
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 
 
Thema Working Paper n°2009-09 
Université de Cergy Pontoise, France 
 
 
 

       
        Political Competition over Distortionary Taxation 
 
 
 
 

       Nunez Matias 
 
 
 

 
November, 2009 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

  
 

http://www.u-cergy.fr/�


Political Competition over Distortionary Taxation ∗

Mat́ıas Núñez †
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Abstract

Political parties compete over income tax functions, and voters vote and

decide whether to pay full taxes or to make an effort to modify their tax bur-

den. We show that political parties only propose efficient income tax func-

tions, in a similar manner to the probabilistic voting theory. Regarding the

shape of income tax functions, it need not be the case that the majority of vot-

ers prefer progressive taxation to regressive taxation as a consequence of the

distortions. Nevertheless, we prove that the political appeal for progressivity

is restored under mild conditions.
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1 Introduction

Income taxation and its distortionary effects have been analyzed extensively in the

economics literature. A distortion can be broadly defined as a taxpayer’s reaction to

his level of tax burden (in the sense that his behavior is altered by the existence of the

tax). Most of the studies dealing with distortions focus on the inefficiency created by

income taxation. They seek to determine, from a normative point of view, properties

of the tax system so that these inefficiencies vanish (or similarly to maximize some

social welfare function). In contrast with such a strand of the literature, the present

article adopts a positive perspective. The starting point of our model is the following

observation: as strategic political parties anticipate distortions, they adapt their

electoral promises to maximize their probability of victory. When confronted with

this observation, the main question one might consider is how do political parties

adapt their electoral promises?

In order to provide an answer to this question, we build a simple model in the

Downsian tradition: income tax functions are determined by the electoral competi-

tion of two office-seeking political parties. Taxes are used to finance a public good.

Given the size of the public good, each party makes binding electoral promises to

each voter. Voters differ in endowed income and benefit equally from the public good.

Taxes are distortionary in the sense that they modify voters’ behavior. Specifically,

a voter votes for one of the political parties and makes a binary decision. A voter

chooses between paying full taxes and making an effort to modify his tax burden1.

In the latter case, the monetary amount the voter must pay is represented by the

cost function. Such a function is common knowledge among both parties and voters.

Examples of distortions studied within this model are labor supply and tax avoid-

ance activities2. Hence, a voter votes for the party that maximizes his final income

(available income once the binary decision has been made).

Building on this simple model, we address two salient issues of the positive

approach to income taxation: the efficiency of the electoral competition and the

shape of income tax functions in equilibrium.

1One can think of the voter as choosing between standard taxation and some broadly defined
outside option.

2Tax avoidance can be defined as the wide variety of legal activities people engage in with the
sole purpose of lowering their tax burden. Tax avoidance represents 2 to 7 % of the GDP and 5
to 20 % of the population avoid 10 to 20 % of their official tax payments (for a detailed account,
see Andreoni [1]). The model accounts also for tax evasion but does not incorporate the anti-fraud
mechanisms.
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Vis-à-vis the former issue, the distortions in the model can lead to the emergence

of inefficiencies. Even if the level of public good delivered by the different tax

functions is constant, voters individually decide whether to make an effort modifying

the aggregate level of final income. A tax function is said to be efficient whenever it

maximizes the aggregate level of final income, in contrast with an inefficient one that

does not. We show that parties uniquely propose efficient income tax functions3.

The reason political competition leads to an efficient outcome is quite simple. Let us

consider the case where party 1 promises to implement some inefficient tax function.

Now, suppose that his opponent, party 2, tries to defeat him. As the tax function

proposed by party 1 is inefficient, it does not maximize the aggregate level of final

income. For that reason, party 2 can construct a tax function that delivers for every

voter a level of final income which is equal or higher than the final income delivered

by the tax function offered by party 1. Roughly speaking, it is weakly dominated

for a strategic party to offer an inefficient tax function to voters. The idea that

competition between political parties leads to the maximization of a Benthamite

social welfare function is in accordance with the conclusions of the probabilistic

voting models à la Lindbeck and Weibull [9].

The second feature of political competition we analyze is the shape of tax func-

tions in equilibrium. The main objective is to understand whether the political

appeal for progressivity is robust with respect to distortions. Such an appeal simply

relies on the fact that any progressive tax function4 is preferred to any regressive tax

function under majority voting in a pure endowment economy; this observation is

satisfied only when the median income is lower than the mean5. In order to make our

arguments transparent, we focus on a canonical example: the flat tax game. Voters

are restricted to choosing between paying full taxes proposed by parties and spending

a proportional amount of their endowed income. We first emphasize how unfounded

the usual arguments given in public debates can be in our setting: the poorest voters

3Technically, we prove that only the efficient tax functions lie in the uncovered set. As stated
by Banks, Duggan and Le Breton [2], the support of any mixed strategy equilibria of a two-player,
symmetric, zero-sum game lies in the uncovered set, given some conditions which are satisfied by
our game.

4We define progressive taxation in the marginal sense: a tax is said to be progressive whenever
its marginal tax rates are increasing in income (a convex function). Similarly, a regressive tax
function is a concave function.

5This condition over the income distribution is not too disturbing, as most OECD countries
satisfy it. Even if different authors have argued that this appeal is enough to justify the imple-
mentation of progressive taxation, the only work that obtained such a result in an equilibrium
framework is the recent article of Carbonell-Nicolau and Ok [3] (see Section 1.1 for a review).
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need not prefer progressive income taxation. It is even the case that a regressive

tax function is unanimously preferred to a progressive tax function. Hence, situa-

tions exist in which strategic parties advocate regressive taxation. However, such

situations are characterized by constrained policy spaces. In the example provided,

parties can only propose two tax functions: an inefficient progressive tax function

and an efficient regressive one. When the policy space is rich enough (it is only

required that parties can propose efficient progressive and regressive tax functions),

the political appeal for progressivity is restored.

This paper is organized as follows: Section 1.1 presents a review of the literature,

and Section 2 sets up the model of public good provision with distortionary taxes.

Section 3 describes the political game between the two Downsian parties. Section 4

presents the results concerning the efficiency of the electoral competition. Finally,

Section 5 deals with the shape of income taxation in equilibrium, and Section 6 gives

concluding comments.

1.1 Related literature

This work incorporates political competition into a setting with distortionary taxes

to explore the role of the political arena in shaping income taxation. Such an in-

teraction has not deserved much attention due to the well-known problem of the

inexistence of pure strategy equilibria as a consequence of political cycles: one can

always design a tax function that is preferred by a majority of voters to any other

tax function. The most-used solutions to tackle this problem can be classified into

two categories: restricting the policy space (linear or quadratic tax functions)6 or

introducing some ideological component into voters’ preferences (the so-called proba-

bilistic voting theory7). Whereas the first approach seems too artificially constrained

(one might wonder which is the good restriction), the second one has become a stan-

dard approach in political economics.

This paper takes a much more seldom used route: keeping the richness of the

policy space and focusing on equilibria in mixed strategies without incorporating

ideological concerns. In our model, a voter votes for the party that offers him the

highest level of final income. This idea leads to a discontinuity in a party’s payoff,

6The main examples of this strand of literature are Meltzer and Richard [12], Roberts [17] and
Romer [18].

7See Chapter 2 in Person and Tabellini [15] and the works of Lindbeck and Weibull[9] and
Coughlin [4].
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as voters abruptly change their vote from one party to the other in contrast with

probabilistic voting models. In such models, if party 1 increases his promise of final

income to some group of voters, the share of voters in this group that vote for party 1

increases continuously. Hence, the role of mixed strategies in our model is to smooth

the party’s payoffs, allowing the existence of equilibrium. Such an approach has been

used by Myerson [14], Laslier[8], Lizzeri and Persico [10] and Crutzen and Sahuguet

[5]. However, these models assume that voters are ex-ante equal, and hence they

do not deal with the shape of income taxation in equilibrium. To our knowledge,

only one recent paper (Carbonell-Nicolau and Ok [3]) focuses on the mixed strategy

approach to determine the shape of income taxation. Their work focuses on a pure

endowment economy where voters differ only by income level. They find that when

parties are restricted to propose either progressive or regressive taxation, they only

advocate progressive taxation in equilibrium (given that the median income is lower

than the mean income). Nevertheless, when this restriction is softened (any shape

of income taxation is permitted), the probability that parties advocate progressive

taxation is strictly lower than one.

