruelle and Valenciano, 2008). This could also be interesting, in respect of a

comparison of both indices, to determine all achievable power vectors and so assess the probability

that both indices give the same power structure.

Various methods are available to compute the Banzhaf and the Shapley-Shubik indices. See

for example Leech (2002) for a description of each method and their respective interest. Direct

enumeration consists of directly applying the definition of the indices. A shortcoming of this approach

is the number of voters which should be less than 31. Generating functions, as suggested by Mann and

Shapley (1962), make it possible to deal with higher numbers of voters (up to 200) and give an exact

result. The Monte Carlo simulations presented by Mann and Shapley (1960) are an approximation

2In particular, the authors present the Shapley-Shubik power index in the classical cooperative game theory

framework and they show the difficulties of its interpretation.
3The normalized Banzhaf is referred to as the Banzhaf-Coleman index while the non normalized is referred to as

the Banzhaf-Penrose index.
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as are multilinear extensions approximation methods developed by Owen (1972, 1975) and modified

by Leech (2003).

But, as far as we know, there is no formula which provides either the list of all achievable power

vectors according to Shapley-Shubik and (normalized and non normalized) Banzhaf, or its cardi-

nality. We present in this paper some tables with the number of achievable power vectors for a

given number of voters. These numbers are computed from an enumeration we made to get all the

different power vectors for the indices mentioned above.

To explain the purpose of this paper, consider the simple 2-voter case. A weighted rule can be

written as a sequence [q; w1, w2], with (without loss of generality) w1 ≥ w2. We construct a partition

of the weighted rules set such that the decisive (or pivotal) voters structure is constant within a

given class. From this construction, all the weighted rules belonging to the same class, lead to a

unique power vector (PV)4. Let us notice that, by construction, the classes are non empty sets, as

each weighted rule belongs to one and only one class.

In the 2-voter case, there exist only two classes. The first class is the set of all the weighted

rules such that the first voter decides alone, w1 ≥ qw̄ (the only winning set of voters is {1}). The

second class consists of all the weighted rules where the first voter may not decide alone, w1 < qw̄

(the only winning set of voters is {1, 2}, as w1 ≥ w2). Whatever the weighted rule, it belongs to one

of these two classes, which implies that there are, at most, two different power vectors. In fact, the

cardinality of the power vectors set is equal to 2, for the 2-player case5.

What happen to the cardinality of the power vectors set when there are constraints on the total

number of seats w̄ and/or on the relative quota q? This is the central question that we answer in

this paper.

Let us continue with the 2-voter case. If the total number of seats w̄ and the relative quota

q are fixed, there exists a finite number of weighted rules, which corresponds to the number of

vectors (w1, w2) such that w1 +w2 = w̄ and w1 ≥ w2. By contrast, the number of possible weighted

rules becomes infinite when at most one of these two values is fixed. This arises because there is

an infinity of vectors (w1, w2) and/or an infinity of quotas (1/2 < q ≤ 1). Hence, the number of

possible weighted rules is greater than two (as soon as w̄ ≥ 3) when both w̄ and q are fixed and

infinite otherwise, while, as mentioned previously, there exists only 2 classes.

We illustrate the potential impact of constraints on the cardinality of the power vectors set,

considering three situations.
4Which may be different for different indices, but for a given index, the PV remains the same.
5In the first class, the first voter has all the power, and in the second class the powers of the two voters are

equivalent.
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First, to illustrate the case where w̄ and q are fixed, consider q = 1/2 and w̄ = 3. It is worth

noting for a fixed w̄, several distributions of wi may exist. For instance, the vectors (3, 0) and (2, 1)

lead to w̄ = 3. Hence, there are two possible weighted rules, [12 ; 3, 0] and [12 ; 2, 1], which belong to

the first class. Hence, only one PV is available. Let us remark that fixing w̄ and q does not imply

necessarily a smaller number of PVs. Considering q = 1/2 and w̄ = 4, three weighted rules are

available. Both [12 ; 4, 0] and [12 ; 3, 1] belong to the first class while [12 ; 2, 2] belong to the second class:

the two PVs are available.

Second, to illustrate the case where w̄ is not fixed, consider q = 1
2 . For instance, [12 ; 3, 0] belongs

to the first class (where w̄ = 3) and [12 ; 2, 2] belongs to the second class (where w̄ = 4). Hence, the

two classes are non empty sets. In fact, the number of non empty classes is always equal to two6

when w̄ ≥ 2.

Third, to illustrate the case where q is not fixed, consider w̄ = 4. The two classes are non empty

sets since for instance [ 23 ; 3, 1] belongs to the first class, while [ 12 ; 2, 2] belongs to the second class. In

fact, the number of non empty classes is always equal7 to two when w̄ ≥ 2.

In this paper, we study the four different situations, described in Table 1, obtained by different

conditions on q and w̄, previously illustrated with the 2-voter case. Complete answers to the main

questions are given for the 2, 3 and 4 voter case. In particular, whenever the quota is fixed,

the number of achieved power vectors for the Shapley-Shubik and both the non normalized and

normalized Banzhaf indices coincide. Meanwhile when the quota is not fixed, in general the number

of power vectors achieved by the non normalized Banzhaf index is greater than that achieved by

the normalized Banzhaf index, this later being at least as large as the number of achieved power

vectors via Shapley-Shubik. These quite surprising results are confirmed using a computer program

for more voters.

Table 1: The four situations

Situation 1: q and w̄ are not fixed Situation 3: q is not fixed while is w̄ fixed.

Situation 2: q is fixed and is w̄ is not Situation 4: q and w̄ are fixed

The paper is organized as follows: section 2 presents some analytical results for 2, 3 and 4 voters,

section 3 presents tables involving more players obtained thanks to the use of a computer.

6When w̄ = 1, there exists only one weighted rule, [ 1
2
; 1, 0], and one of the two classes is then empty.

7When w̄ = 1, all the weighted rules, [q; 1, 0], whatever the quota, belong to the same class.
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2 The analytical case: 2, 3 and 4 voters

Throughout, n is the number of voters. Let [q;w1, ..., wn] be a weighted rule: the set of winning set

of voters S such that
∑
i∈S

wi ≥ qw̄ will be referred to as W . The characteristic function of the rule

denoted by v is defined by:

v(S) =

 1 if S ∈ W

0 if S /∈ W

The Shapley-Shubik index (SSI) is given by the following formula8

ϕi =
∑
S⊆N

(|S| − 1)!(n − |S|)!
n!

[v(S) − v(S\{i})]

The vector (ϕ1, ϕ2, ..., ϕn) is hereafter called the SSI power vector (PV).

The non normalized Banzhaf index (BI’) of voter i is

β′
i =

∑
S⊆N [v(S) − v(S\{i})]

2n−1

The vector (β′
1, β

′
2, ..., β

′
n) is called the power vector PV for BI’.

The normalized Banzhaf index (BI) is

βi =

∑
S⊆N [v(S) − v(S\{i})]∑

j∈N

∑
S⊆N [v(S) − v(S\{j})]

The vector (β1, β2, ..., βn) is the PV for BI.

We shall denote by SSI(n, q, w̄) (respectively BI(n, q, w̄) and BI ′(n, q, w̄)) the set of possible

Shapley-Shubik (respectively normalized and non normalized Banzhaf) power vectors when the

number of voters is n, the (relative) quota is q and the total number of seats is w̄.

