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Abstract

We present a system of behavioral axioms for preferences over menus that

is motivated by three assumptions. First, the decision maker is uncertain

ex ante (i.e. at the time of choosing a menu) about her ex post (i.e. at the

time of choosing an option within her chosen menu) preferences over options,

and she anticipates that this subjective uncertainty will only resolve after

the ex post stage. Second, she is averse to ex post indecisiveness (i.e. to

having to choose between options that she cannot rank with certainty). Third,

when evaluating a menu she discards options that are dominated (i.e. inferior

to another option whatever her ex post preferences may be) and restricts

attention to the undominated ones. Under these assumptions, the decision

maker has a preference for commitment in the sense of preferring menus with

fewer undominated alternatives. We derive a representation in which the

decision maker’s uncertainty about her ex post preferences is captured by

means of a subjective state space, which in turn determines which options

are undominated in a given menu, and in which the decision maker fears,

whenever indecisive, to choose an option that will turn out to be the worst

(undominated) one according to the realization of her ex post preferences.
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1 Introduction

Consider a two-stage decision situation. In the first stage, the decision maker has

to choose a menu (or opportunity set). In the second stage, she chooses an option

from this menu. We refer to these two stages as the ex ante and ex post stage,

respectively. We assume that the decision maker is uncertain ex ante about her ex

post preferences over options. Standard models in the literature on opportunity sets

use this assumption in order to motivate a desire for flexibility (Kreps, 1979; Nehring,

1999; Dekel, Lipman, and Rustichini, 2001; Dekel, Lipman, Rustichini, and Sarver,

2007a; Ozdenoren, 2002; Epstein, Marinacci, and Seo, 2007). According to these

models, larger menus can never be worse than smaller ones when a decision maker

expects to learn her ex post preferences before actually having to choose an option.

In contrast to these approaches, we consider a decision maker who anticipates that

her uncertainty about her ex post preferences will only resolve after she will have

chosen an option. Such a decision maker will find herself at the ex post stage, at

least for some menus, in a situation of indecisiveness, i.e. of having to choose an

option without being certain which option she prefers. We assume that the decision

maker is averse to such situations of indecisiveness and, therefore, prefers smaller

menus to larger ones, to the extent that smaller menus enable her to avoid these

situations.

As an illustrative example, consider Bethy, who is a manager of a small division

in a large company. She is faced with the problem of assigning the execution of a

project to one of the employees. Right now she can only choose among the employees

in her division, whom she knows well and has previously observed in similar projects.

She is rather certain that Alan would be the best person to entrust with the project.

However, just before Bethy can make the decision, the CEO of the company contacts

her and suggests that she now has the possibility to pick an employee not just

from her own division, but from the entire company staff. Bethy has only limited

knowledge of the staff outside of her division. In particular, she knows that Bob,

Chris and Dave are well suited to execute the project, but she finds these three

candidates hard to compare: e.g., Bob would be excellent on the financial side of

the project, but Chris would do better than Bob when it comes to marketing, and

Dave is not so good when it comes to marketing or finance but has outperformed the

other two in terms of creativity in the past. Bethy knows that all of these dimensions

might be relevant for the success of the project, but the current situation makes it

difficult to forecast which one would be most important. She is faced with a hard

choice: she has to make an important decision (for the company, for her career and

that of the person who will be in charge of the project), and take full responsibility
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for this decision in front of the CEO, without being able to confidently go for either

one of the possible options. In fact, she would have much preferred sticking to her

division, which would have avoided her this situation of indecisiveness altogether.

Thus she would willing to forego candidates that are potentially better than Alan

(in fact, she may even be sure that, e.g., Bob is superior to Alan in all regards) in

order to avoid the pain of having to choose in a situation of indecisiveness.1.