2 The basic setting

We consider an economy with a continuum of voters. Voters only differ in endowed

income, x ∈ [0, 1], distributed according to a distribution function F belonging to the

set of distribution functions F. The function F is assumed to be an increasing and

differentiable continuous function with F (0) = 0 and F (1) = 1. By definition, pF

denotes the probability measure induced by F on [0,1]. Formally, the share of voters

whose endowed income is located in the set A ⊆ [0, 1] equals pF (A) =
∫ 1

0
1AdF . We

consider the set of distribution functions F as a metric space under the sup-metric.

There are two parties in the election denoted by 1 and 2. A pure strategy for

a party is a function which assigns to each endowed income an amount of taxation

due to the government. Due to the distortions present within the model, an ex-ante

tax function represents the official tax payments of a voter, whereas an ex-post tax

function stands for the actual level of expenditures of voters once the distortions

have been taken into account.

Definition 1 (Ex-ante tax function). A function T ∈ C[0, 1] is an ex-ante tax

function if it satisfies the following two properties:
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1. 0 ≤ T (x) ≤ x for all x ∈ [0, 1] ,

2. x 7−→ T (x) and x 7−→ x− T (x) are increasing functions on [0, 1].

Whereas Property 1 implies that voters do not face negative taxation or taxation

larger than their income, Property 2 implies that the tax burden increases with

income and that pre-tax and post-tax income rankings are identical.

As previously discussed, taxes are distortionary in the sense that they modify

voters’ behavior. Given an ex-ante tax function T , the voter decides whether to pay

full taxes or to make an effort. In the latter case, the monetary amount the voter

must pay is represented by the cost function c(T ) (which might depend on T ). This

cost function is common knowledge for both parties and voters.

The voter’s decision is simple. For any ex-ante tax function T and its associated

function c(T ), a voter chooses to pay full taxes if this choice results in a higher final

income than making an effort, i.e.,

a voter with income x pays full taxes iff x− T (x) ≥ x− c(T )(x).

The set ET stands for the set of voters who pay full taxes:

ET = {x ∈ [0, 1] | T (x) ≤ c(T )(x)}.

Formally, given an ex-ante tax function T , its associated cost function c(T ) has

two components: the amount of money collected by the government TG and the

deadweight cost of making an effort TP .

Definition 2 (Cost function). Given a function T ∈ C[0, 1], a cost function is a

continuous function that satisfies

c(T )(x) = TG(x) + TP (x).

Besides, a cost function satisfies the following properties for any S ∈ C[0, 1]:

1. (Linearity.) c(εS +(1−ε)T )(x) = εc(S)(x)+(1−ε)c(T )(x) for any ε ∈ [0, 1],

2. (Monotonicity.) if S(x) ≤ T (x) for any x ∈ (0, 1) then c(S)(x) ≤ c(T )(x) for

any x ∈ [0, 1],
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The first cost function property simply states that the cost function of a linear

combination of two ex-ante tax functions equals the linear combination of the cost

function corresponding to the two ex-ante tax functions. This property implies

some linearity with respect to the tax function T 8. The second property states that

if every voter has a tax burden with tax function S which is lower or equal to the

one with tax function T , the cost function corresponding to S is lower than or equal

to the cost function corresponding to T .

Generally speaking, we consider that a cost function represents tax avoidance

activities whenever TP (x) > 0 for any x ∈ (0, 1); the amount of money which is

not collected by the government represents a cost for the voter. With such a cost

function, the voter faces a trade-off between either paying full taxes or incurring a

cost to reduce his personal tax burden.

Example 1: The flat tax. For some a ∈ [0, 1], c(T )(x) = ax. Independently

of the ex-ante function T , the voter can simply pay a proportional amount of his

income which is not collected by the government to supply the public good. Hence,

a voter with endowed income x gets a final income which equals either x− T (x) or

(1− a)x. Both properties of the cost function are satisfied as c(εT + (1− ε)S)(x) =

ax = εT (x) + (1 − ε)S(x) and c(T )(x) = ax for any T ∈ C[0, 1]. This example is

particularly appealing in the debate over how should a government modify its tax

system when some neighbor country sets up a flat tax. As will be shown in Section

5, progressive taxation is implemented in presence of a flat tax alternative.

Example 2: Tax avoidance. For some a, b ∈ [0, 1], c(T )(x) = a + bT (x). Voters

can avoid declaring a share (1 − b)T (x) of their taxable income through investing

a fixed amount a in tax avoidance. For any given ex-ante tax function T , the cost

function satisfies c(T )(x) = a + bT (x). A voter chooses to invest an amount a in

tax avoidance if that choice results in higher utility than paying full taxes; that is

if T (x) > a + bT (x). Whenever a voter avoids paying taxes, the amount of money

he allocates to the government is equal to TG(x) = bT (x), and parameter a stands

for the amount of money which is not collected by the government TP . To see that

this modeling satisfies the first condition, it suffices to see that for any function

8Examples of functions that do not satisfy property 1 are c(T )(x) = T (x)2 or c(T )(x) =
log(T (x)).
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S ∈ C[0, 1] and for any ε ∈ [0, 1]:

c(εS + (1− ε)T )(x) = a + εbS(x) + (1− ε)bT (x)

= ε(a + bS(x)) + (1− ε)(a + bT (x))

= εc(S)(x) + (1− ε)c(T )(x).

The second condition is satisfied as c(S)(x) = a + bS(x) ≥ c(T )(x) = a + bT (x)

whenever S(x) ≥ T (x) for any x ∈ [0, 1].

Symmetrically to the description of tax avoidance activities, we consider that

an cost function represents labor supply activities whenever TP (x) < 0, when x ∈
(0, 1); the amount of money which is not collected by the government represents a

benefit for the voter. Such a modeling is also appropriate to represent a schooling

decision, in which some investment in education leads to a rise in income. The

proofs provided are done for the tax avoidance activities case and are symmetric for

the case representing labour activities.

Example 3: Labor supply. For some b ∈ [0, 1], c(T )(x) = −bx + T ((1 + b)x). A

voter with income x makes an effort to raise his income. This rise in income gets

compensated by a rise in his income tax burden. Given any ex-ante tax function

T , its associated cost function satisfies c(T )(x) = −bx + T ((1 + b)x) with b > 0.

The rise in income is represented by −bx, and T ((1 + b)x) symbolizes the increase

in the tax burden. Therefore, a voter makes an effort if bx > T ((1 + b)x) − T (x)

(his rise in income is higher than his rise in taxes). Besides, in such a problem the

amount of money that a voter with income x allocates to the government is equal

to TG(x) = T ((1 + b)x). To see that the first condition holds with this modeling, it

suffices to write that for any function S ∈ C[0, 1] and for any ε ∈ [0, 1]:

c(εS + (1− ε)T )(x) = −bx + [εS((1 + b)x) + (1− ε)T ((1 + b)x)]

= ε(−bx + S((1 + b)x) + (1− ε)(−bx + T ((1 + b)x))

= εc(S)(x) + (1− ε)c(T )(x).

It is simple to see that the second condition is satisfied; as c(S)(x) = −bx + S((1 +

b)x) ≥ −bx + T ((1 + b)x) whenever S(x) > T (x).

Given an ex-ante tax function T and its corresponding cost function c(T ), we

define its ex-post tax function t as the real amount of expenditure of voters once

the distortion has taken place.
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Definition 3 (Ex-post tax function). Given an ex-ante tax function T and its cost

function c(T ), we define the ex-post tax function t as a continuous function such

that:

t(x) = min{ T (x) , c(T )(x)}.

The game proceeds in three stages:

( Stage 1 Simultaneously, parties 1 and 2 announce their strategies T1 and T2

to voters.

( Stage 2 A voter votes for party 1 if x− t1(x) > x− t2(x) and conversely for

party 2. If a voter is indifferent, he randomizes over both parties as usual.

( Stage 3 The winner of the election sets up a tax function, and voters decide

whether to pay full taxes or to make an effort.