If either of the parameters q and w̄ is not fixed, it will be replaced in the notation above with a

point. For example, the set of Shapley-Shubik power vectors when the relative quota is not fixed is

SSI(n, ., w̄) while the set of non normalized Banzhaf power vector when w̄ is not fixed is BI ′(n, q, .).

It is worth noting that

SSI(n, ., w̄) =
∪

q≥ 1
2

SSI(n, q, w̄)

BI ′(n, q, .) =
∪

w̄≥1

BI ′(n, q, w̄).

SSI(n, ., .) is simply denoted SSI(n), and similar notations for BI(n) and BI ′(n).

We assume in this section that n is equal to 2, 3 or 4.

8The notation |A| represents the cardinal of the set A.
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In each case we show that for a fixed quota, all the three numbers coincide, that is,

|SSI(n, q, .)| = |BI ′(n, q, .)| = |BI(n, q, .)|, n = 2, 3, 4

and

|SSI(n, q, w̄)| = |BI ′(n, q, w̄)| = |BI(n, q, w̄)|, n = 2, 3, 4

But when the quota is not fixed, the three numbers differ as follows

|SSI(3)| = |BI(3)| < |BI ′(3)|
and

|SSI(4)| < |BI(4)| < |BI ′(4)|

The values of |SSI(n, ., w̄)|, |BI(n, ., w̄)| and |BI ′(n, ., w̄)| are given as a function of w̄ which

lead to:

|SSI(3, ., w̄| = |BI ′(3, ., w̄)| < |BI(3, ., w̄)|, for w̄ ≥ 3

and

|SSI(4, ., w̄| < |BI ′(4, ., w̄)| < |BI(4, ., w̄)|, for w̄ ≥ 10

2.1 The 2-voter case

Let us start with the obvious case n = 2 and denote R2 the set of all voting rules. As seen in the

introduction, even if its cardinality is infinite, the relevant partition of R2 contains only two classes

of weighted rules, denoted, Ci(2), for i = 1, 2. For q and w̄ given, let us define the classes as follows:

C1(2, q, w̄) = {[q, w1, w2] : w1 ≥ qw̄}
C2(n, q, w̄) = {[q, w1, w2] : w1 < qw̄}

Then define, for i = 1, 2, Ci(2) the set of all the weighted rules belonging to class i:

Ci(2) =
∪

q≥ 1
2

∪
w̄≥1

Ci(2, q, w̄)

By the definition of a partition, R2 = C1(2)∪C2(2) and C1(2)∩C2(2) = ∅. The constraints on w1,

w2 and q, the corresponding PV for the three power indices of interest and an example of weighted

rule, are reported in Table 2.

Table 2: The two different weighted rules for n = 2, with examples.

Classes of weighted rules SSI BI ′ BI Examples

w1 ≥ qw̄ ϕ1 = (1, 0) β′
1 = (1, 0) β1 = (1, 0) [ 1

2
; 2, 1]

w1 < qw̄ ϕ2 = ( 1
2
, 1

2
) β′

2 = ( 1
2
, 1

2
) β2 = ( 1

2
, 1

2
) [1; 2, 1]

6



It is easy to check that if q is fixed, when w̄ is fixed or not, then9

|SSI(n, q, w̄)| = |BI(n, q, w̄))| = |BI ′(n, q, w̄)| (Situation 4)

|SSI(n, q, .)| = |BI(n, q, .)| = |BI ′(n, q, .)| (Situation 2)

Depending on q, we may have for example |SSI(n, q, .)| = 1 or |SSI(n, q, .)| = 2. If q is not fixed,

then9

|SSI(2)| = |BI(2)| = |BI ′(2)| (Situation 1)

|SSI(n, ., w̄)| = |BI(n, ., w̄)| = |BI ′(n, ., w̄)| (Situation 3)

2.2 The 3-voter case

In this case a weighted rule can be written as [q, w1, w2, w3], with q ≥ 1
2 , w1 ≥ w2 ≥ w3 and

w1 + w2 + w3 = w̄. Let R3 denotes the set of all weighted rules. As in the 2-voter case, its

cardinality is infinite. In order to differentiate constant structures of decisive (pivotal) voters, 5

different classes of weighted rules arise. We obtain a partition of R3 in 5 classes denoted, Ci(3), for

i = 1, . . . , 5. Their notation will depend on whether q and w̄ are fixed or not. For a given q and w̄,

we denote (Situation 4):

C1(3, q, w̄) = {[q, w1, w2, w3] : w1 ≥ qw̄}
C2(3, q, w̄) = {[q, w1, w2, w3] : w1 + w3 < qw̄ and w1 + w2 ≥ qw̄}
C3(3, q, w̄) = {[q, w1, w2, w3] : w2 + w3 ≥ qw̄}
C4(3, q, w̄) = {[q, w1, w2, w3] : w1 < qw̄, w2 + w3 < qw̄ and w1 + w3 ≥ qw̄}
C5(3, q, w̄) = {[q, w1, w2, w3] : w1 + w2 < qw̄}

It is quite obvious that if a given weighted rule [q, w1, w2, w3] does not belong, for instance to∪4
i=1 Ci(3, q, w̄), then it belongs to C5(3, q, w̄). We define different sets according to the fact that q

and w̄ are fixed or not fixed.

For i = 1, . . . , 5, let

Ci(3, q, .) =
∪̄

w≥1

Ci(3, q, w̄) (Situation 2)

Ci(3, ., w̄) =
∪

q≥ 1
2

Ci(3, q, w̄) (Situation 3)

Ci(3) =
∪

q≥ 1
2

∪̄
w≥1

Ci(3, q, w̄) =
∪

q≥ 1
2

Ci(3, q, .) =
∪̄

w≥1

Ci(3, ., w̄) (Situation 1)

Table 3 summarizes the results for the five classes Ci(3).

Proposition 1 Assume that n = 3. If q and w̄ are not fixed, then |SSI(3)| = |BI(3)| = 4 and

|BI ′(3)| = 5 (Situation 1).
9This is illustrated in the introduction using different weighted rules.
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Table 3: The five different weighted rules for n = 3, with examples.

Classes of weighted rules SSI BI’ BI Examples

1 w1 ≥ qw̄ ϕ1 = (1, 0, 0) β′
1 = (1, 0, 0) β1 = (1, 0, 0) [ 1

2
; 2, 0, 0]

2 w1 + w3 < qw̄ and w1 + w2 ≥ qw̄ ϕ2 = ( 1
2
, 1

2
, 0) β′

2 = ( 1
2
, 1

2
, 0) β2 = ( 1

2
, 1

2
, 0) [ 1

2
; 1, 1, 0]

3 w2 + w3 ≥ qw̄ ϕ3 = ( 1
3
, 1

3
, 1

3
) β′

3 = ( 1
2
, 1

2
, 1

2
) β3 = ( 1

3
, 1

3
, 1

3
) [ 1

2
; 2, 2, 2]

4 w1 < qw̄ and w2 + w3 < qw̄ and w1 + w3 ≥ qw̄ ϕ4 = ( 2
3
, 1

6
, 1

6
) β′

4 = ( 3
4
, 1

4
, 1

4
) β4 = ( 3

5
, 1

5
, 1

5
) [ 1

2
; 4, 2, 2]

5 w1 + w2 < qw̄ ϕ5 = ( 1
3
, 1

3
, 1

3
) β′

5 = ( 1
4
, 1

4
, 1

4
) β5 = ( 1

3
, 1

3
, 1

3
) [1; 1, 1, 1]