Extending previous work from Guerdjikova and Zimper (2008), we propose and

axiomatize a representation of preferences over opportunity sets that captures this

aversion to indecisiveness. More specifically, the decision maker’s ex ante uncertainty

about her ex post preferences is captured by means of a subjective state space,

each subjective state corresponding to a utility function over options. Since the

decision maker anticipates that she will only learn the subjective state after she

will have chosen an option, she is indecisive between two options whenever the first

one is ranked above the second one in some subjective state whereas the second

one is ranked above the first one in some other subjective state. When evaluating

a menu, the decision maker first discards all options that are dominated by some

other option in the menu (i.e. ranked below this other option in all subjective states),

as these options are clearly irrelevant for her final choice. Restricting attention to

undominated options, then, the representation captures indecisiveness aversion by

evaluating the menu, in each subjective state, by the utility of the worst option

in this state. To give an intuition, this is as if the decision maker viewed herself

confronted with a malevolent nature that would first select the subjective state,

then manage to have her choose the worst possible option in this subjective state,

and then only reveal her the subjective state. Finally, an increasing aggregator

transforms the vector of subjective-state contingent utilities into the ex ante utility

of the menu.

Our representation exhibits a preference for commitment, once one restricts at-

tention to undominated alternatives. In other words, the decision maker always

prefers a menu with a smaller set of undominated alternatives. It is noteworthy

that our representation does not identify which option will eventually be chosen

by the decision maker (not even contingently on the subjective state, since in fact

the decision maker does not know the subjective state at the time of choosing an

option). Thus our notion of indecisiveness aversion arises from the fact of having

to choose without knowing one’s preferences rather than from the outcome of this

choice. In this regard, our model differs from models of temptation (Gul and Pe-

1In this sense, the decision maker who conforms to our theory prefers to avoid taking responsi-
bility for her decisions. This interpretation was suggested to us by Klaus Nehring.
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sendorfer, 2001; Dekel, Lipman, and Rustichini, 2007), regret (Sarver, 2008), costly

contemplation (Ergin and Sarver, 2008), or thinking aversion (Ortoleva, 2008).

The paper is organized as follows. In section 2 we present our setup and utility

representation and compare it to Dekel, Lipman, and Rustichini (2001)’s ordinal

utility representation. In section 3 we introduce our axiom system and derive our

representation result. Section 4 concludes. All proofs are relegated to the appendix.

2 Setup and representation

Let B be a finite set of prizes and let ∆(B) be the set of all probability distributions

(lotteries) over B which stand for the options of our approach. Given β, β′ ∈ ∆(B)

and λ ∈ [0, 1], we define the λ-mixture of β and β′ as usual and denote it by

λβ + (1− λ)β′. A non-empty subset x of ∆(B) is interpreted as an opportunity set

or menu, i.e. as the commitment to choose some lottery β ∈ x at a given later date.

We refer to the choice of a menu as the ex ante stage and to the (implicit) choice of

a lottery within the chosen menu as the ex post stage. We endow the set of lotteries

with the Euclidean metric and the set of menus with the Hausdorff metric.

We restrict attention to menus that are polytopes, i.e. convex hulls of (non-

empty) finite sets of lotteries.2 Let X denote the set of all such menus. We consider

a decision maker endowed with a weak preference relation % over X, capturing her

ex ante ranking of menus. From % we define the strict preference relation � and

the indifference relation ∼ as usual. We look for an ordinal utility representation of

% as follows:

Definition. An indecisiveness averse representation of % consists in

(i) A non-empty, closed, convex set U ⊆ RB of utility functions such that, for

all β, β′ ∈ ∆(B),

{β} ∼ conv({β, β′})⇔ [∀u ∈ U, u · β ≥ u · β′]. (1)

(ii) A functional c : X → X such that3

c(x) = {β ∈ x|@β′ ∈ X,U · β′ > U · β}, (2)

2We can think of these menus as determined by a finite set of linear constraints or, equivalently,
we can think of the decision maker as considering finite menus but being able to randomize be-
tween options. the proof of our representation theorem relies on this restriction to polytopes (see
appendix).