2.1 The size of the government

The political game is played on the ex-ante tax functions. However, voters vote

according to their preferences over the ex-post tax functions. This work assumes

that political parties anticipate the effect of the cost function on redistribution.

Hence, political parties can only advocate tax functions that are budget-balanced

after the voter’s binary decision has taken place.

Given the set of voters who pay full taxes ET , the government revenues are repre-

sented by function G(T ). Hence,

the government collects G(T )(x) =

{
T (x) if x ∈ ET

TG(x) if not.

Hence, given an ex-ante tax function T , the function G(T ) represents the amount

of money collected by the government once voters have made their binary decision.

Whenever a voter’s income x belongs to ET , the voter pays T (x) to the government

(i.e full taxes), and if x 6∈ ET , the voter decides to make an effort, and therefore

the amount of money he pays to the government equals TG(x). We assume that a

party can only advocate budget-balanced ex-ante tax functions that belong to the

set R iff the ex-ante tax function collects a predetermined amount of taxes r > 0.

Formally,

T ∈ R ⇐⇒
∫ 1

0

G(T )dF ≥ r.
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The set R is viewed as a metric subspace of C[0, 1] and is divided in two subsets: E

which stands for the efficient tax functions and I for the inefficient ones, so that

R = E ∪ I.

An efficient tax function T ∈ E maximizes the aggregate level of final income and

can be defined as follows:

T ∈ E ⇐⇒
∫ 1

0

x− t(x)dF = max
S∈R

∫ 1

0

x− s(x)dF

⇐⇒
∫ 1

0

t(x)dF = min
S∈R

∫ 1

0

s(x)dF.

An inefficient tax function in the set R belongs to the set I if it does not belong

to the set E. We represent by Q an element of Q, the taxation environment which

consists of the following set

Q = {(F, r, c(T )) : F ∈ F , r > 0}.

3 The political game

Take any taxation environment Q ∈ Q, and consider two political parties who want

to maximize their vote share. Parties are restricted to pick ex-ante tax functions

from the set R. If party 1 proposes the ex-ante tax function S and party 2 proposes

T , the share of voters that strictly prefer the ex-post tax function s over the ex-post

tax function t is denoted as

W (S, T ) = pF (s(x) < t(x)) =

∫ 1

0

1{s(x)<t(x)}dF.

Symmetrically, the share of voters who strictly prefer the victory of party 2 is

W (T, S). To refer to the pure endowment game (taxes are not distortionary), we

use the notation w(S, T ) = pF (S(x) < T (x)). We assume that the parties’ purpose

is to maximize their utility ui : R2 → [−1, 1], which is understood as the relative

popular support of the proposed ex-ante tax function. That is, we suppose that

ui(S, T ) =

{
W (S, T )−W (T, S) if i = 1

W (T, S)−W (S, T ) if i = 2.
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We denote the two player zero-sum symmetric game as G = (R, (u1, u2)).

One of the main difficulties to determine the structure of equilibria in this po-

litical game is the lack of existence of a pure strategy Nash equilibrium as stated

by Myerson [14] and Carbonell-Nicolau and Ok [3], due to the discontinuity of the

utility payoffs.9 Thus, we cannot guarantee the existence of an equilibrium in pure

strategies for the game G.

Even if mixed strategy equilibria are considered to be conceptually acceptable

in political environments since Downs [6], they have not been extensively used in

the class of game which we study. In addition to the classical interpretations of

mixed strategies10, the novel one stated by Laslier [7] seems particularly relevant

to our context. Under this approach, parties are ambiguous and this ambiguity is

represented by their mixed strategies. Each voter associates one party with one tax

function. The probability that a policy alternative is offered by a party equals the

fraction of voters identifying a party with this alternative.

A mixed strategy over the set of allowed tax functions R is a Borel probability

measure over R. Therefore, party i’s expected payoff of the pair of mixed strategies

(µ1, µ2) is denoted by

Ui(µ1, µ2) =

∫

R×R

ui(S, T )d(µ1 × µ2), µi ∈ B(R), i = 1, 2,

where B(R) denotes the set of all Borel probability measures of R. The expected

utility payoff Ui : B(R)2 → [−1, 1] is well defined, since any Borel measurable

function on R is measurable in the associated product measure space. Then,

the mixed extension of G = (R, (u1, u2)) is denoted by Ĝ = (B(R), (U1, U2)).

The pair µ = (µ1, µ2) constitutes a mixed strategy equilibrium of the game Ĝ =

(B(R), (U1, U2)), if for every mixed strategy µ̂ ∈ B(R), the expected payoff (to party

1) satisfies

U1(µ̂, µ2) ≤ U1(µ1, µ2),

U1(µ1, µ̂) ≥ U1(µ1, µ2),

9To see this, it suffices to build an example where W (Sn, T )−W (T, Sn) is positive for every n,
and W (S, T ) −W (T, S) < 0 with Sn uniformly converging towards S as n goes to infinity. For a
more detailed construction, see section 4.2 of Carbonell-Nicolau and Ok [3].

10See Rubinstein [19].
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by the MinMax Theorem, as the political game is zero-sum. Besides, the expected

payoff to both parties satisfies Ui(µ1, µ2) = 0 in equilibrium.

3.1 Existence of equilibrium

Once we have properly defined the game, we address the existence of political equi-

librium. As we assume infinite space strategies, the existence of an equilibrium is

not ensured11. The existence problem with infinite space strategies is not a trivial

matter. However, the distortions introduced within this work do not deeply mod-

ify the structure of the game (when compared with a pure endowment economy).

Thus, we show that the existence problem can be solved by checking that the politi-

cal game satisfies the conditions stated by Reny [16] (Proposition 5.1 and Corollary

5.2) (in a similar manner to the one used by Carbonell-Nicolau and Ok [3]). To

show that the mixed extension of the game verifies payoff-security we use a novel

result of Monteiro and Page [13] which simplifies the proof.12

Theorem 1. The political game (R, (u1, u2)) has at least one mixed strategy equi-

librium.

To prove that the game G = (R, (u1, u2)) has a mixed strategy equilibrium, we

need to show that it satisfies the following properties:

1. the sum of utility functions u1 + u2 is upper semi continuous in T on R,

2. the strategy space R is a compact subset of C[0, 1],

3. the utility functions ui are both bounded and measurable,

4. the mixed extension of the game Ĝ = (B(R), (U1, U2)) of G is payoff-secure.

The function u1 +u2 is continuous and so upper semi continuous, which implies that

property 1 is verified. Properties 2, 3 and 4 are proved in the appendix.

11To ensure existence of equilibrium in mixed strategies, one can assume that parties dispose
from a finite set of tax functions. However, the result concerning efficiency (Theorem 2) will
not anymore hold. Indeed in the current setting, the number of tax functions is not arbitrarily
bounded. Hence, a party can build a tax function that covers any inefficient tax function as stated
by Proposition 1.

12The author would like to thank Oriol Carbonell-Nicolau for this useful suggestion.
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4 Efficient Political Competition

To prove that the parties uniquely propose efficient tax functions in equilibrium, we

show that advocating an inefficient tax function is weakly dominated. Proposition

1 shows that whenever a party advocates an inefficient income tax function (which

does not maximize the aggregate level of final income), his opponent can build

another tax function which is unanimously preferred by the electorate.

Once we have proved that inefficiency is weakly dominated, we show that the

support of both parties’ strategies does not include inefficient tax functions. To do

so, we need to introduce some binary relation between the tax functions. For any

pair of tax functions S and T in the set R, we define the covering relation C as

follows:

S C T ⇐⇒ ui(S, T ) > 0 and

∀ Z ∈ R : ui(S, Z) ≥ ui(T, Z) and

∃ Z ∈ R : ui(S, Z) > ui(T, Z).

The uncovered set, denoted by U , is a subset of the set of tax functions R and

consists of the maximal elements of the covering relation: S ∈ U if and only if there

is no T ∈ R such that T CS. We let V = R\U denote the set V of covered strategies.

Using the covering relation C, Proposition 1 can be interpreted as follows: any

inefficient tax function T ∈ I belongs to the set of covered strategies. This observa-

tion is crucial, because a result of Banks, Duggan and Le Breton [2] (included in the

appendix) entails that, under some conditions, the support of any mixed strategy

equilibrium is included in the uncovered set U .

