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Abstract

This paper studies the e¤ect of asymmetric information on equilibrium
stability in a class of linear models where the actual state depends on the
forecasts about it. Stability is de�ned by the so-called eductive criterion
which relies on common knowledge of rationality. The main result is that
stability obtains when the proportion of uninformed agents is high enough.
The expectational behavior of these agents indeed displays more inertia. This
behavior, and then the actual outcome, are therefore easier to predict. This
result is linked to the issue of informational e¢ ciency. Extensions to cases
with higher order uncertainty, additional agents�heterogeneity, and sunspots
are also considered.
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1 Introduction

The evidence suggests that there is considerable uncertainty regarding economic
fundamentals. In addition, it is likely that decision makers have a more precise
idea about fundamentals than the private sector. It is not clear whether decision
makers whose purpose is to stabilize �uctuations should be transparent, i.e., should
reveal their information about fundamentals. In the main strand of the literature,
the stabilization purpose has been applied to equilibrium �uctuations, thus a pri-
ori assuming rational expectations (see, e.g., Cukierman and Meltzer, 1986). An
alternative approach considers that agents are not a priori able to form rational
expectations, and that they have to learn �rst the equilibrium law of motion of the
economy. In this approach, the stabilization purpose can be understood as stabiliz-
ing the economy in an equilibrium situation (see, e.g., Bullard and Mitra, 2002, or
Evans and Honkapohja, 2001, 2008). This paper studies the e¤ect of informational
asymmetries on equilibrium stability.

If the rational expectations hypothesis is relaxed, it becomes necessary to spe-
cify the forecasting behavior of economic agents. This paper focuses attention on
the so-called eductive learning scheme: an equilibrium is stable whenever it is the
only outcome surviving to the iterated process of elimination of non-best responses
predictions triggered by the two assumptions of common knowledge of individual
rationality and common knowledge of the model (Guesnerie, 2002).
In a class of self-referential linear models where the individual decision depends

on the expectations of both the fundamentals and the average of others�forecasts,
which encompasses Heinemann (2004) and Morris and Shin (2006), stability is shown
to relate to (1) the sensitivity of the state of the economic system, interpreted as a
price, to the average others�forecasts of this price, and (2) the proportion of agents
informed about the true underlying economic fundamentals.
First, in accordance with the literature about learning under symmetric inform-

ation in macroeconomic models, stability is favored whenever the in�uence of ex-
pectations onto the actual state of the economy is small enough. Indeed, when
the actual price is not sensitive to individuals�forecasts, past history re�ects fun-
damentals rather than the noise caused by agents�beliefs. The price then can be
used as a valuable guide in adaptive learning processes (Grandmont, 1998). In the
case of eductive learning, stability is favored since then it is no longer necessary to
know precisely others�beliefs in order to predict the behavior of the economy (Gues-
nerie, 1992). Stabilizing policies should therefore be shaped so that the in�uence of
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forecasts is neutralized.
A speci�c feature of the paper with respect to the literature on learning in

macroeconomic models is the presence of asymmetric information. Our main result
shows that stability is negatively a¤ected by the proportion of informed agents, i.e.,
there is a stabilizing e¤ect of the lack of information. This e¤ect is due to the
fact that an agent�s decision is more sensitive to his own price forecast when he is
informed. This implies that the sensitivity of the actual price increases with the
proportion of informed agents. Some inertia argument again prevails: it is easier
to predict the forecast behavior of an agent who is not informed since his behavior
does not sharply respond to his expectations. This suggests that stabilizing policies
should not disclose information to a large proportion of agents.
This last property is reminiscent of the recent literature concerned with the

stabilization problem from the equilibrium approach viewpoint (Woodford, 2003;
Morris and Shin, 2006; Hellwig, 2008; and Nimark, 2008). This literature actually
highlights that informational asymmetries may imply greater persistence of equilib-
rium �uctuations. In presence of informational asymmetries, an agent is not able to
assess exactly how shocks on fundamentals in�uence others�decisions. Thus, as far
as his optimal decision depends on others, his Bayesian Nash equilibrium behavior
consists to adjust slowly to his private information. On the contrary, if all agents
share the same information about fundamentals, they revise their decisions quickly,
and the e¤ects of a shock on the fundamentals is transitory (Woodford, 2003).
To summarize, informational asymmetries imply inertia, not only in the rational

expectations equilibrium, but also in the learning process. This suggests that there
is a close connection between stabilizing equilibrium �uctuations and stabilizing
learning of this equilibrium: an equilibrium which displays greater inertia should be
more learnable.

Such a connection is relevant only if fundamentals are not revealed by the ob-
served price in the very short run, however. This raises the question of informational
e¢ ciency of the price (see Desgranges and Guesnerie (2000), Desgranges, Geo¤ard
and Guesnerie (2003), and Desgranges and Heinemann (2008), for studying inform-
ational e¢ ciency from the eductive viewpoint). With �nitely many states of nature,
the equilibrium price is fully revealing (Radner, 1979). If learning is taken into
account, some e¢ ciency criterion is required. Our criterion hinges on the number
of steps of learning needed to assess with certainty that prices are fully revealing.
The argument hinges on the fact that every step of learning de�nes a set of possible
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prices in each state of nature. When these sets do not intersect, the observation
of the price allows agents to infer the true state of fundamentals. Our measure of
informational e¢ ciency appeals to the minimal number of steps for these sets to
have no intersection: the smaller it is, the greater informational e¢ ciency.
It is shown that informational e¢ ciency improves whenever (1) the speed of con-

vergence of learning is high, and (2) there is a large spread between equilibrium
prices. Since the equilibrium belongs to the set of rationalizable solutions, a larger
the spread between equilibrium prices makes more likely that the sets of possible
prices at any given step of learning do not intersect. It follows that stabilizing
equilibrium �uctuations, measured by the spread between equilibrium prices, is det-
rimental to informational e¢ ciency. Stabilizing equilibrium �uctuations thus makes
plausible that informational asymmetries persist over time, which improves stability
of learning.