3In the appendix it is shown that if x is a polytope then so is c(x) (a fact which is not true for
arbitrary compact menus).
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where U · β′ > U · β means u · β′ ≥ u · β for all u ∈ U and u · β′ > u · β
for some u ∈ U .

(iii) An aggregator g : RU → R, continuous and weakly increasing on

U(X) = {( min
β∈c(x)

u · β)u∈U |x ∈ X}, (3)

such that for all x, x′ ∈ X,

x % x′ ⇔ g

((
min
β∈c(x)

u · β
)
u∈U

)
≥ g

((
min
β∈c(x′)

u · β
)
u∈U

)
. (4)

The interpretation of the representation is that the decision maker envisions a

set of possible ex post preferences. Each of these is an expected-utility preference

represented by a von Neumann-Morgenstern utility function u ∈ U , so U can be

interpreted as a (subjective) state space. A lottery β dominates a lottery β′ if

and only if β has a higher expected utility than β′ regardless of the ex post utility

function. As we noticed in the introduction, dominated lotteries are never chosen

and their addition does not influence the evaluation of a menu. Therefore, we

can interpret condition (1) to say that if we add the dominated lottery β′ to the

singleton menu β, the resulting menu conv ({β; β′}) will be exactly as good as {β}.
Simultaneously, we require this condition to characterize the dominance relation

between lotteries.

For a given set of utility functions U , the functional c identifies the undominated

alternatives of each set in X. Since dominated alternatives are never chosen, the

decision maker should be indifferent between choosing an option out of x ∈ X, or out

of c (x). Hence, for the purposes of our representation, only the set of undominated

alternatives is relevant.

For each ex post utility function, the decision maker evaluates a menu x by the

lowest possible expected utility an undominated lottery in x can give her. This

reflects her aversion towards indecisiveness. It is as if the decision maker pictures

herself choosing the worst possible option w.r.t. any possible realization of her ex

post utility function. Finally, the different possible ex post utility functions are

aggregated through the increasing function g.

Remark 1. Note that the set U of ex post utility functions plays a double role

in the representation. First, it determines the mapping x → c(x), i.e. the set of

undominated options for each set x. The larger U , the larger c(x) for a given x.

Second, it determines the mapping c(x) → (minβ∈c(x) u · β)u∈U . The larger c(x),
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the lower minβ∈c(x) u · β for each u ∈ U and, hence, the lower the ex ante utility

of x since g is increasing. In the extreme case where the decision maker does not

anticipate any possibility of being indecisive, U reduces to a singleton so that the

second role then disappears and

x % x′ ⇔ max
β∈x

u · β ≥ max
β∈x′

u · β.

That is, we are brought back to standard indirect utility for which opportunity sets

are ranked according to their optimal alternatives.

Remark 2. Recall that Dekel, Lipman, and Rustichini (2001) derive the follow-

ing ordinal utility representation for preferences over opportunity sets:

x % x′ ⇔ h

((
max
β∈x

v · β
)
v∈V

)
≥ h

((
max
β∈x′

v · β
)
v∈V

)
where V ⊆ RB is a subjective state space and h : RV → R is an aggregator. More-

over, h is decreasing if and only if preferences satisfy preference for commitment,

i.e.,

x ⊆ x′ implies x % x′.

Now let U = −V and define g : RU → R by, for all z ∈ RV g(z) = h(−z). Then, for

all x, x′ ∈ X,

x % x′ ⇔ g

((
min
β∈x)

u · β
)
u∈U

)
≥ g

((
min
β∈x′)

u · β
)
u∈U

)
,

and g is increasing if and only if h is decreasing. Consequently, whenever the set of

undominated options coincides with the full opportunity set, i.e., c(x) = x, our rep-

resentation formally coincides (by an appropriate change of variables) with Dekel,

Lipman, and Rustichini (2001)’s ordinal utility representation. This formal equiva-

lence, however, does no longer hold whenever c(x) 6= x.
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3 Axioms and result

3.1 The Dominance Relation

In order to axiomatize our ideas, we first derive from % a dominance relation %∗

over lotteries as follows: for all β, β′ ∈ ∆(B),

β %∗ β′ ⇔ {β} ∼ conv({β, β′}).