Proposition 1. For any tax function T ∈ I under which the aggregate final income

is not maximized, we can construct one tax function S ∈ R such that s(x) ≤ t(x)

for any x ∈ [0, 1] and pF (s(x) < t(x)) > 0.

Theorem 2 formalizes the idea that, in equilibrium, rational parties advocate

efficient tax functions in which the aggregate final income is maximized. The proof

is provided in the appendix.

Theorem 2. In any mixed strategy equilibrium of the game (R, (u1, u2)), parties

solely propose efficient tax functions, i.e. for any equilibrium (µ1, µ2) of this game,
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we have for some set D ⊆ E

µ1(D) = µ2(D) = 1.

5 On the shape of income taxation

Once we have analyzed the efficiency of the electoral competition, we focus on the

shape of income taxation in equilibrium. In order to make the arguments trans-

parent, the analysis is restricted to the flat tax game throughout. Hence, the cost

function c(T ) satisfies c(T ) = ax for some a ∈ [0, 1]. A simple interpretation for the

flat tax game is based on the classical economic situation in which two countries

are involved. In country A, there is an electoral competition between two parties.

Parties make electoral promises to voters over the income tax functions they will

apply if elected. However, both parties and voters know that voters have the possi-

bility of not paying taxes in country A by paying some amount of money in country

B. A natural question that arises is how should parties react to this possibility of

not paying taxes? We first show that this outside option modifies the classical ob-

servation according to which the majority of the voters prefer progressive taxation.

However, when the set of available tax functions is rich enough, the political appeal

for progressivity is restored. Hence, even taking into account the possibility that

voters will not pay taxes, a strategic party should advocate progressive taxation to

maximize his probability of victory. A discussion on the robustness of our results

with different cost functions is provided.

5.1 Regressive taxation can be unanimously preferred

We give an example that shows how unfounded the arguments given in the public

debate can be in our setting. Distortions can have a deep impact on the predictions of

the model. Our definition of the tax functions eliminates the traditional observation

that low income voters prefer progressive tax functions. Such an observation was

formalized by Marhuenda and Ortuño Ort́ın [11] as follows: let S, T be two ex-ante

tax functions such that S is non-linear convex on [0,1], T is concave on [0, 1] and

such that
∫ 1

0
S(x)dF = r ≤ ∫ 1

0
T (x)dF for some 0 < r <

∫ 1

0
xdF . The intersection

of both curves is denoted by θ ∈ [0, 1] and is located above the median m of the

income distribution F , which in our framework is denoted by w(S, T ) > 1/2. Their
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result is conditional on the fact that function F is such that the median income

m = F−1(1
2
) is lower than the mean income

∫ 1

0
xdF . We refer to the previous

result as the political appeal for progressivity. An equilibrium version of the previous

inequality is given by Carbonell-Nicolau [3] in a pure endowment economy. The

following example shows that it could be the case that a regressive tax function can

be unanimously preferred in equilibrium to a progressive one when tax functions are

distortionary.

Example 4: Let Q ∈ Q be a taxation environment such that r = 0.1 and the

income distribution function F has the following density:

f(x) = 2− 2x, x ∈ [0, 1].

This income distribution is such that the median income m is lower than the mean

income (m = 0.29 and
∫ 1

0
xdF = 1/3). The cost function c(T ) is equal to c(T )(x) =

ax with a = 0.535. Let us consider the ex-ante tax functions S and T defined as

follows:

S(x) =
1

3
(x2 + x) and T (x) = −0.05x2 + 0.325x with x ∈ [0, 1].

The convexity of S and the concavity of T are ensured by the fact that S ′′ > 0 and

T ′′ < 0.

Given the ex-ante tax functions S and T , then their respective ex-post tax functions

s and t are such that

s(x) = min{S(x), ax},

and

t(x) = min{T (x), ax} = T (x).

In this game, the ex-post tax function t coincides with the ex-ante tax function T ,

as T (x) < ax for every x ∈ [0, 1). The cost ax of making an effort is too high, and

so every voter pays full taxes under the ex-ante tax function T .

The voters who pay full taxes under the tax function S are the ones with an income

in the set ES = {x ∈ [0, 1] | S(x) ≤ ax} = {0 ≤ x ≤ 0.607}. Besides, both ex-ante

tax functions S and T satisfy budget balance after the distortions have taken place,
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as ∫ 1

0

G(T ) dF =

∫ 1

0

T (x) dF = 0.1,

and ∫ 1

0

G(S) dF =

∫

ES

S(x) dF =

∫

{0≤x≤0.607}
S(x) dF = 0.1.

THxL

cHTLHxL

SHxL

Income x

ET @0,1D � ET

Figure 1: The regressive tax function T is unanimously preferred to the progressive
tax function S.

As depicted by Figure 1, the regressive tax function T is unanimously preferred

to the progressive tax function S, i.e.

W (T, S) = 1.

Hence, in the game G = ((S, T ), (u1, u2)), the regressive tax function is unani-

mously preferred by voters, and consequently it will be the tax function advocated

by both political parties in equilibrium. Thus, in our framework it is not anymore

true that low income voters prefer progressive income taxation. A progressive tax

function in which an important share of voters do not pay full taxes generates an

inefficiency in the economy.
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5.2 The political appeal for progressivity

One of the aims of the positive theory of income taxation is to understand the

shape of income tax functions that will be implemented by self-interested parties

in equilibrium. The previous example shows that traditional arguments do not

anymore hold within our setting. However, as will be shown, the political appeal

for progressivity can be restored when the political parties can choose their electoral

promises from a set of taxes rich enough. If we allow parties to advocate progressive

and regressive tax functions, only progressive taxation will be implemented.

Let R̂ be the restricted policy space in which ex-ante tax functions are either

progressive or regressive13. Formally, T ∈ R̂ iff T is progressive or regressive, and

T ∈ R. Thus, the set R̂ is the union of the set of progressive tax functions Rp and

the set of regressive tax functions Rr. Among the set of progressive tax functions,

the subclass Np of non-linear members deserves special attention.

Proposition 2. Any non-linear progressive tax function S ∈ Np with which every

voter pays full taxes is preferred to any regressive tax function T ∈ R̂ (provided than

the median income is lower than the mean one).

Condition 1 The set R̂ contains non-linear progressive tax functions with which

every voter pays full taxes.

Theorem 3. In any mixed strategy of the flat tax game (R̂, (u1, u2)), parties solely

propose progressive tax functions whenever the set R̂ satisfies condition 1. Formally,

any equilibrium (µ1, µ2) of this game satisfies from

µ1(Np) = µ2(Np) = 1.

5.3 Discussion

The previous result shows that the political appeal for progressivity is robust to the

introduction of distortions on the flat tax game. It is only required that parties can

propose progressive tax functions with which every voter pays full taxes. Even if it

need not be the case that any progressive tax function is preferred to any regressive

tax function (as it is the case in a pure endowment economy), we can still show that

13Let us recall that an ex-ante tax function is said to be progressive (regressive) whenever it is
convex (concave).
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any progressive tax function with which every voter pays full taxes is preferred to

any regressive one. Hence, as it is weakly dominated for both parties to propose

regressive taxation, the political appeal for progressivity is restored. Our result is

hence a generalization of Carbonell-Nicolau and Ok [3]: whenever the cost function

c(T ) satisfies c(T )(x) ≥ x (i.e. a ≥ 1), every voter pays full taxes. Hence, as the cost

of making an effort is too high, we are back in an economy without distortions, a pure

endowment economy. Therefore, the political appeal for progressivity (Theorem 3,

Carbonell-Nicolau and Ok [3]) is a particular case of our result.

The results are identical when studying the class of smooth cost functions. For-

mally, the definition of smooth cost function is as follows.

Definition 4. A cost function is smooth whenever c(T ) progressive (resp. regressive)

if and only if T progressive (resp. regressive).

The reason the result is valid for this class of smooth cost functions is simple.