The paper is organized as follows. Section 2 describes the framework and the
stability concept in the symmetric information case. Section 3 provides a character-
ization of stability in presence of asymmetric information. Section 4 examines the
issue of informational e¢ ciency. Extensions to higher order uncertainty, individual
heterogeneity, and additional sunspot uncertainty are considered in Section 5.

2 Framework

There are 
 states of nature indexed by !, ! = 1; : : : ;
. State ! occurs with
probability �(!), 0 � �(!) � 1. In state !, the actual price p (!) is determined by

p(!) = � (!)

Z 1

0

peidi+ � (!) . (1)

In state !, the economic fundamentals are summarized by (� (!) ; � (!)). The fore-
cast weight � (!) represents the sensitivity of the economy to agents�forecasts and
� (!) is a scale factor. Eq. (1) can be thought of as a situation in which there is a
continuum of in�nitesimal agents i 2 [0; 1] whose individual forecasts pei about the
price matter through the aggregate forecast

P e �
Z 1

0

peidi. (2)

In the sequel, we assume that the model exhibits strategic complementarity:
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Hypothesis 1. For every ! = 1; : : : ;
, �(!) > 0.

Our analysis still applies when �(!) < 0 for every ! (i.e. there are strategic
substituability). It does not straightforwardly extend, however, to the case where
the signs of forecast weights di¤er across states of nature, i.e., the model exhibits
strategic complementarity in some states and strategic substituability in others. The
framework used by Morris and Shin (2006) �ts (1), with �(!) independent of !.

2.1 The complete information case

One gets preliminary insights into the stability issue by focusing on the simple case
where all the agents are perfectly informed of ! when they form their forecasts. A ra-
tional expectations equilibrium (REE) is then a vector of prices (p�(!); ! = 1; :::;
)
such that p�(!) = � (!) p�(!) + � (!), i.e., p(!) = p�(!) if pei (!) = p

�(!) for any i
in (1). This equilibrium is unique if � (!) 6= 1. It can be interpreted as the Nash
equilibrium of a strategic �guessing�game. In this game, the strategies of agent i are
the vectors of price forecasts (pei (1); :::; p

e
i (
)), and the ex-ante payo¤ of this agent

is the opposite of his forecast error

�
X
1�!�


�(!)(p(!)� pei (!))2;

where p(!) is determined by (1).
In state !, agent j�s best-response to a pro�le (pei (!) ; i 2 [0; 1]) of others�fore-

casts is
pej(!) = � (!)P

e (!) + � (!) , (3)

where P e (!) is de�ned by (2), with pei = pei (!). It is clear that the REE is the
only Nash equilibrium of this game. In this equilibrium, each agent expects p�(!)
because of the belief that all the others expect p�(!). Taking into account beliefs of
higher order further implies that each agent believes that all the others believe that
all the others expect p�(!). This process can be iterated ad in�nitum, i.e., p�(!) is
the only price in state ! to be consistent with common knowledge (CK) of every
agent expecting it.
This observation suggests a stability criterion for the REE. To de�ne it, we

do not assume that the price forecast of every agent is CK. We make instead the
weaker assumption of CK that pei (!) 2 P 0(!) for all i and all !, where P 0(!) =
[P 0inf(!); P

0
sup(!)] and p

�(!) 2 P 0(!). This assumption triggers an iterative process.
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At the �rst step of this process, it implies P e (!) 2 P 0(!). Then, by (3), pej(!) 2
P 1(!) =

�
P 1inf(!); P

1
sup(!)

�
, where

P 1inf(!) = �(!)P
0
inf(!) + �(!),

P 1sup(!) = �(!)P
0
sup(!) + �(!),

since �(!) > 0. Therefore, at the outcome of this �rst step, it is CK that every
price forecast pei (!) of every agent i is in P

1(!). More generally, at step � � 1,
if pei (!) 2 P � (!) for every i, then pei (!) 2 P �+1(!) for every i, with P �+1(!) =
�(!)P � (!) + �(!).
The REE is stable when the sequence of intervals (P � (!); � � 0) converges to

fp�(!)g for every !. It is then the only rationalizable outcome in the game, once
the strategy set of every agent has been initially restricted to (P 0(1); :::; P 0(
)).
Of course, the REE is stable if and only if j� (!)j < 1 for every !. As advocated
by Guesnerie (1992), stability thus obtains when the economic system is not too
sensitive to forecasts in (1), or equivalently, agents�forecasts are not too sensitive
to others�forecasts in (3).

2.2 The symmetric incomplete information case

Suppose now that uncertainty about fundamentals is no longer resolved when agents
form their forecasts. The price forecast pei can no longer depend on !. Agents still
know, however, that the actual price depends on !. If agent i believes that the price
in state ! is pei (!), his price forecast writes

pei =

X
w=1

�(w)pei (w).

In this setting, a REE is a vector (p�(1); : : : ; p�(
)) such that, for any !,

p�(!) = � (!)