We want to interpret this relation as saying that the decision maker decisively prefers

β over β′. In terms of our intended representation, this will correspond to the case

in which the utility associated with β is higher than that associated with β′, for all

von Neumann-Morgenstern utility functions in the set U .

To understand the intended interpretation, note that if the decision maker knows

that whatever her ex post preferences, she will weakly prefer β to β′, then adding

β′ to the singleton menu {β} should neither improve nor worsen this menu (the

convex hull is just to have a menu in X). In fact, in this case we should also have

conv({β, β′}) % {β′}.
Conversely, suppose that the decision maker does not decisively weakly prefer β

to β′. This may be the case for two reasons. First, she may decisively strictly prefer

β′ to β (β �∗ β′). In this case, adding β′ to the singleton menu {β} should improve

this menu, so we should have conv({β, β′}) � {β} (as well as {β′} ∼ conv({β, β′})).
Second, she may have no decisive preference between β and β′. In this case, under

our assumption that she dislikes indecisiveness, we should have {β} � conv({β, β′})
and {β′} � conv({β, β′}). In both cases, we do not have {β} ∼ conv({β, β′}),
justifying the above definition (we will make this justification more precise below by

deriving all these properties of %∗ from our axioms). It is important to emphasize

that the dominance relation %∗ can (and in general will) be incomplete. We use ./∗

to denote incomparability between two options.

Remark 3. Note that our dominance preference relation closely corresponds

to Kreps (1979)’s “domination” relation, and also has a similar interpretation. The

only difference is that in the absence of decisive preferences /dominance, the decision

maker prefers larger menus in Kreps’ model whereas she prefers smaller menus in

our model. Of course, this just reflects the fact that Kreps assumes that the decision

maker expects to learn her ex post preferences before choosing a lottery whereas we

assume she does not.
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Let us now define the set c̃(x) of undominated lotteries in a menu x ∈ X by

c̃(x) = {β ∈ x|@β′ ∈ x, β′ �∗ β}.

Under our assumption that the decision maker rules out all dominated lotteries, she

should be indifferent between choosing a lottery in x or in c̃(x). Clearly, if % admits

an indecisiveness averse representation then c(x) = c̃(x) for all x ∈ X.

3.2 Axioms

The intuitive discussion above motivates the following axioms on the preference

relation % over X and %∗ over ∆(B), respectively.4

Axiom 1 (Weak order). % is complete and transitive.

Axiom 2 (Dominance transitivity). %∗ is transitive.

Axiom 3 (Dominance independence). For all β, β′, β′′ ∈ ∆(B) and λ ∈ (0, 1),

if β %∗ β′, then λβ + (1− λ)β′′ %∗ λβ′ + (1− λ)β′′.

Axiom 4 (Dominance continuity). For all β, β′, β′′, β′′′ ∈ ∆(B), the set {λ ∈
[0, 1]|λβ + (1− λ)β′ %∗ λβ′′ + (1− λ)β′′′} is closed.

Axiom 5 (Indecisiveness aversion). For all x, x′ ∈ X, if for all β ∈ c̃(x), there

exists β′ ∈ c̃(x′) such that β %∗ β′, then x % x′.

Axiom 6 (Undominated continuity). For all x, x′, (xn)n≥1, (x
′
n)n≥1 ∈ X such

that c̃(xn)→ c̃(x) and c̃(x′n)→ c̃(x′), if xn % x′n for all n ≥ 1, then x % x′.