Proof: Since q is not fixed, we have by construction of a partition:
∀i = 1, ..., 5, Ci(3) ̸= ∅
∀i ̸= j, Ci(3) ∩ Cj(3) = ∅
5∪

i=1

Ci(3) = R3

All weighted rules in the same class have the same power vector with respect to any of the power

indices studied herein. To show that |SSI(3)| = |BI(3)| = 4 we can remark that any rule belonging

to C3(3) or C5(3) yields the power vector (1
3 , 1

3 , 1
3 ) with respect to Shapley-Shubik and normalized

Banzhaf power indices. On the other hand, it is easy to show that for each i, there exists w̄ such

that Ci(3) ̸= ∅. By taking w̄ ≥ 5, one can prove that the following weighted rule Yi, for i = 1, . . . , 5,

are such that Yi ∈ Ci(n, q, w̄) (and thus Ci(3) ̸= ∅):

Y1 = [q; ⌈qw̄⌉, ⌈ w̄−⌈qw̄⌉
2 ⌉, w̄ − (⌈qw̄⌉ + ⌈ w̄−⌈qw̄⌉

2 ⌉)]10

Y2 = [q; ⌊ w̄
2 ⌋, ⌊

w̄
2 ⌋, w̄ − 2⌊ w̄

2 ⌋]
Y3 = [q; w̄ − 2⌊ w̄

3 ⌋, ⌊
w̄
3 ⌋, ⌊

w̄
3 ⌋]

Y4 = [q; ⌈qw̄⌉ − 1, w̄ − ⌈qw̄⌉, 1]

Y5 = [q; x1, x2, w̄ − ⌈qw̄⌉ + 1] with x1 = ⌈qw̄⌉−1
2 and x2 = x1 if ⌈qw̄⌉ is odd,

x1 = ⌈qw̄⌉
2 , x2 = x1 − 1 if ⌈qw̄⌉ is even.

Since βi are pairwise distinct for i = 1, 2, 3, 4, |BI(3)| = 4 and likewise, ϕi are pairwise distinct

for i = 1, 2, 3, 4, |SSI(3)| = 4. On the other hand, β′
i are pairwise distinct and since Ci(3) ̸= ∅ for

each i, |BI ′(3)| = 5. �

Proposition 2 Assume that n = 3. If q is not fixed and w̄ is fixed with w̄ ≥ 5, then |SSI(3, ., w̄)| =

|BI(3, ., w̄)| = 4 and |BI ′(3, ., w̄)| = 5 (Situation 3).

Proof: Similar to the above, see also Table 3.
10For all x, ⌈x⌉ is the smallest integer greater than or equal to x and ⌊x⌋ is the greatest integer less than or equal

to x.
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Note however that w̄ ∈ {1, 2, 3, 4} are marginalized cases. It is easy to check that

|SSI(3, ., 4)| = |BI(3, ., 4)| = |BI ′(3, ., 4)| = 4,

|SSI(3, ., 3)| = |BI(3, ., 3)| = 3, and |BI ′(3, ., 3)| = 4,

|SSI(3, ., 2)| = |BI(3, ., 2)| = |BI ′(3, ., 2)| = 2. �

The following proposition deals with the subcase where q is fixed.

Proposition 3 Assume that n = 3 and that q is fixed while w̄ is not. Then |SSI(3, q, .)| =

|BI(3, q, .)| = |BI ′(3, q, .)| (Situation 2).

Proof: Assume that q is fixed.

1. First we show that C3(3, q, .) ̸= ∅ and C5(3, q, .) ̸= ∅ is impossible.

Indeed, assume that q is fixed and that C3(3, q, .) ̸= ∅ and C5(3, q, .) ̸= ∅.

Recall that C3(3, q, .) =
∪̄

w≥1

C3(3, q, w̄) where C3(3, q, w̄) = {[q, w1, w2, w3] : w2 +w3 ≥ qw̄} and

C5(3, q, .) =
∪̄

w≥1

C5(3, q, w̄) with C5(3, q, w̄) = {[q, x1, x2, x3] : x1 + x2 < qx̄}.

Let [q, w1, w2, w3] ∈ C3(3, q, .) and [q, x1, x2, x3] ∈ C5(3, q, .) (with x̄ = x1 + x2 + x3). Then

x1 + x2 < qx̄ and w2 + w3 ≥ qw̄. But, x1 + x2 < qx̄ ⇒ qx3 > (1 − q)(x1 + x2), thus

x3 > 1−q
q (x1 + x2). Since x1 ≥ x2 ≥ x3, it follows that x3 ≤ x1+x2

2 ; and therefore 1−q
q < 1

2 ,

that is q > 2
3 .

On the other hand, [q, w1, w2, w3] ∈ C3(3, q, .) meaning that w2 + w3 ≥ qw̄. This implies that

w1 ≤ 1−q
q (w2 + w3). Thanks to w1 ≥ w2 ≥ w3, we obtain w1 ≥ w2+w3

2 , thus q ≤ 2
3 ; a

contradiction. Finally, C3(3, q, .) ̸= ∅ and C5(3, q, .) ̸= ∅ is impossible

2. Second, we see from Table 3 that for all i ∈ {1, 2, 3, 4}, ϕi, βi and β′
i are all pairwise distinct

thus, that |SSI(3, q, .)| = |BI ′(3, q, .)| = |BI(3, q, .)|. �

Considering the particular case of the majority rule, the number of vectors achieved by these

power indices is determined as follows.

Proposition 4 Assume that n = 3. If q is the majority rule, then

|SSI(3, 1
2 , w̄)| = |BI ′(3, 1

2 , w̄)| = |BI(3, 1
2 , w̄)| =


2 if w̄ = 2 or if there exists t ≥ 1 : w̄ = 2t + 1

3 if w̄ = 4

4 if there exists t ≥ 3 : w̄ = 2t

The above result feeds into situations 2 and 4, where the fixed quota is 1
2 . This result which does

not present any particular difficulty can be clearly seen in Table 3.
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2.3 The 4-voter case

A weighted rule is a sequence [q, w1, w2, w3, w4], with q ≥ 1
2 , w1 ≥ w2 ≥ w3 ≥4 and w1 + w2 + w3 +

w4 = w̄. Denote by R4 the set of all weighted rules. The partition of this set contains 14 different

classes of weighted rules, Ci(4), for i = 1, . . . , 14. For any q and w̄, let:

C1(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 ≥ qw̄}
C2(4, q, w̄) = {[q, w1, w2, w3, w4] : w2 + w3 ≥ qw̄}
C3(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w4 ≥ qw̄, w2 + w3 + w4 ≥ qw̄}
C4(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 < qw̄, w1 + w4 ≥ qw̄, w2 + w3 + w4 < qw̄}
C5(4, q, w̄) = {[q, w1, w2, w3, w4] : w2 + w3 ≥ qw̄, w1 + w4 < qw̄, w2 + w3 < qw̄,

w2 + w3 + w4 ≥ qw̄}
C6(4, q, w̄) = {[q, w1, w2, w3, w4] : w2 + w3 ≥ qw̄, w1 + w4 < qw̄, w2 + w3 < qw̄,

w2 + w3 + w4 < qw̄}
C7(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 ≥ qw̄, w1 + w3 < qw̄, w2 + w3 + w4 ≥ qw̄}
C8(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 ≥ qw̄, w1 + w3 < qw̄, w2 + w3 + w4 < qw̄,

w1 + w3 + w4 ≥ qw̄}
C9(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 ≥ qw̄, w1 + w3 < qw̄, w1 + w3 + w4 < qw̄}
C10(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 < qw̄, w2 + w3 + w4 ≥ qw̄}
C11(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 < qw̄, w2 + w3 + w4 < qw̄, w1 + w3 + w4 ≥ qw̄}
C12(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 < qw̄, w1 + w3 + w4 < qw̄, w1 + w2 + w4 ≥ qw̄}
C13(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 + w4 < qw̄, w1 + w2 + w3 ≥ qw̄}
C14(4, q, w̄) = {[q, w1, w2, w3, w4] : w1 + w2 + w3 < qw̄}

For all i,

Ci(4, ., w̄) =
∪

q≥ 1
2

Ci(4, q, w̄)

Ci(4, q, .) =
∪̄

w≥1

Ci(4, q, w̄)

Ci(4) =
∪

q≥ 1
2

∪̄
w≥1

Ci(4, q, w̄) =
∪

q≥ 1
2

Ci(4, q, .) =
∪̄

w≥1

Ci(4, ., w̄)

Table 4 summarizes the results for the fourteen classes Ci(4).