X
w=1

�(w)p�(w) + �(!). (4)

It coincides with the Nash equilibrium of the guessing game where all agents are
uninformed of !. In this game, the best-response of j to a pro�le (pei ; i 2 [0; 1]) of
others�forecasts is

pej =


X
w=1

�(w) [� (w)P e + �(w)] � ��P e + ��,
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where �� and �� represent the average forecast weight and scale factor, and the ag-
gregate forecast is

P e �

X
w=1

�(w)

Z 1

0

pei (w) di.

In the REE, therefore, it is CK that all the agents expect

p� =

X
w=1

�(w)p�(w). (5)

The stability criterion introduced above can be applied. If, at step � , it is CK
that pei 2 P � for every i (where P � is an interval including p�), then it is CK that
pei 2 P �+1 = ��P � +�� for every i. The sequence of intervals (P � ; � � 0) converges to
fp�g if and only if

������ < 1, i.e., the average forecast weight is low enough.
3 Stability under Asymmetric Information

We now assume that there are � (0 < � < 1) informed agents who observe ! before
they form their forecasts, and the (1� �) remaining agents have no information
about ! at that time. The previous section suggests that stability should depend
on the 
 values of �(!) (because of the informed) and the value of �� (because of
the uninformed). The new issue is that the stability properties of prices p� (!) are
now interdependent. Namely, in a given state !, uninformed agents �gure out what
informed agents expect in every state. In order to form a correct forecast, informed
agents have to guess the behavior of uninformed agents, and so they must take into
account what uninformed believe about what they expect themselves in every state.
Stability of a REE price in a given state therefore depends on the fundamentals in
all the possible states.

The REE is a vector (p�(1); : : : ; p�(
)) such that, for any !,

p� (!) = � (!)P � (!) + � (!) , (6)

where

P � (!) = �p� (!) + (1� �)

X
w=1

�(w)p�(w). (7)

It can be again interpreted as the Nash equilibrium of a guessing game. The timing
of the game is:
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1. The informed agents i 2 [0; �] observe !.

2. All the agents form their forecasts. A strategy of a player i consists of a price
forecast, conditional to his information. It follows that, if i is informed, his
strategy is a vector of price forecasts (pei (1); :::; p

e
i (
)), where p

e
i (!) is the price

expected by i to arise in state !. If i is uninformed, then his strategy consists
of a unique price forecast pei .

3. In every state !, the actual price p(!) is determined by (1), p(!) = � (!)P e(!)+
� (!), with the aggregate forecast

P e(!) =

Z �

0

pei (!) di+

Z 1

�

peidi.

In this game, each agent chooses a forecast by minimizing his own squared fore-
cast error. Hence, in state !, when an informed agent i expects the aggregate
forecast to be P e(!), his best-response is

pei (!) = � (!)P
e(!) + � (!) � R! (P e(!)) . (8)

If i is uninformed and expects the aggregate forecast to be P e(w) in every state w,
then

pei =

X
w=1

�(w)Rw (P
e(w)) . (9)

Equations (8) and (9) allow us to de�ne the stability criterion. Assume initially
that the aggregate price forecast P e(!) in state ! belongs to some interval P 0(!) =
[P 0inf(!); P

0
sup(!)], with P

�(!) 2 P 0(!). At the �rst step of the learning process, the
best-response pei (!) of an informed agent i to an aggregate forecast P

e(!) in P 0(!)
satis�es

pei (!) 2
�
R!(P

0
inf(!)); R!(P

0
sup(!))

�
. (10)

Similarly, for a uninformed agent,

pei 2
"


X
w=1

�(w)Rw(P
0
inf(w));


X
w=1

�(w)Rw(P
0
sup(w))

#
. (11)
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As a consequence, P e(!) 2 P 1(!) =
�
P 1inf(!); P

1
sup(!)

�
, with

P 1inf(!) = �R!(P
0
inf(!)) + (1� �)


X
w=1

�(w)Rw(P
0
inf(w)),

P 1sup(!) = �R!(P
0
sup(!)) + (1� �)


X
w=1

�(w)Rw(P
0
sup(w)).

More generally, if it is CK at step � that P e(!) 2 P � (!) in state !, then it is
CK at step (� + 1) that P e(!) 2 P �+1(!) in state !, with

P �+1(!) = �R!(P
� (!)) + (1� �)


X
w=1

�(w)Rw(P
� (w)). (12)

This relation de�nes a sequence of intervals (P � (!); � � 0). The REE is stable
whenever this sequence converges toward fP �(!)g, whatever ! is. The next result
gives a necessary and su¢ cient condition for stability.

Proposition 1. Assume that � (!) > 0 for any ! = 1; : : : ;
. Let 0 � � � 1. If
�� (!) > 1 for some !, then the REE is unstable. If �� (!) < 1 for every !, then
it is stable if and only if


X
w=1

� (w)
(1� �)� (w)
1� �� (w) < 1. (13)

Proof. Consider, e.g., the 
 equations (12) corresponding to the lowest bounds
P �inf(!) of P

� (!). Given (8), they can be rewritten in matrix form p�+1inf =Mp
�
inf +

�, where p�inf is the 
 � 1 vector (P �inf (1) ; : : : ; P �inf (
)), � is the 
 � 1 vector
(� (1) ; :::; � (
)), andM is the 
�
 matrix ��+(1� �)�� (with � the diagonal

�
 matrix whose !!th entry is �(!), and � the 
�
 stochastic matrix whose
!!0th entry is �(!0)). The REE is stable if and only if the spectral radius �(M)
of M is less than 1. The proof now hinges on the fact that for any 
 � 
 positive
matrixM, and any 
� 1 vector x = (x!) with every x! > 0, we have

min
!

(Mx)!
x!

� �(M) � max
!

(Mx)!
x!