Let us pick a convex ex-ante function S with which every voter pays full taxes and a

concave ex-ante function T . As every voter pays full taxes, the ex-post tax function

s coincides with the ex-ante tax function S which implies that s is convex. Besides,

the minimum of two concave functions is concave. Hence, the ex-post tax function t

is concave as the cost function is concave. Whenever the deadweight cost of making

an effort is positive (i.e. TP (x) > 0 used to represent tax avoidance activities)14, the

ex-post tax function t collects an amount of money strictly higher than the ex-post

tax function s. Using Marhuenda and Ortuño-Ortin [11] result, we can prove that

the unique intersection between the ex-post tax functions s and t must be located

above the median income so that the same result applies.

6 Conclusion

We have built a simple model to study the interaction between the political arena

and the determination of income taxation in the presence of distortionary taxes.

The mixed strategy approach has allowed us to obtain an equilibrium of the game.

Furthermore, in equilibrium, parties only advocate efficient tax functions. Whenever

14When the deadweight cost of making an effort is negative (TP (x) < 0 used to represent labour
supply decisions), Condition 1 does not ensure that Theorem 3 holds. In this case, a sufficient
condition for such a theorem to hold is that the policy space contains a progressive tax function
with which every voter provides an effort.
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a party does not advocate a tax function that maximizes aggregate final income,

the other party can build a unanimously weakly preferred tax function that collects

the same amount of taxes. This result shows the existence of a link between the

literature of probabilistic voting theory15 and the positive theory of income taxation.

According to our results parties’ mixed strategies play the same role as ideological

components in the probabilistic voting theory to ensure both the existence and

efficiency of equilibrium in these political games.

Finally, as far the shape of income taxation is concerned, we have shown that

when taking into account distortions generated by tax functions, it is no longer true

that low-income voters always prefer progressive taxation, and it can even be the case

that every voter in the society prefers regressive income taxation. However, under

mild conditions, parties propose progressive taxation. This result shows that the

political appeal for progressivity is robust to the introduction of distortions. When

parties anticipate that voters have the possibility of not paying full taxes, they still

advocate progressive taxation to maximize their probability of victory. This result

is in accordance with observed income tax schemes in most OECD countries.

One of the main limits of our model is an implicit assumption of the modeling

strategy. We consider here a one-shot voting game with binding electoral promises,

and thus do not take into account commitment problems. Our conclusion applies

only to what has been called “pre-electoral politics”. Problems associated with

commitment are a source of inefficiencies and are not taken into account in our

model.

Besides, the relationship between taxation and the beliefs held by voters about

the consequences of their own actions and those of others on the aggregate tax

system are very important and not well understood. An example of this lack of

understanding is the classic question of why people pay taxes given the low proba-

bility of being audited (i.e. why is there not more tax evasion). Thus, introducing

a system of social norms as has been previously done in the literature of tax evasion

could be an interesting extension of this work.

15As argued by Persson and Tabellini [15], probabilistic voting theory has become a standard
tool in political economy.
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A Appendix: Properties of the sets ES

Let Q ∈ Q be a taxation environment. Let us define for any continuous function

T ∈ C[0, 1], the set ET as follows:

ET = {x ∈ [0, 1] | T (x) ≤ c(T )(x)}.

For any pair of functions S and T in C[0, 1] and any ε ∈ [0, 1], let S(ε) :

[0, 1] → [0, 1] be the function such that S(ε)(x) = εS(x) + (1− ε)T (x). To simplify

the notations, we assume that the cost function associated to the nil function is

identically equal to zero: for any x ∈ [0, 1], we write c(0)(x) = 0 for any x ∈ [0, 1]

so that E0 = [0, 1].

Lemma 1 (Inclusion Lemma). If the sets ES and ET satisfy ES ⊂ ET then ES ⊂
ES(ε) ⊂ ET .

Proof. Let T and M be a pair of functions in C[0, 1]. For any ε ∈ [0, 1], let S(ε) :

[0, 1] → [0, 1] be the function such S(ε)(x) = εS(x) + (1 − ε)T (x). Then, the sets
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ES, ET and ES(ε) are given by :

ES = {x ∈ [0, 1] | S(x) < c(S)(x)},
ET = {x ∈ [0, 1] | T (x) < c(T )(x)} and

ES(ε) = {x ∈ [0, 1] | S(ε)(x) < c(S(ε))(x)}.

We assume that ES ⊂ ET that is if x ∈ ES then x ∈ ET .

Let us first show that if x ∈ ES then x ∈ ES(ε). To do so, let us assume that there

exists x ∈ [0, 1] such that x ∈ ES and x 6∈ ES(ε). Given that x 6∈ ES(ε), we know

that S(ε)(x) ≥ c(S(ε))(x) which implies that

εS(x) + (1− ε)T (x) ≥ εc(S)(x) + (1− ε)c(T )(x) ⇐⇒
(1− ε)[T (x)− c(T )(x)] ≥ ε[c(S)(x)− S(x)].

As we know that x ∈ ES, we can write that S(x) < c(S)(x) so that the right

part of the inequality is positive. Thus, given that ε ∈ [0, 1], the left part of the

inequality must be strictly positive to satisfy the inequality. However, this would

imply T (x) − c(T )(x) > 0 and so that x 6∈ ET . This is a contradiction as we have

assumed that if x ∈ ES then x ∈ ET which implies that ES ⊂ ES(ε).

Let us now show that if x ∈ ES(ε) then x ∈ ET . To do so, let us assume that there

exists x ∈ [0, 1] such that x ∈ ES(ε) and x 6∈ ET . Given that x ∈ ES(ε), we know

that S(ε)(x) < c(S(ε))(x) which implies that

εS(x) + (1− ε)T (x) < εc(S)(x) + (1− ε)c(T )(x) ⇐⇒
(1− ε)[T (x)− c(T )(x)] < ε[c(S)(x)− S(x)].

As we know that x 6∈ ET , we can write that T (x) ≥ c(T )(x) so that the left part of

the inequality is positive. Thus, given that ε ∈ [0, 1], the right part of the inequality

must be strictly positive to satisfy the inequality. However, this would imply that

c(S)(x) > S(x) and then x ∈ ES. This is a contradiction as we have assumed that

if x ∈ ES then x ∈ ET , implying that ES(ε) ⊂ ET .

Lemma 2 (Equality lemma). If the sets ES and ET satisfy ES = ET then ES =

ES(ε) = ET .

Proof. To show ES ⊆ ES(ε), let us assume that there exists some x ∈ ES. As

by assumption ES = ET , if x ∈ ES then S(x) < c(S)(x) and T (x) < c(T )(x).
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Besides, by definition S(ε)(x) = εS(x)+(1−ε)T (x). Then, given that c(S(ε))(x) =

εc(S)(x) + (1− ε)c(T )(x), we can write that S(ε)(x) > c(S(ε))(x), that is x ∈ S(ε).

To prove the other inclusion ES(ε) ⊆ ES, let us assume that there exists some

x ∈ ES(ε) and such that x 6∈ ES. Given that x ∈ ES(ε) then S(ε)(x) < c(S(ε))(x).

Besides, x 6∈ ES entails that S(x) ≥ c(S)(x) and that T (x) ≥ c(T )(x) as ES =

ET . Then, given that c(S(ε))(x) = εc(S(x)) + (1 − ε)c(T )(x), we can write that

c(S(ε))(x) ≥ S(ε)(x), that is x 6∈ S(ε) which is a contradiction.

Lemma 3. For any ex-ante tax function T there exists an ex-ante tax function S

such that S(x) ≤ T (x) for any x ∈ [0, 1] with ET ⊂ ES and pF (ET \ ES) > 0.

Proof. Let T be an ex-ante tax function with ET ⊂ [0, 1]. Let us pick the function

εT for some ε > 0 which satisfies εT (x) ≤ T (x) for any x ∈ [0, 1]. The function εT is

a convex combination of T and the nil function N with N(x) = 0 for any x ∈ [0, 1].

By assumption, we have EN = [0, 1] so that EN ⊂ ET and then by the Inclusion

Lemma, we write that EN ⊂ EεT ⊂ ET . It suffices to pick some ε low enough such

that pF (ET \ EεT ) > 0 and then to choose S = εT to conclude the proof.

Lemma 4. Let S and T be a pair of tax functions such that S(x) ≤ T (x) for any

x ∈ [0, 1]. If ET ⊂ ES with pF (ET \ ES) > 0 then pF (s(x) < t(x)) > 0.