Proposition 5 Assume that n = 4. If q and w̄ are not fixed then |SSI(4)| = 11, |BI(4)| = 12 and

|BI ′(4)| = 14 (Situation 1).

Proof: Since q is not fixed, we have by construction of a partition, as we had for the 3-voter

case: 
∀i = 1, ..., 14, Ci(4) ̸= ∅
∀i ̸= j, Ci(4) ∩ Cj(4) = ∅∪14

i=1 Ci(4) = R4
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The different power vectors achieved by the power indices involved are given in Table 4. Recall

that if [q, w1, w2, w3, w4] and [q′, x1, x2, x3, x4] belong to the same class then both rules have the same

set of winning voters and thus have the same power vector with respect to any given power index.

For instance, from Table 4 we can induce that if a weighted rule belongs to the class C6(4) then

ϕ6 = ( 2
3 , 1

6 , 1
6 , 0), β6 = ( 3

5 , 1
5 , 1

5 , 0) and β′
6 = ( 3

4 , 1
4 , 1

4 , 0). Since ϕ11 = ϕ3, ϕ13 = ϕ2 and ϕ14 = ϕ10,

|SSI(4)| = 14 − 3 = 11. In the same way, as β14 = β10 and β13 = β2 we deduce that |BI(4)| = 12

and |BI ′(4)| = 14 (β′ are pairwise distinct). �

We likewise show the following.

Proposition 6 Assume that n = 4. If q is not fixed and w̄ is fixed with w̄ ≥ 10 then |SSI(4, ., w̄)| =

11, |BI(4, ., w̄)| = 12 and |BI ′(4, ., w̄)| = 14 (Situation 3).

Proof: As we proved for n = 3, it is easy to prove that for w̄ ≥ 8, each class Ci(4, ., w̄) is non

empty and we can proceed as in the case where q is not fixed (with a non fixed w̄) to get the results.

This is summarized and can be seen in Table 5. �

The proposition above implies that we have |SSI(4)| < |BI(4)| < |BI ′(4)| and |SSI(4, ., w̄)| <

|BI(4, ., w̄)| < |BI ′(4, ., w̄)| for w̄ ≥ 10. The next results deals with the case where q is fixed.

Proposition 7 Assume that n = 4. If q is fixed then |BI(4, q, .)| = |BI ′(4, q, .)| and |BI(4, q, w̄)| =

|BI ′(4, q, w̄)| (Situations 2 and 4).

Proof: Assume that n = 4 and q is fixed.

Let us begin with |BI(4, q, .)| = |BI ′(4, q, .)|:
The difference between the cardinality of BI(4) and BI ′(4) when q is not fixed arises from the

fact that β14 = β10 and β13 = β2. Hence, it is sufficient to show that when q is fixed, the two

following results:

- C2(4, q, .) ̸= ∅ and C13(4, q, .) ̸= ∅, are not possible simultaneously.

- C10(4, q, .) ̸= ∅ and C14(4, q, .) ̸= ∅ is also impossible.

• First, assume that C2(4, q, .) ̸= ∅ and C13(4, q, .) ̸= ∅.

C2(4, q, .) =
∪̄

w≥1

C2(4, q, w̄) with C2(4, q, w̄) = {[q, w1, w2, w3, w4] : w2 + w3 ≥ qw̄}

C13(4, q, .) =
∪̄

w≥1

{[q, w1, w2, w3, w4] : w1 + w2 + w4 < qw̄, w1 + w2 + w3 ≥ qw̄}

Let [q, w1, w2, w3, w4] ∈ C13(4, q, .) and [q, x1, x2, x3, x4] ∈ C2(4, q, .) with x̄ =
∑4

i=1 xi. The

implications on the wi’s inferred by the fact that [q, w1, w2, w3, w4] ∈ C13(4, q, .) are:
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[q, w1, w2, w3, w4] ∈ C13(4, q, .) ⇒ w1 + w2 + w4 < qw̄ and w1 ≥ w2 ≥ w3 ≥ w4

⇒ q > w1+w2+w4
w1+w2+w3+w4

⇒ q > 2
3 since 3(w1 + w2 + w4) > 2(w1 + w2 + w3 + w4)

On the other hand, the implications for the xi’s are:

[q, x1, x2, x3, x4] ∈ C2(4, q, .) ⇒ x2 + x3 ≥ qx̄ and x1 ≥ x2 ≥ x3

⇒ q ≤ x2+x3
x1+x2+x3+x4

, x2 + x3 ≤ 2x1 ≤ 2(x1 + x4)

⇒ q ≤ x2+x3
x1+x2+x3+x4

and 3(x2 + x3) ≤ 2(x1 + x2 + x3 + x4)

⇒ q ≤ x2+x3
x1+x2+x3+x4

≤ 2
3

which is in contradiction with the previous result. Therefore, if C2(4, q, .) ̸= ∅ then C13(4, q, .) = ∅.

• Second, assume that C10(4, q, .) ̸= ∅ and C14(4, q, .) ̸= ∅. Let [q, w1, w2, w3, w4] ∈ C14(4, q, .) and

[q, x1, x2, x3, x4] ∈ C10(4, q, .).

Since w1 + w2 + w3 < qw̄, then w4 > 1−q
q (w1 + w2 + w3). Furthermore, w1 ≥ w2 ≥ w3 ≥ w4,

thus w4 ≤ 1
3 (w1 + w2 + w3). This implies that 1

3 > 1−q
q and q > 3

4 .

Furthermore, x2 +x3 +x4 ≥ qx̄ and q > 3
4 , then x1 < 1

4 x̄, which contradicts w1 ≥ w2 ≥ w3 ≥ w4.

From Table 4, we can see that β′
i are pairwise distinct, for i ∈ {1, 2, ..., 14} \ {13, 14} as well as βi;

thus |BI(4, q, .)| = |BI ′(4, q, .)|.
When w̄ is fixed, the result arises from noting that again β′

i are pairwise distinct as well as β′
i.

|BI(4, q, w̄)| = |BI ′(4, q, w̄)|. �

Proposition 8 If n = 4 and q is fixed then |SSI(4, q, .)| = |BI(4, q, .)| and |SSI(4, q, w̄)| =

|BI(4, q, w̄)| (Situations 2 and 4).

Proof: Assume that n = 4 and q is fixed.