,
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where (Mx)! stands for the !th component of the 
 � 1 vector Mx (see Lemma
3.1.2. in Bapat and Raghavan (1997)). Let

Q (x; !) =
(Mx)!
x!

= � (!)

"
�+ (1� �) 1

x!


X
w=1

� (w)xw

#
,

for any !. Assume �rst that �� (!) > 1 for some !, e.g. ! = 
. Then, consider
the vector x = ("; : : : ; "; 1)0 where " > 0. When " tends toward 0, Q (x; !) tends to
(+1) for every ! < 
, and Q (x;
) � �� (
) > 1. Hence, min!Q (x; !) > 1 for "
small enough, and so �(M) > 1: the REE is unstable if �� (!) > 1 for some !. If,
on the contrary, �� (!) < 1 for any !, then de�ne

E =

X
w=1

� (w)
(1� �)� (w)
1� �� (w) .

Consider the 
� 1 positive vector x whose !th component is

x! =
1

E

(1� �)� (!)
1� �� (!) .

If E � 1, then Q (x; !) > 1 for any !, so that min!Q (x; !) � 1, and the REE
is unstable. If, on the contrary, E < 1, then Q (x; !) < 1 for any !, so that
max!Q (x; !) < 1, and the REE is stable.

When the REE is not stable, no price can be predicted. To see this, consider
a state ! where � (!) > 1, which always exists when the REE is not stable. Un-
informed agents cannot predict the price in such a state, and so they cannot select
a unique price forecast in this state. Since their behavior does not depend on the
actual state, this means that they cannot pick out a unique price forecast in any
other state. As a result, expectations coordination is impossible in any state.

From Proposition 1, a small sensitivity of actual prices to forecasts favors stabil-
ity, since the derivative of the LHS of (13) with respect to � (!) is positive. However,
the interaction between forecast weights and the information structure (summarized
by �) is not clear. The next corollary focuses on this issue.

Corollary 2. Assume that � (!) > 0 for any ! = 1; : : : ;
.
If � (!) < 1 for any ! = 1; : : : ;
, then the REE is stable.
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If inf! � (!) < 1 < sup! � (!), then provided that �� < 1, there exists a threshold
proportion ��, 0 < �� < 1, of informed agents such that stability of the REE obtains
if and only if � < ��; the threshold �� is a decreasing function of each � (!). If
�� � 1, then stability never obtains.
If � (!) > 1 for any ! = 1; : : : ;
, then the REE is unstable.

Proof. Assume �rst that � (!) < 1 for any ! = 1; : : : ;
. Then, �� (!) < 1 and
(1� �)� (!) = (1� �� (!)) < 1 for any !. By Proposition 1, the REE is stable.
Let now inf! � (!) < 1 < sup! � (!). If � > 1= sup! � (!), the REE is unstable,

by Proposition 1. If � � 1= sup! � (!), then �� (!) < 1 for every !, and the REE
is stable if and only if (13) is met. Let

F (�) =

X
w=1

� (w)
� (w)

1� �� (w) �
1

(1� �) (14)

Since F (�) is a continuous and increasing function of � on the interval [0; 1= sup! � (!)],
with F 0(�) > 0 whatever � is, there is at most one value � such that F (�) = 0 on
this interval. Observe now that F (0) = ��� 1, and F (�) tends to +1 when � tends
to 1= sup! � (!) from below. If, on the one hand, �� � 1, then F (�) � F (0) > 0

for any � 2 [0; 1= sup! � (!)], and the stability condition (13) is never satis�ed.
If, on the other hand, �� < 1, then there exists a unique solution �� (�� > 0) to
F (�) = 0 in [0; 1= sup! � (!)]. The condition F (�) < 0, i.e. the stability condition
(13), is equivalent to � < ��. Since F (��) = 0 implicitly de�nes �� as a function
(�(1); : : : ; �(
)), and since F (�) increases in every � (!), �� decreases in every � (!).
Assume �nally that � (!) > 1 for any !. Then, �� > 1, and we have already seen

that F (�) > 0 for any � 2 [0; 1= sup! � (!)]. As a result, the stability condition (13)
is never satis�ed.

If the REE is unstable, then an increase in the proportion of informed agents is
never stabilizing. Instead, a decrease in the proportion of informed agents sometimes
makes the equilibrium stable. In this sense, the presence of uninformed agents is
stabilizing. The intuition for this result is simple. It stems from the sensitivity of
individual forecasts to other�s behavior. Indeed, when an informed agent i expects
the aggregate forecast to undergo a change dP e (!) > 0 in state !, he will adjust
his forecast for an amount dpei (!) = � (!) dP e (!). In the same con�guration, an
uninformed agent will revise his forecast by � (!)� (!) dP e (!) � � (!) dP e (!). The
forecasting behavior of an uninformed agent is thus less sensitive to others�forecasts
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than the one of an informed agent. It is consequently easier to predict, which favors
stability.

4 Informational E¢ ciency

If the actual price, once made public, reveals the underlying fundamentals, inform-
ational asymmetries do not persist over time. That is: the price is informationally
e¢ cient. When the REE is stable, informational e¢ ciency obtains provided that
p� (!) 6= p� (!0). On the other hand, when the REE is unstable, any price may arise
in any state and the price is not revealing. These two statements suppose, however,
an in�nite number of steps of learning, while informational e¢ ciency can obtain
after a �nite number of steps only.