Proof. Let S and T be a pair of tax functions such that S(x) ≤ T (x) for any x ∈ [0, 1]

with ET ⊂ ES. To prove the claim, let us assume that pF (s(x) < t(x)) = 0. Given

the second property of the cost functions, we know that if S(x) ≤ T (x) for any

x ∈ [0, 1] then c(S)(x) ≤ c(T )(x) for any x ∈ [0, 1]. Hence, we can write that the

respective ex-post tax functions s and t satisfy s(x) ≤ t(x) as s = min{S, c(S)} and

t = min{T, c(T )}. Besides as we have assumed that pF (s(x) < t(x)) = 0, then we

can write that pF (s(x) = t(x)) = 1. To do so, we must have that s(x) = t(x) on

any subset A ⊂ [0, 1] such that pF (A) > 0.

Given that ET ⊂ ES with pF (ES\ET ) > 0, we can write that for any x ∈ ES\ET ,

S(x) = s(x) = t(x) = c(T )(x). However, by definition, for any x ∈ ES we have

S(x) < c(S)(x). Therefore, for any x ∈ ES \ ET , we have c(S)(x) > S(x) = s(x) =

t(x) = c(T )(x) which implies that c(S)(x) > c(T )(x) which is a contradiction as

c(S)(x) ≤ c(T )(x) for any x ∈ [0, 1].
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B Appendix: Existence of a mixed strategy equi-

librium

Proposition 3. The strategy space R is a compact subset of C[0, 1].

Proof. In a metric space, the continuous image of compact space is compact. Hence,

we can show that the set of budget balanced ex-post tax functions is compact by

proving that such a set is the continuous image of a compact space.

By definition, an ex-post tax function s is budget balanced if and only if there ex-

ists an ex-ante tax function T such that s(x) = min{T (x), c(T )(x)} and
∫ 1

0
G(T )dF ≥

r. We define a continuous mapping ψ : T → T × C(T) from the set of ex-ante tax

functions T to the set T× C(T), the product set of T and the set of cost functions

C(T) with

ψ(T ) = (T, C(T )).

Similarly, we define a continuous mapping φ : T × C(T) → R with R standing for

the set of budget balanced ex-post tax functions,

φ(T, S) = min{T, S}.

Hence, any ex-post tax function s ∈ R satisfies s ∈ (φ ◦ ψ)(T). In other words,

for every ex-post tax function s there exists an ex-ante tax function T ∈ T such that

s = φ(ψ(T )) with both φ and ψ continuous.

Therefore, we have proven that the set of budget-balanced ex-post tax functions

is the continuous image of the set of ex-ante tax functions with
∫ 1

0
TdF ≥ r16. It

remains to be shown that the set of ex-ante tax functions T such that
∫ 1

0
TdF ≥ r

is a compact set.

Given that the set C[0, 1] is Hausdorff measurable, the Arzelà-Ascoli theorem

states that any of its subsets which is bounded, closed and equicontinuous is a

compact subset.

16Let us recall that the proof is done in the case in which the deadweight cost of making an effort
is positive. Thus, as we focus on tax sheltering activities the real amount of taxes collected by
the government is lower or equal to the statutory amount. Hence, the set of ex-ante tax functions
satisfies

∫ 1

0
TdF ≥ r. In the case, in which the deadweight cost is positive, the set of ex-ante

functions must satisfy
∫ 1

0
TdF ≤ r as the amount of money collected by the government is higher

or equal than the statutory amount.
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To show that T is bounded, take any two ex-ante tax functions S and T of the

space T. We can write ||S − T ||∞ ≤ k for some positive k as the range of both

functions is located between 0 and 1. Hence, the space T is bounded.

Let us now show that T is closed in C[0, 1]. Take any sequence of Tn in T such

that ||Tn−T ||∞ → 0 for some function T ∈ C[0, 1]. Then, the sequence Tn uniformly

converges to T and this guarantees that T is an ex-ante tax function.

As any Tn ∈ T, we know that
∫ 1

0
TndF ≥ r. Thus, due to uniform convergence

of Tn, T satisfies

∫ 1

0

TdF =

∫ 1

0

lim TndF = lim

∫ 1

0

TndF ≥ r.

due to Lebesgue’s dominated convergence theorem. Thus, the ex-ante tax function

T satisfies the budget balanced constraint and thus T ∈ T which entails that the

set T is closed in C[0, 1].

Finally, it needs to be shown that T is equicontinuous. To do so, let us pick some

ex-ante tax function T and 0 ≤ y < x ≤ 1. By definition, we have x−T (x) ≤ y−T (y)

which implies that T (x) − T (y) ≥ x − y. Similarly, if x < y, we can write that

T (y)− T (x) ≥ y− x which implies that |T (x)− T (y)| ≤ |x− y| for all 0 ≤ x, y ≤ 1.

So, for any x ∈ [0, 1] and any ε > 0, we have |t(x)− t(y)| < ε whenever |x− y| < ε.

Hence, we can conclude that the set T is equicontinuous and hence that T is a

compact subset of C[0, 1].

The function ui(S, T ) = W (S, T ) − W (S, T ) is obviously bounded for any two

given tax functions S and T which entails the first part of property 3.

Proposition 4. The utility function ui : R2 → [−1, 1] is measurable for any i = 1, 2.

Proof. To show the measurability of the utility function, it suffices to show that both

W (S, T ) and W (T, S) are lower semi continuous for any ex-ante tax functions (S, T )

(and thus measurable). Indeed, the sum of two measurable functions is measurable

and thus ui(S, T ) = W (S, T )−W (T, S) is measurable.

A function W : R2 → [−1, 1] is lower semi continuous if for any sequence (Sn, Tn)

converging to (S, T ), the function W verifies lim inf W (Sn, Tn) ≥ W (S, T ). To prove

the lower semi continuity of W , we take a sequence (Sn, Tn) converging to (S, T ).
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By Fatou’s lemma,

lim inf W (Sn, Tn) = lim inf

∫ 1

0

1{sn<tn}dF ≥
∫ 1

0

lim inf 1{sn<tn}dF

≥
∫ 1

0

1{lim sn<lim tn}dF = W (S, T ),

in which the second inequality comes from the observation that lim inf 1{sn<tn}(x) ≥
1{lim sn<lim tn}(x)17 for any x ∈ [0, 1]. Then, W (S, T ) is lower semi continuous and

whence measurable which proves the claim.

Prior to proceeding with the proof of payoff security, we introduce a definition

from Monteiro and Page [13] that will be necessary throughout.

Definition 5. The game G = (R, (u1, u2)) is uniformly payoff secure if for any

S ∈ R and every ε > 0, there exists a tax function Sl ∈ R such that for every

T ∈ R, there exists an open neighborhood N (T ) of T in R such that

F ∈ N (T ) =⇒ ui(S
l, F ) ≥ ui(S, T )− ε.

Besides, if a compact game G is uniformly payoff secure, then its mixed extension

Ĝ = (B(R), (U1, U2)) is payoff secure.

Proposition 5. The game G = (R, (u1, u2)) is uniformly payoff-secure and hence

its mixed extension Ĝ is payoff-secure.

Proof. Let us pick some ex-ante tax function S ∈ R and some ε > 0. We define its

ex-post tax function s as s = min{S, c(S)}. Let us choose a tax function Sl such

that for some l ∈ (0, 1) and some λ that verifies

0 < λ < min{l, 1− l,
ε

12
},

for some ε > 0 and such the ex-post tax function sl = min{Sl, c(Sl)} satisfies

sl > s on [l − λ, l + λ] and

sl < s on [0, 1] \ [l − λ, l + λ]

17If the left-hand side of the inequality equals 0 for some x, then sn(x) ≥ tn(x) for infinitely
many n, and this means that the right-hand side must be equal to zero.
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with pF ({sl = s}) = 018. We choose a number η with

λ < η < min{l, 1− l,
ε

12
}.

Let D denote the interval [l − η, l + η] and Dc its complement on [0, 1].

Define

τ = min
x∈[s0+η,1]∩Dc

|s(x)− sl(x)|.

For any T ∈ R, let us take some F ∈ Nτ (T ) such that

|f − t| < τ on [0, 1],

in which both f and t stand for the respective ex-post tax functions of F and T .