Let us begin with |SSI(4, q, .)| = |BI(4, q, .)|
Note that ϕ2 = ϕ13 and β2 = β13, ϕ10 = ϕ14 and β10 = β14. The difference between the number

of power vectors achievable by SSI and BI when q is not fixed arises from the fact that ϕ3 = ϕ11

while β3 ̸= β11. It is then sufficient to show that when q is fixed, C3(4, q, .) ̸= ∅ and C11(4, q, .) ̸= ∅
is not possible.

C3(4, q, .) =
∪̄

w≥1

{[q, w1, w2, w3, w4] : w1 + w4 ≥ qw̄, w2 + w3 + w4 ≥ qw̄}

C11(4, q, .) =
∪̄

w≥1

{[q, w1, w2, w3, w4] : w1 + w2 < qw̄, w2 + w3 + w4 < qw̄,

w1 + w3 + w4 ≥ qw̄}

Let [q, w1, w2, w3, w4] ∈ C3(4, q, .) and [q, x1, x2, x3, x4] ∈ C11(4, q, .), with x̄ = x1 + x2 + x3 + x4.

Thanks to [q, w1, w2, w3, w4] ∈ C3(4, q, .), we have w1 + w4 ≥ qw̄ (1) and w2 + w3 + w4 ≥ qw̄

(2). By (1), we get w2 + w3 ≤ (1 − q)w̄. Since w2 ≥ w3 ≥ w4, w4 ≤ 1
2 (w2 + w3) and we obtain
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w4 ≤ 1
2 (1 − q)w̄. By (2), w2 + w3 ≥ qw̄ − w4. Adding (1), it follows that (1 − q)w̄ ≥ qw̄ − w4 and

w4 ≥ (2q − 1)w̄. Thus, 1
2 (1 − q)w̄ ≥ (2q − 1)w̄ and q ≤ 3

5 .

On the other hand, [q, x1, x2, x3, x4] ∈ C11(4, q, .) implies that x1 + x2 < qx̄, thus x1 + x2 < 3
5 x̄

and x3 + x4 > 2
5 x̄. By x2 + x3 + x4 < qx̄, we have x̄ − x1 < qx̄, and x1 > (1 − q)x̄. Thus x1 > 2

5 x̄.

Since x1 + x2 < 3
5 x̄, then x2 < 1

5 x̄. But x3 + x4 > 2
5 x̄ yields a contradiction with x2 ≥ x3 ≥ x4.

When w̄ is fixed, the proof is similar. �
The two propositions above imply the following obvious corollary.

Corollary 1 Assume that n = 4 and q is fixed. Then |SSI(4, q, w̄)| = |BI ′(4, q, w̄)| = |BI(4, q, w̄)|
and |SSI(4, q, .)| = |BI ′(4, q, .)| = |BI(4, q, .)| (Situations 2 and 4).

Now, we consider the particular case of the majority rule and we show below that the number

of vectors achieved by these power indices is 9 if the number of seats w̄ is not fixed.

Proposition 9 Assume that n = 4. If q is the majority rule, then

|SSI(4, 1
2 , .)| = |BI ′(4, 1

2 , .)| = |BI(4, 1
2 , .))| = 9 (Situation 2 for q = 1

2).

Proof: It has already been proved that |SSI(4, 1
2 , .)| = |BI ′(4, 1

2 , .)| = |BI(4, 1
2 , .)|. We will

obtain (for example) |SSI(4, 1
2 , .)| by determining the cardinality of the set {ϕi, i ∈ {1, 2, ..., 14}}

where ϕi is the Shapley-Shubik vector of any weighted rule in class i.

(a) First, we will prove that C8(4, 1
2 , .) = ∅, C11(4, 1

2 , .) = ∅, C12(4, 1
2 , .) = ∅.

- case 1: Let us show that C8(4, 1
2 , .) = ∅. Assume that there exists w̄ with a structure of

weights (w1, w2, w3, w4) such that [ 12 , w1, w2, w3, w4] ∈ C8(4, 1
2 , w̄): then w1 +w2 ≥ 1

2 w̄, w1 +w3 < θ,

w1 + w3 + w4 ≥ θ and w2 + w3 + w4 < θ with θ =

 w̄
2 + 1 if w̄ is even
w̄+1

2 if w̄ is odd.

Since w1 + w3 + w4 ≥ θ, then w1 + w3 + w4 ≥ w2 + a (1) with a = 1 if w̄ is odd and a = 2 if

w̄ is even. Since w1 + w3 < θ, then w1 + w3 < w2 + w4 + a (2). Since w2 + w3 + w4 < θ, then

w2+w3+w4 < w1+a (3). By (2) and (3), w2+w3+w4−a < w1 < w2−w3+w4+a and w3 < a. Thus

w3 = 1 or w3 = 0. If w3 = 0, then w4 = 0 and w1 +w3 < θ and w1 +w3 +w4 ≥ θ are not compatible.

Therefore w3 = 1 and w̄ is even (a = 2). Two structures of weights are possible (w1, w2, 1, 1) and

(w1, w2, 1, 0). If w4 = 0, by (1), w1 ≥ w2 +1 and by (2) w1 < w2 +1, a contradiction. Thus, w4 = 1.

By (3), w1 > w2 and by (2) w1 < w2 + 2. Therefore, w1 = w2 + 1 and w̄ = 2w2 + 3, a contradiction

of w̄ is even.

- case 2: Lets show that C11(4, 1
2 , .) = ∅. Assume on the contrary that [q, w1, w2, w3, w4] ∈

C11(4, 1
2 , w̄): then w1 + w2 < θ, w2 + w3 + w4 < θ, w1 + w3 + w4 ≥ θ with θ = w̄

2 + 1 if w̄ is even and

θ = w̄+1
2 if w̄ is odd.
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Since w1 + w2 < θ, then w1 + w2 < w3 + w4 + a (1) with a = 1 if w̄ is odd and a = 2 if w̄

is even. Since w2 + w3 + w4 < θ, then w2 + w3 + w4 < w1 + a (2). Since w1 + w3 + w4 ≥ θ,

then w1 + w3 + w4 ≥ w2 + a (3). By (1) and (2), w2 < a and a = 2, thus w2 = 1. Indeed,

w1 + w2 < θ and w1 + w3 + w4 ≥ θ are not compatible if w2 = 0. Thus w̄ is even. By (1) and (3),

w2 − w3 − w4 + a ≤ w1 < −w2 + w3 + w4 + a and w2 < w3 + w4. Therefore w3 = w4 = 1 and w1 is

odd. By (1), we obtain w1 < 3 and w1 = 1. It is not compatible with (2).

-case 3: Let us show that C13(4, 1
2 , .) = ∅. Assume on the contrary that [q, w1, w2, w3, w4] ∈

C13(4, 1
2 , w̄): then w1 + w2 < θ, w1 + w3 + w4 < θ, w1 + w2 + w4 ≥ θ with θ = w̄

2 + 1 if w̄ is even or

θ = w̄+1
2 if w̄ is odd.

Since w1 + w2 < θ, then w1 + w2 < w3 + w4 + a (1) with a = 1 if w̄ is odd and a = 2

if w̄ is even. Since w1 + w3 + w4 < θ, then w1 + w3 + w4 < w2 + a (2). By (1) and (2),

w1 + w3 + w4 − a < w2 < −w1 + w3 + w4 + a and w1 < a. Since w1 ̸= 0, w1 = 1 and w̄ is

even. Two structures of weights are then possible: (1, 1, 0, 0) which is not compatible with (1) and

(1, 1, 1, 1) which is not compatible with (2).