After a �nite number of steps � , a price reveal ! if it belongs to P � (!)�P � (!0)
for any !0 6= !. For any price in P � (!) to reveal ! at step � , it is needed that P � (!)
has no intersection with any other interval P � (!0). In case of stability of the REE,
there exists a threshold step � such that any price at step � is revealing if and only
if � � � . The lower this threshold is, the more e¢ cient the learning process. Hence,
this threshold provides us a criterion for informational e¢ ciency of the price.
Assume for convenience �(!) = � and P 0(!) = P 0 for every ! (agents have no

prior information about the state). By Proposition 1, the REE is stable if and only
if � < 1.

Proposition 3. Assume that the REE is stable (� < 1). Let � be the smallest
integer � satisfying

p0sup � p0inf <
�

��
1� (��)�

1� �� inf
!;!0

j� (!0)� � (!)j . (15)

Then, any price reveals the state ! at step � of learning, i.e. the 
 sets P � (!) do
not intersect, if and only if � � � .
The threshold � increases with the proportion of uninformed agents (1��), and

with the forecast weight �.

Proof. It follows from (12), with �(!) = �, that

�p�+1inf �

X
w=1

�(w)p�inf(w) = �
�+1p0inf +

1� ��+1

1� � ��,
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�p�+1sup �

X
w=1

�(w)p�sup(w) = �
�+1p0sup +

1� ��+1

1� � ��.

Let dp�+1(!0; !) = p�+1sup (!
0)�p�+1inf (!), d�(!

0; !) = � (!0)�� (!), and dp0 = p0sup�p0inf .
Then, from (12) and both previous equations, one gets

dp�+1(!0; !) = ��dp� (!0; !) + �d�(!0; !) + (1� �)��+1dp0.

Hence, dp�+1(!0; !) equals

(��)�+1 dp0 + �
1� (��)�+1

1� �� d�(!0; !) + (1� �)��+11� �
�+1

1� � dp0.

The 
 sets P � (!) do not intersect if and only if dp� (!; !0) < 0 whenever � (!0) <
� (!), which is equivalent to:

dp0 <
�

��
1� (��)�

1� �� inf
!;!0

jd�(!0; !)j :

Since the LHS does not depend on � and the RHS is increasing in � , the threshold
value � stated in the proposition is the smallest integer satisfying the above inequal-
ity. This shows the �rst part of the proposition. Observe now that

�

��
1� (��)�

1� ��

increases with � and � (since � < 1). It decreases with �, since

d

d�

�
�

��
1� (��)�

1� ��

�
=

�

(1� ��)��+1
�
��
1� ����

1� �� � �
�
,

and

��
1� ����

1� �� = ��+ (��)2 + :::+ (��)� < � .

This concludes the proof.

Informational e¢ ciency improves, i.e., � is lower, when (1) the anchorage assump-
tion is informative, i.e. p0sup � p0inf is small, and (2) the spread between equilibrium
prices

jp� (!0)� p� (!)j = j� (!0)� � (!)j
1� �� ; (16)

13



is large, i.e., the proportion of informed agents is high and j� (!0)� � (!)j is import-
ant. The in�uence of the forecast weight onto informational e¢ ciency is a priori
ambiguous, however. On the one hand, a higher � increases the spread between
equilibrium prices, which increases � . On the other hand, it increases the speed of
convergence to the REE, which lowers � . The above proposition gives the net e¤ect:
a higher � deteriorates informational e¢ ciency.

5 Extensions

5.1 Higher Order Uncertainty

So far uninformed agents have used a common prior distribution of states, and this
fact was CK. Our analysis actually holds if the probability �i(!) assigned by some
uninformed agent i to state ! is private information, but

�(!) � 1

(1� �)

Z 1

�

�i(!)di

is CK. It may appear di¢ cult to justify such an assumption in a framework which
otherwise stipulates a high level of ignorance. We now consider the case of higher
order uncertainty, where every agent is uncertain about others� beliefs over the
di¤erent states of nature.

The aggregate forecast is

P e (!) =

Z �

0

pei (!) +

Z 1

�


X
w=1

�i (w) p
e
i (w)di.

At step � , the price forecasts pei (!) (for any i and any !) belong to some interval
P � (!) =

�
P �inf(!); P

�
sup(!)

�
. We de�ne higher order uncertainty as follows: every

agent only knows that the aggregate price forecast

P e (!) 2
�
�P �inf(!) + (1� �) inf

w
P �inf(w); �P

�
sup(!) + (1� �) sup

w
P �sup(w)

�
for any !.

When �(!) = �, the iterative learning process writes:

P �+1inf (!) = �
h
�P �inf(!) + (1� �) inf

w
P �inf(w)

i
+ �(!), (17)
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P �+1sup (!) = �

�
�P �sup(!) + (1� �) sup

w
P �sup(w)

�
+ �(!). (18)

This shows that higher order uncertainty prevents agents to discover the REE. In-
deed, P �inf(!) = P �sup(!) = P �+1inf (!) = P �+1sup (!) = p�(!) is not a solution of the
system (17) and (18). Let Pinf(!) and Psup(!) be the �xed points of this system
(P �inf(!) = P

�+1
inf (!) = Pinf(!) for every ! in (17) and Psup(!) is de�ned analogously

from (18)). Stability corresponds to convergence of the sequence
�
P �inf(!); P

�
sup(!)

�
toward [Pinf(!); Psup(!)] for every !.
The next result shows that stability is not a¤ected by higher order uncertainty,

at least when �(!) = �.

Proposition 4. The dynamics (17) and (18) is stable if and only if � < 1.