Axiom 1 is standard and without it a representation of preferences by a real-

valued function is impossible. Axiom 2 requires that the dominance preference

relation %∗ defined above is transitive, i.e. if β dominates β′, β′ dominates β′′, then

β dominates β′′. While this appears to be a desirable property of the dominance

relation, it is important to note that it is not implied by the transitivity of %: indeed,

it may be that {β} ∼ conv ({β; β′}), β′ ∼ conv ({β′; β′′}) and yet β 6∼ conv ({β; β′′}).
Hence, the need for Axiom 2.

Axiom 3 requires the dominance relation to satisfy independence. The interpre-

tation of this axiom is standard: when the two lotteries β and β′ are mixed in equal

proportions with a third β′′, the decision maker faces the choice between β and

4The reader should keep in mind that % is the only primitive preference relation of our approach
whereby we use %∗ , completely determined by %, for notational and iterpretational reasons only.
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β′ with probability λ and the (trivial) choice between β′′ and β′′ with probability

(1− λ). Hence, if β dominates β′, so should λβ+(1−λ)β′′ dominate λβ′+(1−λ)β′′.

Axiom 4 imposes a continuity property on the dominance relation, by requiring that

the better- and the worse-sets of this relation are closed.

Axiom 5 captures the main assumption of our approach, the fact that the decision

maker dislikes situations of indecisiveness. Below we show that under Axiom 5,

the decision maker prefers sets x, which have smaller (w.r.t. inclusion) sets of

undominated options. Hence, the decision maker is worse-off if undominated, but

incomparable options are added to her choice set. To understand the intuition

behind this result, consider two lotteries, β and β′ such that β ./∗ β′. Consider the

two sets, {β} and conv ({β; β′}). Note that c̃ ({β}) = {β} and c̃ (conv {β; β′}) =

conv {β; β′}. Since β %∗ β, but β′ 6%∗ β the axiom implies that {β} % conv ({β; β′}).
Furthermore, since β 6%∗ β′, we have {β} � conv ({β; β′}). Similarly, we obtain

{β′} � conv ({β; β′}).
A further implication of Axiom 5 is that a set is evaluated only based on the

undominated options contained in it. To understand this, compare the sets x and

c̃ (x). Since c̃ (x) = c̃ (c̃ (x)), it follows that the condition of the Axiom is trivially

satisfied and we obtain x ∼ c̃ (x). Hence, consistent with our intuition, the decision

maker who conforms to Axiom 5 acts as if he discards all dominated options in a

given opportunity set.

Axiom 6 is a continuity condition imposed on preferences over sets consisting

of undominated options. Since preferences over arbitrary sets can be reduced to

preferences over their respective sets of undominated options, this is the right notion

of continuity required for our representation.

3.3 Representation Theorem

We are now ready to state our representation theorem:

Theorem. There exists an indecisiveness averse representation of % if and only

if % satisfies axioms 1–6.

The proof of the theorem is relegated to the appendix. Here we provide a brief

sketch of the proof.

First, recall that %∗ is an incomplete preference relation. Axioms 2, 3 and 4

correspond to the axioms used by Dubra, Maccheroni, and Ok (2004). This implies

that there exists a non-empty, closed and convex set U such that:

β %∗ β′ iff U · β ≥ U · β′.
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The set U represents the set of subjective states of the decision maker and the

dominance relation indeed indicates that the comparison between β and β′ does not

depend on the realized subjective state.

We can, therefore, conclude that the two definitions of sets of undominated

options, c (x) and c̃ (x) are, in fact, equivalent. Since conv (c (x)) belongs to X,

and since Axiom 5 implies that the decision maker discards dominated options, we

obtain conv (c (x)) ∼ x for all x. We can, therefore restrict attention to comparisons

between sets of the form conv (c (x)) for some x. These preferences are complete

and transitive (by Axiom 1) and satisfy continuity (by Axiom 6). Therefore, they

can be represented by a continuous utility function, which by Axiom 5 is decreasing

with respect to set inclusion. The remainder of the proof consists in showing that

this function will take the form g
((

minβ∈c(x) u · β
)
u∈U

)
.