Hence, C8(4, 1
2 , .) = ∅, C11(4, 1

2 , .) = ∅, C12(4, 1
2 , .) = ∅.

In Table 4 majority rules are proposed belonging to the sets Ci(4, 1
2 , .) ̸= ∅ for i ̸= 8, 11, 12. This

shows that ∀i ̸= 8, 11, 12, Ci(4, 1
2 , .) ̸= ∅.

(b) Second, we have ϕ13 = ϕ2 and ϕ14 = ϕ10 implying that the cardinality of the set {ϕi, i ∈
{1, 2, ..., 14}} is at most 9. But table 8 shows that ϕi ̸= ϕj ∀i, j ∈ {1, 2, 3, 4, 5, 6, 7, 9, 10} thus

|SSI(4, 1
2 , .)| = 9. More explicitly, we give below the value of |SSI(4, 1

2 , w̄)| when the quota which

is fixed is the majority rule and the number of seats is fixed (see table 7).

Proposition 10 Assume that n = 4. If q = 1
2 (the majority rule), then

|SSI(4, 1
2 , w̄)| = |BI(4, 1

2 , w̄)| = |BI ′(4, 1
2 , w̄)| =



2 if w̄ ∈ {2, 3}
3 if there exists t ≥ 2 : w̄ = 2t + 1

4 if w̄ = 4

6 if w̄ = 6

8 if w̄ = 8 or there exists t ≥ 1 : w̄ = 4t + 6

9 if there exists t ≥ 1 : w̄ = 4t + 8

3 More voters

The purpose of this section is to confirm the 2, 3 and 4-voter cases: when the quota is not fixed, the

number of PV is different with SSI, BI’ and BI, always in the same order
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|SSI(n)| < |BI(n)| < |BI ′(n)| (Situation 1) and

|SSI(n, ., w̄)| < |BI(n, ., w̄)| < |BI ′(n, ., w̄)| (Situation 3).

Furthermore, when the quota is fixed, we have

|SSI(n, q, .)| = |BI(n, q, .| = |BI ′(n, q, .)| (Situation 2) and

|SSI(n, q, w̄)| = |BI(n, q, w̄)| = |BI ′(n, q, w̄)| (Situation 4).

These results are obtained through systematic enumeration on a computer11. Tables 5 and 6

correspond to Situation 3: all quotas are permitted that is the quota is not fixed while the number

of seats w̄ is fixed. The number of PV is given for w̄ ≤ 45. Let us note that the number of PV is

not monotonic with w̄. For instance, there are 57 PV for SSI when w̄ = 20 and n = 5 while there

are only 56 PV when w̄ = 21. Remark also that the number of PV increases quickly, which explains

why the analytical approach is only used for 2, 3 and 4 voters.

Thanks to Tables 7 and 8 we tend to Situation 1 since these tables are cumulative with respect

to Tables 5 and 612. However we obtain only a trend since it is not possible to obtain the sets

SSI(n, ., w̄), BI(n, ., w̄), and BI ′(n, ., w̄) when w̄ becomes too high.

For majority rules13, Tables 9 and 10 present some results concerning Situations 2 and Situations

4. Table 10 is the cumulative14 approach of Table 9. The distinction between the different power

indices is not necessary since the cardinality of the sets SSI(n, 1
2 , w̄), BI ′(n, 1

2 , w̄) and BI(n, 1
2 , w̄)

is always the same. Thus, only one column is given in our tables.

All these tables confirm our analytical results developed in section 2 and enables us to present

the four following conjectures:

Conjecture 1 |SSI(n)| < |BI(n)| < |BI ′(n)| for n ≥ 4.

Conjecture 2 |SSI(n, ., w̄)| < |BI(n, ., w̄)| < |BI ′(n, ., w̄)| for n ≥ 4 and w̄ > x, with x = 10 for

n = 4, x = 9 for n = 5 and x = 5 for n ≥ 6.

Conjecture 3 |SSI(n, q, .)| = |BI(n, q, .)| = |BI ′(n, q, .)|.

Conjecture 4 |SSI(n, q, w̄)| = |BI(n, q, w̄)| = |BI ′(n, q, w̄)|.
11For a description of the computational method, see Barthélémy and Martin (2008).
12We compute |

∪
x≤w̄

SSI(n, ., x)|, |
∪

x≤w̄

BI(n, ., x)| and |
∪

x≤w̄

BI′(n, ., x)|.
13Equivalent results with different quotas were obtained but are omitted here.
14We compute |

∪
x≤w̄

SSI(n, 1
2
, x)|, |

∪
x≤w̄

BI(n, 1
2
, x)| and |

∪
x≤w̄

BI′(n, 1
2
, x)|.
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Table 5: PVs when q is not constrained

n = 3 n = 4 n = 5 n = 6
w̄ SSI BI BI’ SSI BI BI’ SSI BI BI’ SSI BI BI’
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 4 3 3 4 3 3 4 3 3 4
4 4 4 4 5 5 6 5 5 6 5 5 6
5 4 4 5 6 7 8 7 8 11 7 8 11
6 4 4 5 9 9 10 11 12 13 12 13 16
7 4 4 5 9 10 12 14 16 19 16 20 23
8 4 4 5 11 11 13 21 21 23 26 28 30
9 4 4 5 10 11 13 23 25 30 33 36 43
10 4 4 5 11 12 14 30 31 35 49 51 55
11 4 4 5 11 12 14 32 35 40 58 62 70
12 4 4 5 11 12 14 39 42 45 78 82 88
13 4 4 5 11 12 14 38 42 47 92 98 107
14 4 4 5 11 12 14 46 50 55 118 124 131
15 4 4 5 11 12 14 45 49 54 130 139 149
16 4 4 5 11 12 14 49 53 58 163 170 178
17 4 4 5 11 12 14 50 54 59 177 186 196
18 4 4 5 11 12 14 53 57 62 220 230 239
19 4 4 5 11 12 14 52 56 61 232 242 253
20 4 4 5 11 12 14 53 57 62 273 286 295
21 4 4 5 11 12 14 52 56 61 283 294 305
22 4 4 5 11 12 14 53 57 62 330 342 352
23 4 4 5 11 12 14 53 57 62 341 353 364
24 4 4 5 11 12 14 53 57 62 383 398 408
25 4 4 5 11 12 14 53 57 62 384 397 408
26 4 4 5 11 12 14 53 57 62 435 451 461
27 4 4 5 11 12 14 53 57 62 425 440 451
28 4 4 5 11 12 14 53 57 62 464 479 489
29 4 4 5 11 12 14 53 57 62 466 480 491
30 4 4 5 11 12 14 53 57 62 490 508 519
31 4 4 5 11 12 14 53 57 62 490 506 517
32 4 4 5 11 12 14 53 57 62 510 530 540
33 4 4 5 11 12 14 53 57 62 503 521 532
34 4 4 5 11 12 14 53 57 62 521 539 550
35 4 4 5 11 12 14 53 57 62 516 534 545
36 4 4 5 11 12 14 53 57 62 531 550 561
37 4 4 5 11 12 14 53 57 62 527 546 557
38 4 4 5 11 12 14 53 57 62 533 552 563
39 4 4 5 11 12 14 53 57 62 529 548 559
40 4 4 5 11 12 14 53 57 62 534 553 564
41 4 4 5 11 12 14 53 57 62 534 553 564
42 4 4 5 11 12 14 53 57 62 535 554 565
43 4 4 5 11 12 14 53 57 62 535 554 565
44 4 4 5 11 12 14 53 57 62 536 555 566
45 4 4 5 11 12 14 53 57 62 535 554 565
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Table 6: PVs when q is not constrained