Taking into account previous definitions, we can write

W (S, T )−W (T, S) = 2W (S, T ) + pF (s = t)− 1

= 2[pF ({s < t} ∩D) + pF ({s < t} ∩Dc)]

+ pF ({s = t} ∩D) + pF ({s = t} ∩Dc)− 1.

As the measure of D is bounded by 2η and η < ε
12

, the measure of D is less than ε
6
.

Therefore,

2pF ({s < t} ∩D) + pF ({s = t} ∩D) < ε/2 < ε.

Then it follows that

W (S, T )−W (T, S) < ε + 2pF ({s < t} ∩Dc) + pF ({s = t} ∩Dc)− 1.

18In the case in which we cannot pick a function sl such that pF ({sl = s}) > 0, a similar proof
applies.
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Therefore, applying a simple decomposition, we write

W (S, T )−W (T, S)

< ε + 2[pF ({sl < s < t} ∩Dc) + pF ({sl ≥ s < t} ∩Dc)]

+ pF ({sl < s = t} ∩Dc) + pF ({sl ≥ s = t} ∩Dc)− 1

= ε + 2[pF ({f ≤ sl < s < t} ∩Dc) + pF ({f > sl < s < t} ∩Dc)

+ pF ({f ≤ sl ≥ s < t} ∩Dc) + pF ({f > sl ≥ s < t} ∩Dc)]

+ pF ({f ≤ sl < s = t} ∩Dc) + pF ({f > sl < s = t} ∩Dc)

+ pF ({f ≤ sl ≥ s = t} ∩Dc) + pF ({f > sl ≥ s = t} ∩Dc)− 1.

Given the previous inequalities, if we can show that the following inequalities hold

pF ({f ≤ sl < s < t} ∩Dc) = 0, (a)

pF ({f ≤ sl < s = t} ∩Dc) = 0, (b)

pF ({f ≤ sl ≥ s < t} ∩Dc) = 0, (c)

and pF ({f ≤ sl ≥ s = t} ∩Dc) = 0 ≤ pF (f = sl), (d)

then

W (S, T )−W (T, S)

< ε + 2[pF ({f > sl < s < t} ∩Dc) + pF ({f > sl ≥ s < t} ∩Dc)]

+ pF ({f > sl < s = t} ∩Dc) + pF ({f > sl ≥ s = t} ∩Dc)

+ pF (f = sl)− 1

≤ ε + 2W (Sl, F ) + pF (sl = f)− 1

= ε + W (Sl, F )−W (F, Sl),

as desired which proves that the game G = (R, (u1, u2)) is uniformly payoff-secure.

Furthermore, as the game is compact as shown by Proposition 3, its mixed extension

Ĝ is payoff secure.

To conclude the proof it remains to be shown that inequalities (a), (b), (c) and
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(d) hold. Any ex-post tax function f ∈ Nτ (t) satisfies

t(x)− f(x) < τ on [s0 + η, 1] ∩Dc.

Besides, sl is lower than s on the interval [s0 + η, 1] ∩Dc by at least τ .

s(x)− sl(x) ≥ τ on [s0 + η, 1] ∩Dc,

and s(x) > sl(x) on [s0 + η, 1] ∩Dc.

Combining previous inequalities entails (a) and (b). To see why (c) and (d) hold,

it suffices to see that pF ({sl ≥ s} ∩Dc) = 0 and hence

pF ({f ≤ sl ≥ s < t} ∩Dc) = 0, (c)

and

pF ({f ≤ sl ≥ s = t} ∩Dc) = 0 ≤ pF (f ≤ sl). (d)

This section has proved the existence of a mixed strategy equilibrium of the game

(R, (u1, u2)). Section 5 is devoted to the study of the restricted game (R̂, (u1, u2))

in which the set R̂ is defined as follows:

T ∈ R̂ ⇐⇒ T ∈ R and T is convex or concave

The proof of existence is similar to the one presented with the whole strategy space

R and hence is omitted.

C Appendix: Proof of Theorem 2

Proof of Proposition 1.

Proof. We focus on the case in which the deadweight cost associated included in

the cost function is positive: TP (x) > 0 ∀ x ∈ (0, 1). Showing the claim whenever

TP (x) < 0 ∀ x ∈ (0, 1) is similar and hence its proof is omitted. Let us recall that
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for any ex-ante tax function T , the government revenues function G(T ) satisfies

G(T )(x) =

{
T (x) if x ∈ ES

TG(x) if not

Let us choose some inefficient ex-ante tax function T ∈ I. As function T is budget-

balanced, we can write that
∫ 1

0
G(T )dF = r.

Let us pick some ex-ante tax function M such that M(x) ≤ T (x) for any x ∈ [0, 1]

with ET ⊂ EM with pF (ET \ EM) > 0 and
∫ 1

0
G(M)dF < r. Given M , the ex-post

tax function m is defined as m = min{M , c(M)}. As we know that M(x) ≤ T (x)

whenever x ∈ (0, 1), then we can also write that m(x) ≤ t(x) for any x ∈ (0, 1) by

applying the second property of the cost functions.

We define for any ε ∈ [0, 1], the function U(ε) = εT +(1−ε)M and its associated

set EU(ε) = {x ∈ [0, 1] | U(ε)(x) < c(U(ε))(x)}. Therefore U(ε)(x) ≤ T (x) for any

x ∈ [0, 1] which implies that c(U(ε))(x) ≤ c(T )(x) and hence that u(x) ≤ t(x) for

any x ∈ [0, 1]. Given that the sets ET and EM are such that ET ⊂ EM , the Lemma

1 entails that ET ⊂ EU(ε) ⊂ EM . Furthermore, given that pF (EU(ε) \ ET ) > 0,

Lemma 4 ensures that pF (u(x) < t(x)) > 0.

Then, given the first property of the cost functions, we can write that the integral

of function G(U(ε)) is such that

∫ 1

0

G(U(ε))dF =

∫

EU(ε)

εT (x) + (1− ε)M(x)dF +

∫

[0,1]\EU(ε)

εTG(x) + (1− ε)MG(x)dF

= ε[

∫

EU(ε)

T (x)dF +

∫

[0,1]\EU(ε)

TG(x)dF ]

+ (1− ε)[

∫

EU(ε)

M(x)dF +

∫

[0,1]\EU(ε)

MG(x)dF ].
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Given that ET ⊂ EU(ε) and that T (x) > TG(x) whenever x 6∈ ET
19

∫

EU(ε)

T (x)dF +

∫

[0,1]\EU(ε)

TG(x)dF =

∫

ET

T (x)dF +

∫

EU(ε)\ET

T (x)dF +

∫

[0,1]\EU(ε)

TG(x)dF

>

∫

ET

T (x)dF +

∫

EU(ε)\ET

TG(x)dF +

∫

[0,1]\EU(ε)

TG(x)dF

=

∫

ET

T (x)dF +

∫

[0,1]\ET

TG(x)dF

=

∫ 1

0

G(T )dF = r.

Similarly as EU(ε) ⊂ EM and M(x) > MG(x) , we can write that

∫

EU(ε)

M(x)dF +

∫

[0,1]\EU(ε)

MG(x)dF <

∫

EM

M(x)dF +

∫

[0,1]\EM

MG(x)dF < r.

Then if we can choose an ε′ such that U(ε′) satisfies
∫ 1

0
G(U)dF = r then the proof

is finished.

If not, let us choose an ε′ > 0 such that U = U(ε′) with
∫ 1

0
G(U)dF > r. Let us

now pick some ex-ante tax function N such that N(x) ≤ M(x) for any x ∈ [0, 1] and

such that EM ⊂ EN with pF (EN \ EM) > 0. Then, we define for any ε ∈ [0, 1], the

function V (ε) = εT + (1− ε)N and its associated set EV (ε) = {x ∈ [0, 1] | V (ε)(x) <

c(V (ε))(x)}. By similar reasonings to the ones previously detailed with function U ,

we choose an ε∗ > 0 such that V = V (ε∗) satisfies
∫ 1

0
G(V )dF < r and such that

EU = EV .