Proof. The dynamics of lowest bounds P �inf(!) rewrites

p�+1inf = � [�I
 + (1� �)1
]p�inf ;

where 1
 stands for the 
�
 stochastic matrix whose each entry in the !th column
is 1, where ! = arg infw Pinf(w), and any remaining entry is 0. The 
 eigenvalues
of the matrix � [�I
 + (1� �)1
] are �, ��, ..., ��. The same analysis applies to
P �sup(!).

Unlike the case examined in Section 4, stability does not necessarily imply e¢ -
ciency of prices. The next result characterizes informational e¢ ciency in presence
of higher order uncertainty.

Proposition 5. Let � < 1. Then, the price eventually reveals the state, i.e., no two
intervals [Pinf(!); Psup(!)] and [Pinf(!0); Psup(!0)] intersect, if and only if

� > 1�
inf
! 6=!0

j�(!)� �(!0)j

sup
! 6=!0

j�(!)� �(!0)j

�
1

�
� 1
�
. (19)

Proof. Let � < 1. Let also �(1) < � � � < �(
). Then, infw Pinf(w) = Pinf(1) =

�(1)=(1� �),
Pinf(!) =

(1� �)�
1� �

�(1)

1� �� +
�(!)

1� �� for ! > 1,

Psup(!) =
(1� �)�
1� �

�(
)

1� �� +
�(!)

1� �� for ! < 
,
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and supw Psup(w) = Psup(
) = �(
)=(1��). Since Pinf(!) < Pinf(!0) and Psup(!) <
Psup(!

0) for ! < !0, no two sets P (!) and P (!0) intersect if and only if Psup(!) �
Pinf(!

0) < 0 whenever ! < !0, or equivalently

� (1� �)
1� �

�(
)� �(1)
1� �� <

�(!0)� �(!)
1� ��

for every ! < !0. This inequality rewrites

� (1� �)
1� � <

inf!;!0 j�(!)� �(!0)j
�(
)� �(1) ,

which leads to the result.

The conditions for informational e¢ ciency have the same �avor as in the absence
of higher order uncertainty. Namely, informational e¢ ciency is favored by a large
proportion of informed agents � and a small forecast weight �.
From Condition (19), informational e¢ ciency becomes more likely when the term

inf
! 6=!0

j�(!)� �(!0)j

sup
! 6=!0

j�(!)� �(!0)j

is maximum. This happens when the spread between two successive �(!) is constant.
By (16), this corresponds to a situation where no two equilibrium prices are too
close. The possibility of an equilibrium price that strongly di¤ers from the others
deteriorates informational e¢ ciency.

5.2 Individual Heterogeneity

In the case of homogeneous agents, the in�uence of individual forecasts on the actual
price is the same for every agent. This section analyzes stability in presence of some
agents� heterogeneity. Let �I (!) and �U (!) be the forecast weights in state !,
respectively for an informed agent and an uninformed one. Hypothesis 1 becomes:
�I (!) > 0 and �U (!) > 0 for every !.
The actual price is then given by

p(!) = �I (!)

Z �

0

pei (!) di+ �U (!)

Z 1

�


X
w=1

�(w)pei (w)di+ � (!) , (20)
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which replaces (1). A REE of (20) is a vector (p� (1) ; :::; p� (
)) such that p(!) =
pei (!) = p

� (!) in (20) for any ! and any i.

The learning process is de�ned as previously. An initial price restriction P 0 (!) =�
P 0inf(!); P

0
sup(!)

�
in state ! is postulated. At step � , if it is CK that pei (!) 2

P � (!) =
�
P �inf(!); P

�
sup(!)

�
, then it is CK that the actual price p(!) belongs to

P �+1 (!) =
�
P �+1inf (!); P

�+1
sup (!)

�
, where P �+1inf (!) equals

�I (!)�P
�
inf(!) + �U (!) (1� �)


X
w=1

�(w)P �inf (w) + � (!) , (21)

and P �+1sup (!) equals

�I (!)�P
�
sup(!) + �U (!) (1� �)


X
w=1

�(w)P �sup (w) + � (!) . (22)

It follows that it is also CK that pei (!) 2 P �+1 (!) in state !. The REE is the
only limit point of this iterative process, i.e., P �inf(!) and P

�
sup(!) converges to p

�(!)

whenever these two sequences converge. The next result characterizes stability.

Proposition 6. Let �I (!) > 0 and �U (!) > 0 for any ! = 1; : : : ;
. If ��I (!) > 1
for some !, then the REE is unstable. If ��I (!) < 1 for every !, then the REE is
stable if and only if


X
w=1

� (w)
(1� �)�U (w)
1� ��I (w)

< 1. (23)

Proof. The REE is stable if and only if the spectral radius �(M) of the 
�
 matrix
M =��I + (1� �)�U� is less than 1, where �I and �U are two 
 � 
 diagonal
matrices whose !!th entry is �I(!) and �U(!), respectively. Let

Q (x; !) = ��I (!) + (1� �)�U (!)
1

x!


X
w=1

� (w)xw.

As in Proposition 1, the �rst part of Proposition 6 follows by appealing to the

� 1 vector x =("; :::; "; 1), where " > 0 is small enough. The last part follows by
appealing to the 
� 1 vector x whose !th component x! is

1

E

(1� �)�U (!)
1� ��I (!)

,
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with

E =

X
w=1

� (w)
(1� �)�U (w)
1� ��I (w)

.

The map (20) shows that a change dpe of every price forecast pei (!) implies a
change dp (!) = ((1� �)�U (!) + ��I (!)) dpe. A su¢ cient condition for stability
is that every (1� �)�U (!) + ��I (!) is less than 1. In this case, jdp (!)j < jdpej,
i.e., the actual price is not too sensitive to expectations. More generally, we have:

Corollary 7. Assume that �I (!) > 0 and �U (!) > 0 for any ! = 1; : : : ;
.