n = 7 n = 8 n = 9 n = 10
w̄ SSI BI BI’ SSI BI BI’ SSI BI BI’ SSI BI BI’
1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 4 3 3 4 3 3 4 3 3 4
4 5 5 6 5 5 6 5 5 6 5 5 6
5 7 8 11 7 8 11 7 8 11 7 8 11
6 12 13 16 12 13 16 12 13 16 12 13 16
7 17 21 27 17 21 27 17 21 27 17 21 27
8 28 32 34 29 33 38 29 33 38 29 33 38
9 38 45 52 40 50 57 41 51 62 41 51 62
10 59 63 68 64 72 77 66 77 82 67 78 87
11 78 84 95 88 100 111 93 111 122 95 117 128
12 111 116 122 131 141 147 141 157 163 146 168 174
13 143 151 164 177 190 205 197 220 235 207 239 254
14 188 194 205 248 254 266 282 295 307 302 325 337
15 234 243 261 319 330 352 378 398 424 412 446 472
16 298 314 323 420 438 450 515 534 546 574 605 618
17 365 379 396 539 555 580 680 700 732 775 808 843
18 462 480 490 700 724 737 894 921 938 1049 1078 1095
19 541 554 579 872 888 921 1157 1178 1219 1380 1405 1452
20 666 689 703 1100 1131 1149 1478 1513 1534 1786 1823 1850
21 768 792 814 1350 1380 1411 1886 1923 1966 2326 2369 2417
22 947 967 985 1685 1718 1741 2381 2423 2450 2972 3022 3052
23 1072 1094 1120 2028 2051 2096 2984 3008 3069 3802 3831 3902
24 1299 1328 1345 2509 2549 2574 3721 3775 3805 4794 4855 4891
25 1418 1453 1478 2943 2989 3032 4560 4615 4676 6020 6088 6158
26 1716 1753 1773 3621 3675 3702 5639 5713 5744 7510 7597 7635
27 1854 1901 1930 4218 4265 4317 6853 6901 6987 9344 9395 9502
28 2190 2244 2262 5084 5158 5185 8344 8442 8475 11489 11601 11641
29 2366 2403 2432 5861 5901 5963 10020 10062 10162 14126 14170 14301
30 2779 2846 2868 7079 7166 7200 12191 12304 12352 17302 17445 17502
31 2937 2985 3017 7997 8050 8112 14418 14468 14567 20995 21047 21184
32 3419 3485 3508 9573 9661 9698 17368 17483 17535 25463 25600 25667
33 3582 3656 3686 10759 10842 10908 20419 20517 20632 30687 30803 30954
34 4129 4205 4229 12717 12821 12865 24352 24480 24548 36879 37030 37125
35 4286 4369 4402 14137 14232 14310 28308 28385 28535 43981 44049 44269
36 4924 5026 5048 16720 16862 16898 33723 33904 33956 52721 52929 52992
37 5037 5128 5161 18382 18482 18562 38820 38913 39067 62326 62407 62631
38 5722 5836 5861 21609 21762 21806 45959 46157 46224 74194 74423 74505
39 5838 5958 5992 23652 23768 23870 52590 52692 52903 87190 87230 87569
40 6505 6650 6675 27407 27593 27641 61627 61875 61950 102846 103142 103241
41 6647 6784 6817 29787 29929 30023 70001 70131 70334 119988 120058 120386
42 7430 7578 7605 34749 34945 34999 82254 82531 82620 141645 141958 142084
43 7466 7618 7652 37200 37347 37458 92344 92469 92723 163602 163651 164061
44 8244 8412 8438 43038 43252 43310 107713 107996 108102 191696 192006 192163
45 8282 8467 8501 46172 46354 46474 120961 121140 121404 221155 221310 221754
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Table 7: Cumulative number of PVs when q is not constrained

n = 3 n = 4 n = 5 n = 6 n = 7
w̄ SSI BI BI’ SSI BI BI’ SSI BI BI’ SSI BI BI’ SSI BI BI’
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4
4 4 4 5 5 5 7 5 5 7 5 5 7 5 5 7
5 4 4 5 6 7 9 7 8 12 7 8 12 7 8 12
6 4 4 5 9 10 12 11 13 17 12 14 20 12 14 20
7 4 4 5 10 11 13 15 18 23 17 22 29 18 23 33
8 4 4 5 11 12 14 22 25 30 27 34 41 29 38 48
9 4 4 5 11 12 14 27 31 36 38 47 56 43 58 70
10 4 4 5 11 12 14 34 38 43 57 67 76 68 86 99
11 4 4 5 11 12 14 38 42 47 74 84 94 98 118 135
12 4 4 5 11 12 14 45 49 54 101 112 122 146 168 185
13 4 4 5 11 12 14 48 52 57 127 138 148 201 226 243
14 4 4 5 11 12 14 51 55 60 159 170 180 273 297 316
15 4 4 5 11 12 14 52 56 61 187 198 209 358 381 403
16 4 4 5 11 12 14 53 57 62 226 237 248 466 494 516
17 4 4 5 11 12 14 53 57 62 256 267 278 582 612 634
18 4 4 5 11 12 14 53 57 62 299 310 321 739 772 794
19 4 4 5 11 12 14 53 57 62 331 342 353 898 931 956
20 4 4 5 11 12 14 53 57 62 367 379 390 1101 1139 1164
21 4 4 5 11 12 14 53 57 62 394 406 417 1312 1355 1380
22 4 4 5 11 12 14 53 57 62 427 441 452 1583 1627 1654
23 4 4 5 11 12 14 53 57 62 449 463 474 1833 1881 1910
24 4 4 5 11 12 14 53 57 62 475 491 502 2167 2221 2250
25 4 4 5 11 12 14 53 57 62 488 505 516 2477 2542 2571
26 4 4 5 11 12 14 53 57 62 501 519 530 2860 2928 2958
27 4 4 5 11 12 14 53 57 62 511 530 541 3219 3305 3336
28 4 4 5 11 12 14 53 57 62 520 539 550 3669 3770 3801
29 4 4 5 11 12 14 53 57 62 526 545 556 4065 4171 4202
30 4 4 5 11 12 14 53 57 62 530 549 560 4578 4692 4724
31 4 4 5 11 12 14 53 57 62 533 552 563 5040 5158 5191
32 4 4 5 11 12 14 53 57 62 535 554 565 5568 5696 5729
33 4 4 5 11 12 14 53 57 62 536 555 566 6043 6186 6220
34 4 4 5 11 12 14 53 57 62 536 555 566 6608 6759 6793
35 4 4 5 11 12 14 53 57 62 536 555 566 7090 7246 7280
36 4 4 5 11 12 14 53 57 62 536 555 566 7671 7843 7877
37 4 4 5 11 12 14 53 57 62 536 555 566 8145 8330 8364
38 4 4 5 11 12 14 53 57 62 536 555 566 8664 8866 8900
39 4 4 5 11 12 14 53 57 62 536 555 566 9122 9341 9375
40 4 4 5 11 12 14 53 57 62 536 555 566 9614 9862 9896
41 4 4 5 11 12 14 53 57 62 536 555 566 10016 10283 10317
42 4 4 5 11 12 14 53 57 62 536 555 566 10478 10761 10795
43 4 4 5 11 12 14 53 57 62 536 555 566 10879 11175 11209
44 4 4 5 11 12 14 53 57 62 536 555 566 11276 11589 11623
45 4 4 5 11 12 14 53 57 62 536 555 566 11615 11937 11971