4 Conclusion

We have analyzed a representation of preferences over opportunity sets capturing

the notion of indecisiveness aversion. In our representation, the decision maker’s

uncertainty about her ex post preferences is captured by means of a subjective state

space. Since this uncertainty does not resolve before the choice of option, it gives rise

to indecisiveness at the ex post stage. More specifically, the decision maker discards

options that are clearly dominated, and evaluates the remaining set of undominated

options pessimistically, as if he would get the worst possible option in all subjective

states. This gives rise to a preference for commitment, in the sense of preferring

menus with fewer undominated options.

Our representation is ordinal in the sense that our aggregator is only required to

be monotone and continuous. It is natural to look for a more specific representation

in which the aggregator has a linear form. That is to say, we could look for a positive

measure µ on U such that, for all x, x′ ∈ X,

x % x′ ⇔
∫
u∈U

(
min
β∈c(x)

u · β
)
dµ (u) ≥

∫
u∈U

(
min
β∈c(x′)

u · β
)
dµ (u) . (5)

One thing to note about this representation is that it is not truly linear. This is

because it is not true that c(λx + (1 − λ)x′) = λc(x) + (1 − λ)c(x′) in general. In

fact, it is only true that c(λx + (1 − λ)x′) ⊆ λc(x) + (1 − λ)c(x′) but the converse

does not hold because, roughly speaking, by mixing between two menus one gets

rid of some undominated options. Therefore, this representation does not imply the

independence axiom, but only the following, weaker axiom: For all x1, x2, x̄, y1, y2 ∈
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X and λ ∈ (0, 1) such that conv(c(yi)) = conv(λc(xi)+(1−λ)c(x̄)), i = 1, 2, if x1 %

x2 then y1 % y2. This makes it tempting to try to work on the class {conv(c(x))|x ∈
X} and parallel the proof of Dekel, Lipman, and Rustichini (2001); Dekel, Lipman,

Rustichini, and Sarver (2007a)’s linear utility representation theorem. However,

since this class is not convex, a similar argument to theirs (in particular for lemma

S11 in Dekel, Lipman, Rustichini, and Sarver, 2007b) is not at hand in our model.

We leave the problem of axiomatizing a linear representation of indecisivness averse

preferences for future research.
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Appendix: proofs

We start with two lemmas:

Lemma 1. Assume that there exists U ⊆ RB such that %∗ satisfies (1). Then:

1. For all x ∈ X, c (x) = c̃(x).

2. For all x ∈ X, conv(c(x)) ∈ X.

Proof of lemma 1.

1. Follows immediately from (1) and the definitions of c(x) and c̃ (x).

2. First, c(x) in nonempty since x is compact (Eliaz and Ok, 2006, lemma 3).

Since a polytope has only finitely many faces and each of these faces is closed, it is

sufficient to show that c(x) is a union of faces of x. Let β ∈ c(x). We know that

β belongs to the relative interior of some face f of x (Rockafellar, 1970, theorem

18.2). It is sufficient to show that f ⊆ c(x). Suppose there exists β′ ∈ f such that

β′ /∈ c(x). Then, clearly, β′ 6= β. Moreover, by part 1 of the lemma, there exists

β̄′ ∈ x such that U · (β̄′ − β′) > 0. Now, since β belongs to the relative interior of

f , there exists β′′ ∈ f and λ ∈ (0, 1) such that β = λβ′ + (1 − λ)β′′ (Rockafellar,

1970, theorem 6.4). Let β̄ = λβ̄′+ (1− λ)β′′. Then U · (β̄ − β) = λU · (β̄′− β′) > 0,

so β /∈ c(x), a contradiction. Consequently, (4) is indeed well-defined since c(x) is

non-empty and closed for all x ∈ X.�

Lemma 2. Assume % satisfies axioms 1–6. Then:

1. For all β, β′, β′′ ∈ ∆(B) and λ ∈ (0, 1), β %∗ β′ if and only if λβ + (1 −
λ)β′′∗λβ′ + (1− λ)β′′.

2. For all x, x′ ∈ X, if c(x) ⊆ c(x′), then x % x′.

3. For all x ∈ X, conv(c(x)) ∈ X.

4. For all x ∈ X, x ∼ conv(c(x)).

5. For all β, β′ ∈ ∆(B),

β ∼∗ β′ ⇔ {β} ∼ conv({β, β′}) ∼ {β′},

β �∗ β′ ⇔ {β} ∼ conv({β, β′}) � {β′},

β ./∗ β′ ⇔ [{β} � conv({β, β′}) and {β′} � conv({β, β′})].
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Proof of lemma 2.

1. Follows from axioms 1–4 (Dubra, Maccheroni, and Ok, 2004, lemma 1).

2. Follows immediately from axiom 5.

3. By axioms 1–4, there exists a non-empty, closed, convex set U ⊆ RB such

that %∗ satisfies (1) (Dubra, Maccheroni, and Ok, 2004). Hence the result follows

from lemma 1.2.

4. By parts 2 and 3 of the lemma, it is sufficient to prove that c̃(conv(c̃(x))) =

c̃(x). First, we show that for all β ∈ x, there exists β′ ∈ c̃(x) such that β′∗β. Let

y = {β̄ ∈ x|β̄ %∗ β}. Since x is compact and %∗ is continuous (Dubra, Maccheroni,

and Ok, 2004, proposition 1), y is compact and, hence, there exists β′ ∈ y such that

β̄ �∗ β′ for no β̄ ∈ y (Eliaz and Ok, 2006, lemma 3). Suppose β̄ �∗ β′ for some

β̄ ∈ x \ y. Since β′∗β by definition of y, it follows that β̄ �∗ β by transitivity of %∗,

so β̄ ∈ y, a contradiction. Hence β′ ∈ c̃(x).

Now, by definition, c̃(x) = {β ∈ x|@β′ ∈ x, β′∗β} and c̃(conv(c̃(x))) = {β ∈
conv(c̃(x))|@β′ ∈ conv(c̃(x)), β′∗β}. Let z = {β ∈ conv(c̃(x))|@β′ ∈ x, β′∗β}. Then

z = c̃(x) ∩ conv(c̃(x)) = c̃(x). We show that c̃(conv(c̃(x))) = z. Clearly, z ⊆
c̃(conv(c̃(x))) since conv(c̃(x)) ⊆ x. Conversely, let β ∈ conv(c̃(x)) \ z. Then there

exists β′ ∈ x such that β′∗β. By the argument above, there then exists β′′ ∈ c̃(x)

such that β′′∗β′ and, hence, β′′∗β, so β /∈ c̃(conv(c̃(x))). Hence c̃(conv(c̃(x))) ⊆ z.

5. The indifference property follows immediately from the definition of %∗. Now,

for all β, β′ ∈ ∆(B), we obviously have c̃({β}) = {β} and c̃({β′}) = {β′}. Moreover,

by part 1 of the lemma,

c̃(conv({β, β′})) =


{β} if β �∗ β′,

{β′} if β′∗β,

conv({β, β′})) ifβ ∼∗ β′ or β ./∗ β′.

We now show that β %∗ β′ implies conv({β, β′}) % {β′}. Suppose β %∗ β′ and

{β′} � conv({β, β′}). Then {β} ∼ conv({β, β′}) by definition of %∗ and, hence,

{β′} � {β} by transitivity of %. But since c̃({β}) = {β}, c̃({β′}) = {β′}, and

β %∗ β′, we have {β} % {β′} by axiom 5, a contradiction. This establishes the

strict preference property as well as the ⇐ part of the noncomparability property.