1. If �I (!) < 1 for any state !, then there exists �� < 1 such that stability
obtains if and only if � > ��. Furthermore, �� > 0 if and only if ��U > 1.

2. If, on the contrary, �I (!) > 1 for any state !, then there exists �
� < 1 such

that stability obtains if and only if � < ��. Furthermore, �� > 0 if and only if
��U < 1.

Proof. If � sup! �I(!) � 1, the REE is unstable. If � sup! �I(!) < 1, the REE is
stable if and only if (23) is met, i.e.

F (�) �

X
w=1

� (w)
(1� �)�U (w)
1� ��I (w)

< 1.

The function F (�) is continuous in � and F (0) = ��U . It is straightforward that,
if �I (!) < 1 for any !, then F 0 (�) < 0. It follows that F (�) < 1 if and only if
� > ��. Since F (1) = 0, �� < 1. Lastly, ��U > 1 if and only if �

� > 0. If, on the
contrary, �I (!) > 1 for any !, then F 0 (�) > 0. It follows that F (�) < 1 if and
only if � < ��. Since F (1= sup! �I(!)) = +1, �� < 1. Again, ��U < 1 if and only if
�� > 0.

These properties are quite intuitive. Stability obtains when there are many
informed agents if every �I (!) is less than 1. If, on the other hand, every �I (!) is
greater than 1, stability obtains when there are many uninformed agents, provided
that the actual price is not too sensitive to their forecasts (��U < 1). The intermediate
situation where some �I (!) are less than 1, and others are greater than 1, is more
intricate. It is studied Appendix 1. Stability is shown to be again favored by small
forecast weights, and a low proportion of informed agents.
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5.3 Sunspots

Consider a stochastic sunspot variable that can take � values (S = 1; : : : ;�) not cor-
related with fundamentals. Assume that its actual value is not known when agents
form their forecasts. Namely, every agent i observes a private signal si = 1; : : : ;�
imperfectly correlated with S. Conditionally to S, private signals are independently
and identically distributed across agents, and the probability Pr(si j S) that i ob-
serves si in sunspot event S is independent of i. Thus, in sunspot event S, there are
Pr(s j S) agents who observe signal s (s = 1; : : : ;�).
Suppose that all the agents expect the price pe(!; S) to arise if the state of

fundamentals is ! and the sunspot is S. In state (!; S), there are �Pr(s j S)
informed agents whose price forecast is

�X
S0=1

Pr(S 0 j s)pe(!; S 0)

for any s. There are also (1� �) Pr(s j S) uninformed agents who expect
�X

S0=1

Pr(S 0 j s)

X
w=1

� (w) pe (w; S 0) .

Let

�(S 0jS) =
�X
s=1

Pr(s j S) Pr(S 0 j s)

be the average probability (across agents) of sunspot S 0 if the actual sunspot is S.
The aggregate price forecast P e(!; S) expresses as

�X
S0=1

�(S 0jS)
"
�pe(!; S 0) + (1� �)


X
w=1

� (w) pe (w; S 0)

#
, (24)

and the actual price p(!; S), determined by (1) in state (!; S), is such that

p(!; S) = � (!)P e(!; S) + � (!) . (25)

A REE is a vector of
� prices (p�(1; 1); : : : ; p�(
;�)) such that pe (!; S) = p (!; S) =
p�(!; S) for every (!; S) in (24) and (25). When p�(!; S) is independent of S, the
REE is said to be �fundamental�; otherwise, the REE is a sunspot REE.

The following result gives the conditions for existence of sunspot REE.
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Proposition 8. There exist sunspot REE if and only if the fundamental REE is
unstable.

Proof. Let us rewrite conditions (25) in matrix form. To this aim, let p(S) be
the 
 � 1 vector whose !th component is p(!; S), and p be the 
� � 1 vector
(p(1); : : : ;p(�)). Let S be the ��� stochastic matrix whose SS 0th entry is �(S 0; S).
Then, withM de�ned in Proposition 1, a REE is a vector p such that

p = (M
 S)p+ 1� 
 �, (26)

where the symbol 
 stands for the Kronecker product. Let e(S) be the Sth eigen-
value of S, with e(S) 2 [�1; 1] since S is a stochastic matrix. Let �(!) be the !th
eigenvalue of M. Then, the 
� eigenvalues of M 
 S are e(S)�(!) for any pair
(!; S). If �(M) < 1, then all the eigenvalues ofM
S have moduli less than 1, and
so M 
 S � I2
 is invertible and there is a unique REE. If �(M) � 1, there exist
stochastic matrices such that e(S) = 1=�(M) for some S. In this case, the matrix
M
S has an eigenvalue equal to 1, and there are in�nitely many p solution to (26),
i.e. in�nitely many sunspot REE and the fundamental REE.

It is natural to wonder whether a sunspot REE can be stable. In presence of
the sunspot, the iterative process is modi�ed as follows. An initial price restric-
tion P 0 (!; S) =

�
P 0inf(!; S); P

0
sup(!; S)

�
in state (!; S) is assumed. At step � , if

it is CK that pei (!; S) 2 P � (!; S) =
�
P �inf(!; S); P

�
sup(!; S)

�
, then it is CK that

p(!; S) 2 P �+1 (!; S) =
�
P �+1inf (!; S); P

�+1
sup (!; S)

�
, where P �+1inf (!; S) and P

�+1
sup (!; S)

are respectively equal to

�(!)