20



Table 8: Cumulative number of PVs when q is not constrained

n = 8 n = 9 n = 10
w̄ SSI BI BI’ SSI BI BI’ SSI BI BI’
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 4 3 3 4 3 3 4
4 5 5 7 5 5 7 5 5 7
5 7 8 12 7 8 12 7 8 12
6 12 14 20 12 14 20 12 14 20
7 18 23 33 18 23 33 18 23 33
8 30 39 52 30 39 52 30 39 52
9 45 63 78 46 64 83 46 64 83
10 73 98 114 75 103 123 76 104 128
11 109 142 162 114 156 180 116 162 190
12 170 210 230 181 236 260 186 251 279
13 247 295 317 271 344 370 282 374 404
14 359 407 432 405 485 514 429 538 571
15 496 545 574 582 672 709 628 761 802
16 679 736 765 829 929 966 915 1070 1112
17 901 959 991 1142 1249 1291 1293 1468 1518
18 1201 1264 1297 1567 1683 1726 1826 2014 2065
19 1548 1606 1648 2101 2212 2267 2511 2699 2764
20 1992 2058 2100 2788 2906 2963 3405 3604 3673
21 2509 2580 2624 3639 3765 3828 4555 4762 4837
22 3176 3251 3298 4736 4867 4935 6046 6265 6346
23 3903 3980 4034 6036 6163 6247 7889 8099 8204
24 4850 4938 4994 7702 7845 7936 10258 10487 10602
25 5889 5991 6047 9678 9837 9931 13178 13426 13545
26 7192 7298 7356 12156 12325 12422 16856 17118 17242
27 8620 8741 8804 15067 15252 15364 21339 21611 21761
28 10402 10541 10605 18708 18921 19034 26965 27266 27419
29 12279 12416 12488 22872 23078 23211 33681 33968 34154
30 14664 14805 14883 28098 28320 28461 42088 42405 42599
31 17161 17303 17387 34049 34265 34422 52059 52366 52589
32 20194 20348 20433 41313 41551 41713 64289 64626 64857
33 23397 23566 23658 49572 49832 50011 78761 79124 79375
34 27290 27467 27563 59635 59908 60097 96452 96828 97100
35 31259 31439 31539 70803 71072 71287 116978 117339 117663
36 36178 36379 36481 84509 84811 85032 142092 142494 142831
37 41168 41377 41486 99676 99987 100223 171134 171559 171915
38 47059 47279 47396 117785 118111 118365 206006 206452 206828
39 53122 53352 53482 137861 138191 138486 246259 246689 247154
40 60377 60637 60770 161972 162334 162642 294585 295069 295554
41 67496 67773 67915 188040 188413 188745 349429 349915 350444
42 76185 76476 76623 219495 219899 220240 415336 415874 416417
43 84824 85130 85279 253545 253951 254326 490004 490504 491136
44 94780 95102 95255 293595 294014 294416 578185 578690 579372
45 104891 105223 105383 337305 337736 338168 678326 678880 679612
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Table 9: Number of PVs according to w̄ and n with q = 1/2

w̄
n 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2
4 3 4 4 4 4 4 4 4
5 2 3 4 4 4 4 4 4
6 4 6 7 8 8 8 8 8
7 2 3 5 6 7 7 7 7
8 4 8 11 13 14 15 15 15
9 2 3 7 10 12 13 14 14
10 4 8 14 19 22 24 25 26
11 2 3 7 12 17 20 22 23
12 4 9 19 29 36 41 44 46
13 2 3 7 17 27 34 39 42
14 4 8 21 38 52 63 70 75
15 2 3 7 19 36 49 60 67
16 4 9 24 51 76 97 112 123
17 2 3 7 20 48 73 94 109
18 4 8 25 63 105 142 171 193
19 2 3 7 21 60 102 139 167
20 4 9 26 77 145 208 259 300
21 2 3 7 21 76 146 210 261
22 4 8 24 85 183 284 371 443
23 2 3 7 21 85 186 289 376
24 4 9 27 102 243 402 545 666
25 2 3 7 21 100 251 417 563
26 4 8 24 109 304 539 765 963
27 2 3 7 21 112 324 573 804
28 4 9 26 119 374 715 1062 1375
29 2 3 7 21 119 400 767 1129
30 4 8 25 122 445 924 1437 1921
31 2 3 7 21 125 486 1010 1551
32 4 9 26 129 536 1208 1958 2689
33 2 3 7 21 132 604 1361 2169
34 4 8 24 125 625 1525 2593 3665
35 2 3 7 21 132 713 1732 2891
36 4 9 27 134 732 1934 3434 4987
37 2 3 7 21 133 846 2242 3903
38 4 8 24 126 814 2367 4432 6642
39 2 3 7 21 135 979 2812 5136
40 4 9 26 133 916 2896 5687 8788
41 2 3 7 21 135 1105 3489 6679
42 4 8 25 130 1008 3522 7257 11539
43 2 3 7 21 135 1249 4343 8684
44 4 9 26 131 1120 4306 9279 15152
45 2 3 7 21 135 1419 5424 11323
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Table 10: Cumulative number of PVs according to w̄ and n with q = 1/2

w̄
n 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 5 5 5 5 5 5 5
5 4 6 7 7 7 7 7 7
6 4 8 10 11 11 11 11 11
7 4 8 12 14 15 15 15 15
8 4 9 16 20 22 23 23 23
9 4 9 17 24 28 30 31 31
10 4 9 20 32 39 43 45 46
11 4 9 20 35 47 54 58 60
12 4 9 24 45 64 76 83 87
13 4 9 24 49 74 93 105 112
14 4 9 26 61 96 126 145 157
15 4 9 26 63 108 148 178 197
16 4 9 27 76 139 195 240 270
17 4 9 27 77 153 227 288 333
18 4 9 27 90 193 296 381 448
19 4 9 27 90 207 338 452 543
20 4 9 27 105 260 436 592 718
21 4 9 27 105 277 493 695 863
22 4 9 27 115 336 624 896 1126
23 4 9 27 115 347 688 1035 1336
24 4 9 27 126 422 865 1323 1725
25 4 9 27 126 436 951 1518 2034
26 4 9 27 132 521 1180 1915 2594
27 4 9 27 132 530 1279 2169 3023
28 4 9 27 136 623 1571 2713 3818
29 4 9 27 136 629 1684 3048 4421
30 4 9 27 137 727 2052 3776 5535
31 4 9 27 137 729 2173 4203 6350
32 4 9 27 138 840 2634 5175 7883
33 4 9 27 138 843 2782 5734 9003
34 4 9 27 138 949 3332 6997 11086
35 4 9 27 138 950 3476 7668 12553
36 4 9 27 138 1067 4156 9316 15363
37 4 9 27 138 1067 4326 10182 17337
38 4 9 27 138 1169 5106 12262 21060
39 4 9 27 138 1169 5264 13271 23577
40 4 9 27 138 1270 6189 15899 28465
41 4 9 27 138 1270 6349 17138 31730
42 4 9 27 138 1350 7404 20427 38105
43 4 9 27 138 1350 7544 21873 42245
44 4 9 27 138 1433 8790 25997 50515
45 4 9 27 138 1433 8951 27784 55872
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