For the ⇒ part, assume β ./∗ β′. Then c̃({β}) ⊆ c̃(conv({β, β′})) and c̃({β′}) ⊆
c̃(conv({β, β′})), so we have {β} % conv({β, β′}) and {β′} % conv({β, β′}) by part 2

of the lemma. Suppose these two preferences are in fact indifferences. Then β ∼∗ β′,
a contradiction. Hence one of the two must be strict. Suppose the other one is an
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indifference. Then we face the same contradiction as above. Hence both preferences

are strict.�

Proof of the Representation Theorem. Obviously, axiom 1 is necessary

for a representation to exist. Given this axiom, we know that %∗ is reflexive and,

hence, axioms 2–4 are necessary and sufficient for the existence of a non-empty,

closed, convex set U ⊆ RB such that %∗ satisfies (1) (Dubra, Maccheroni, and Ok,

2004). It remains to prove that axioms 5 and 6 are necessary and sufficient for the

existence of a continuous and weakly increasing aggregator g : U(X)→ R such that

% satisfies (4). It is easy to check that these axioms are necessary. The remainder

of this section is devoted to the sufficiency proof.

Assume % satisfies axioms 1–6. Let C = {conv(c(x))|x ∈ X}. Clearly, for all

x ∈ X and u ∈ U , we have minβ∈c(x) u · β = minβ∈conv(c(x)) u · β. Hence, by lemma

2.3–2.4, it is sufficient to find a continuous and weakly increasing aggregator g such

that, for all x, x′ ∈ C,

x % x′ ⇔ g

((
min
β∈x

u · β
)
u∈U

)
≥ g

((
min
β∈x′

u · β
)
u∈U

)
.

Since C is a subset of a separable metric space (Klein and Thompson, 1984), axioms

1 and 6 imply the existence of a continuous utility function v : C → R such that,

for all x, x′ ∈ C, x % x′ if and only if v(x) ≥ v(x′) (Debreu, 1954). We now claim

that for all x, x′ ∈ C, if minβ∈x u ·β ≥ minβ∈x′ u ·β for all u ∈ U , then x % x′. If the

claim is correct, then we can define the aggregator g : U(C) = U(X) → R by, for

all (ru)u∈U ∈ U(C), g((ru)u∈U) = v(x) for any x ∈ C such that (minβ∈x u · β)u∈U =

(ru)u∈U . Moreover, it is clear that g is then weakly increasing, so the proof is

complete.

To prove the claim, let x ∈ C and define the sets

y = {γ ∈ RB|∀u ∈ U, u · γ ≥ min
β∈x

u · β},

z = {γ ∈ RB|∃β ∈ x, U · γ ≥ U · β}.

By (1) and axiom 5, it is sufficient to show that z = y. Define the set k = {γ ∈
RB|U ·γ ≥ 0}. Then k is a closed convex cone and, more precisely, is the polar of the

cone generated by −U . Clearly, z = x+k. Since x is a polytope and k is closed and

convex, z is closed and convex (Rockafellar, 1970, theorem 20.3) and, hence, is equal

to the intersection of all closed half-spaces containing it (Rockafellar, 1970, theorem

11.5). For all u ∈ RB, define the set hu = {γ ∈ RB|u · γ ≥ infγ′∈z u · γ′}. Clearly, we

13



have z =
⋂
{hu|u ∈ RB} =

⋂
{hu|u ∈ V }, where V = {u ∈ RB| infγ′∈z u · γ′ > −∞}.

By definition, −V is the barrier cone of z and, hence, is the polar of the recession

cone of z (Rockafellar, 1970, corollary 14.2.1). But since x is a polytope, the recession

cone of z is the recession cone of k and, since k is a cone, the recession cone of k

is k. Thus −V is the polar of k and, hence is the cone generated by −U . Since U

is convex, this latter cone is
⋃
{λU |λ ≥ 0} and, since hu = hλu for all λ > 0 by

definition, we have z =
⋂
{hu|u ∈ U}. Finally, since k is a cone and x is a polytope,

infγ′∈z u · γ′ > −∞ implies infγ′∈z u · γ′ = minγ′∈x u · γ′, so the latter equality implies

z = y.
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