�X
S0=1

�(S 0; S)

"
�P �inf(!; S

0) + (1� �)

X
w=1

� (w)P �inf(w; S
0)

#
+ � (!)

and

�(!)

�X
S0=1

�(S 0; S)

"
�P �sup(!; S

0) + (1� �)

X
w=1

� (w)P �sup(w; S
0)

#
+ � (!) .

It follows that it is also CK that pei (!; S) 2 P �+1 (!; S) in state (!; S). The REE
prices are the only limit points of this iterative process. The REE is stable when
the two sequences P �inf(!; S) and P

�
sup(!; S) converge. A Corollary of Proposition 8

is
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Corollary 9. No sunspot REE is stable.

Proof. The dynamics of the two sequences P �inf(!; S) and P
�
sup(!; S) is governed by

the 
��
� matrixM
S. Since the spectral radius ofM
S is � (M), a sunspot
REE is stable if and only if � (M) < 1. But then there is no sunspot REE (by
Proposition 8).

This result relies on the linear framework. In a nonlinear framework, locally
stable sunspot REE may exist. When one of these REE exhibits revealing prices,
local instability of the fundamental REE no longer prevents e¢ ciency of the price.
Extraneous uncertainty then ensures price e¢ ciency.
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Appendix 1

We have:

Corollary 10. Let inf! �I (!) < 1 < sup! �I (!).

1. If E�U < E�I�U ,
1 then there exists �� < 1= sup! �I(!) < 1 such that stability

obtains if and only if � < ��. �� > 0 if and only if E�U < 1.

2. If E�U � E�I�U and E�U � 1, then there exists ��, 0 < �� < 1= sup! �I(!) <
1, such that stability obtains if and only if � < ��.

3. If E�U � E�I�U and E�U > 1, then, (i) either the equilibrium is un-
stable for every �, (ii) or there are two values �� and �+ with 0 < �� <

�+ < 1= sup! �I(!) < 1 such that the equilibrium is stable if and only if
� 2 [��; �+]. Precisely, consider a vector (�I (1) ; :::; �I (
)). In the space IR
+
of the vectors (�U (1) ; :::; �U (
)), there is a neighborhood of the hyperplane
E�U = 1 such that case (i) (resp. (ii)) obtains when (�U (1) ; :::; �U (
)) is
outside (resp. inside) this neighborhood. In particular, case (i) obtains when
E�U > sup! �I(!)= (sup! �I(!)� 1).

Proof. We write F 0 (�) = Q+ �Q� where2

Q+ =
X

!=�I>1

��U
�I � 1

(1� ��I)
2 � 0;

Q� = �
X

!=�I<1

��U
�I � 1

(1� ��I)
2 � 0:

Q+ and Q� are both continuous, increasing and convex.
In the case E�U < E�U�I , (that is F

0 (0) > 0) given that (1� �x)�2 is increasing
in x for every given �, we have:

Q+ �
X
s=�I>1

��U
�I � 1
(1� �)2

;

Q� � �
X
s=�I<1

��U
�I � 1
(1� �)2

:

1E�I�U
def
=
P


w=1 � (w)�I (w)�U (w).
2We drop the index ! for simplicity.

23



It follows that F 0 (�) � F 0 (0) = (1� �)2 > 0, F is increasing and F
�

1
max�I

�
= +1

so that stability obtains i¤ � is below a certain threshold ��. Given that F (0) =
E�U , �

� > 0 i¤ E�U < 1. This proves the �rst point in the corollary.
In the case E�U > E�U�I , (that is F

0 (0) � 0), at a point where Q+ = Q�, we
have that

dQ+
d�

� 2
X
s=�I>1

��U
1

(1� �)
�I � 1

(1� ��I)
2 =

2Q+
(1� �) ;

dQ�
d�

� �2
X
s=�I<1

��U
1

(1� �)
�I � 1

(1� ��I)
2 =

2Q�
(1� �) ;

so that
dQ�
d�

� 2Q�
(1� �) =

2Q+
(1� �) �

dQ+
d�

;

i.e. Q+ crosses Q� from below at any intersection point. It follows that there is at
most one intersection point. Notice now that

Q+ (0) < Q� (0) and Q�

�
1

sup�I

�
< Q+

�
1

sup�I

�
= +1;

implying that there is exactly one intersection point (denoted �min > 0) between
Q+ and Q�. It follows that F (�) is decreasing i¤ � � �min and F (�) reaches a
minimum at �min . As a result, we have that, in the case F (�min) < 1, there exists
�� and �+ such that stability obtains i¤� 2 [��; �+], while in the case F (�min) > 1,
stability never obtains.
To prove the second point in the corollary, notice that �� = 0 i¤ E�U < 1. To

prove the third point, notice �rst that, for � in [0; 1= sup�I ]�
1� 1

sup�I

�
E�U < (1� �)E�U < F (�) .

Fix a vector (�I (1) ; :::; �I (
)). Consider a given vector �
1
U =

�
�1U (1) ; :::; �

1
U (
)

�
such that E�1U = 1, E�1U � E�1U�I . De�ne �U = ��1U with � � 1, and denote
F� = �F1. The value �min such that F 0� (�min) = 0 does not depend on �. F1 (�) < 1
in a non empty interval. As F� (�) increases in � and stability writes F� (�) < 1,
there is a value �max

�
�1U
�
such that F� (�) < 1 for some � i¤ � < �max

�
�1U
�
.

Consider now the set I =
n
�U=E�U < �max

�
1

E�U
�U

�o
. This a neighborhood of

the hyperplane E�U = 1 satisfying the third point.
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