We define for any α ∈ [0, 1], the function W (α) = αU + (1 − α)V and its

associated set EW (α) = {x ∈ [0, 1] |W (α)(x) < c(W (α))(x)}. Then,

∫ 1

0

G(W (α))dF = α[

∫

EW (α)

U(x)dF +

∫

[0,1]\EW (α)

UG(x)dF ]

+ (1− α)[

∫

EW (α)

V (x)dF +

∫

[0,1]\EW (α)

VG(x)dF ].

Given Lemma 2, we can write that EW (α) = EU as EU = EV . Therefore, given

19Indeed, whenever x 6∈ ET , we know that T (x) ≥ c(T )(x) which implies that T (x) > TG(x). To
see this, let us assume that T (x) ≤ TG(x) for some x 6∈ ET . If this was true then for some x 6∈ ET ,
T (x) ≤ TG(x) < TG +TP (x) = c(T )(x) as an cost function that represents tax avoidance activities
satisfies TP (x) > 0 for any x ∈ (0, 1).
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both tax functions U and V belong to the set R, we can write that

∫

EW (α)

U(x)dF +

∫

[0,1]\EW (α)

UG(x)dF =

∫

EU

U(x)dF +

∫

[0,1]\EU

UG(x)dF > r,

and

∫

EW (α)

V (x)dF +

∫

[0,1]\EW (α)

VG(x)dF =

∫

EV

V (x)dF +

∫

[0,1]\EV

VG(x)dF < r.

It is important to emphasize that neither
∫

EW (α)
U(x)dF +

∫
[0,1]\EW (α)

UG(x)dF nor∫
EW (α)

V (x)dF +
∫

[0,1]\EW (α)
VG(x)dF depend on α as EU = EV = EW (α). Hence, we

have constructed a function W (α) in C[0, 1] such that
∫ 1

0
G(W (α))dF = αp+(1−α)q

with p > r and q < r and p and q independent from α.

Thus, we can choose an α′ such that W = W (α′) satisfies
∫ 1

0
G(W )dF = r

and hence W ∈ R. Furthermore, its corresponding ex-post tax function w =

min{W, c(W )} satisfies w(x) ≤ t(x) for any x ∈ [0, 1] and so Lemma 4 implies

that pF (w(x) < t(x)) > 0 as EV ⊂ EM with pF (EM \ EV ) > 0 which concludes the

proof.

Proposition 6 (Banks, Duggan and Le Breton [2]). The support of any mixed

strategy equilibrium (µ1, µ2) in the game G = (R, (u1, u2)) satisfies µ1(Û) = µ2(Û)

for some set Û ⊆ U given that:

1. the set R of tax functions is a complete and separable metric space and

2. for any given tax function T ∈ R, the set P (T ) = {(S, T ) ∈ R×R |ui(S, T ) >

0} is open.

The rest of this section shows that the game G = (R, (u1, u2)) studied within

this work fulfills the conditions stated by the previous proposition.

Lemma 5. The set of tax functions R is a complete and separable metric space.

Proof. By definition, the set R of tax functions is viewed as a metric subspace of

C[0, 1]. Furthermore, as Proposition 3 shows, the set R is compact. This proves the

claim as any compact metric space is complete and separable.

Lemma 6. In the game G = (R, (u1, u2)), for any tax function T ∈ R, the set P (T )

is open.
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Proof. The proof is done for party 1 and the same claim remains true for party 2

as G is a symmetric game. Let us choose a pair of ex-ante tax functions S and

T in the set R such that ES = ET . Furthermore, let us assume that the tax S

belongs to P (T ) which implies that u1(S, T ) = w(S, T )−w(T, S) > 0 and such that

||S − T ||∞ < δ for some positive δ > 0.

To prove that the set P (T ) is open, we have to show that there exists a tax

function Z in some neighborhood of S such that u1(Z, T ) > 0. To do so, it suffices

to define S(ε) = εS + (1 − ε)T for any ε ∈ [0, 1]. Let us recall that the cost

functions corresponding to tax functions S and T are respectively given by c(S)(x) =

SG(x)+SP (x) and c(T )(x) = TG(x)+TP (x). To verify that S(ε) satisfies the budget

balanced constraint, it suffices to write:

∫ 1

0

G(S(ε))dF = ε[

∫

ES(ε)

S(x)dF +

∫

[0,1]\ES(ε)

SG(x)dF ]

+ (1− ε)[

∫

ES(ε)

T (x)dF +

∫

[0,1]\ES(ε)

TG(x)dF ].

Given the Equality lemma (Lemma 2), we can write that ES(ε) = ET as ES = ET .

Therefore, given both tax functions S and T belong to the set R, we can write that

∫

ES(ε)

S(x)dF +

∫

[0,1]\ES(ε)

SG(x)dF =

∫

ES

S(x)dF +

∫

[0,1]\ES

SG(x)dF = r,

and

∫

ES(ε)

T (x)dF +

∫

[0,1]\ES(ε)

TG(x)dF =

∫

ET

T (x)dF +

∫

[0,1]\ET

TG(x)dF = r

which implies that for any 0 ≤ ε ≤ 1,
∫ 1

0
G(S(ε))dF = r.

Finally, it remains to be shown that if u1(S, T ) > 0 then u1(S(ε), T ) > 0. As

u1(S, T ) > 0, we can write that pF (s(x) < t(x)) > 1/2. Given that S(ε) ∈ R, we

define its corresponding ex-post tax function sε as sε = min{S(ε), c(S(ε))}.
Furthermore, as the construction of S(ε) implies that ES = ES(ε), we can write

that

sε(x) =

{
S(ε)(x) if x ∈ ES

c(S(ε))(x) if x 6∈ ES.

Therefore, if x ∈ ES, we can see that whenever S(x) > T (x) (resp. S(x) < T (x))

S(ε)(x) = εS(x) + (1− ε)T (x) > T (x) (resp. S(ε)(x) < T (x)). Similarly, if x 6∈ ES,
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we can see that whenever c(S)(x) > c(T )(x) (resp. c(S)(x) < c(T )(x)), we can write

that c(S(ε))(x) = εc(S)(x)+(1−ε)c(T )(x) > c(T )(x) (resp. c(S(ε))(x) < c(T )(x)).

Previous inequalities imply that pF (sε(x) < t(x)) = pF (s(x) < t(x)) > 1/2,

which implies that S(ε) ∈ P (T ) and by definition S(ε) is in a δ-neighborhood of S

as ||S(ε)− T ||∞ ≤ ||S − T ||∞ < δ.

Therefore, if we pick Z = S(ε), we have proven that for any S ∈ P (T ), there

exists a tax function Z in some neighborhood of S such that Z ∈ P (T ), showing

that P (T ) is an open set.

D Appendix: On the shape of income tax func-

tions

Proof of Proposition 2.

Proof. Let us pick a convex S with ES = [0, 1] and a concave T in with ET 6= [0, 1].

Their respective ex-post tax functions are denoted by s = min{S, c(S)} = S and

t = min{T, c(T )}. By definition, both S and T are budget-balanced. Hence, we can

write ∫ 1

0

SdF =

∫

ET

TdF +

∫

[0,1]\ET

TGdF = r.

Hence, we can write that ∫ 1

0

tdF > r,

with t = min{T, c(T )} as TP (x) > 0 which implies that c(T )(x) > TG(x) with

x ∈ (0, 1). Besides, t is the minimum of two concave functions (as the cost function

is smooth) and then t is concave. Hence, we know that the unique intersection θ

between s = S and t is located above the median (as stated by Marhuenda and

Ortuño-Ortin [11]). This concludes the proof as we have proved that W (S, T ) >

1/2.

Proof of Theorem 3.

Proof. Proposition 2 states that any progressive tax function S ∈ R̂ with ES = [0, 1]

is preferred to any regressive tax function T ∈ R̂. Hence, if party 1 proposes a

mixed strategy µ1 that puts some positive weight over the regressive tax functions

(µ1(R̂reg) > 0), his opponent party 2 can beat him by advocating a mixed strategy
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µ2 that replicates party 1’s strategy over the set of progressive tax functions and

that puts the same weight on the progressive tax functions S with ES = [0, 1] as

µ1 on the set of regressive tax functions. As the game is zero-sum, both parties

are expected to have a zero payoff at equilibrium which shows that advocating µ1

is not a best response for party 1. As the game is symmetric, repeating the same

argument for party 2 completes the proof.
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