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Introduction

The optimal management of an assets portfolio is dynamic by nature. This basic point was first
made by Mossin [1968], Merton [1969] and Samuelson [1969]. However, they concluded that,
under the commonly accepted assumptions of that time, the optimal assets allocation is myopic.
This means that the investment horizon is irrelevant, or that the optimal dynamic allocation is
equivalent to the static one. More generally, Merton [1973] has shown that variation in expected
returns over time may induce horizon effects. However, closed-form solutions to Merton’s
intertemporal model are difficult to find except in the case where the investor has log utility of
consumption, i.e., with unit constant relative risk aversion, which is a case of limited interest
since it implies that Merton’s model reduces to a static one. The lack of closed-form solutions
for constant (but not unit) relative risk aversion coefficient explains why so few empirical work
was devoted to the horizon effects until very recently. When assets returns are unpredictable,
myopia becomes optimal in the more general case of constant relative risk aversion. Increasing
the investment period raises both the expected final payoff and its volatility in such a way that
these two effects counterbalance each others perfectly under these conditions.

This question of optimal myopia is particularly crucial for financial intermediaries in charge
of the management of lifecycle saving programs. Most pension programs now take the form
of Defined Contribution plans, which means that most of the financial risk is borne by the
individuals contributing to the system. It implies that these financial intermediaries should
manage their financial reserves by taking into account the long-term objectives of their cus-
tomers, which is to accumulate enough wealth for their retirement. The European Union is
however considering a new regulation of the solvency of (life) insurance companies in which
their capital requirement would be based on the assets and liabilities risks measured on a
12-month basis. In this paper, we raise the question of whether this so-called ”Solvency 117
myopic rule is efficient from the viewpoint of the policyholders. If we accept the assumption
that relative risk aversion is constant,! the answer to this question relies on whether assets
returns are predictable or not.

Future assets returns are predictable if they are statistically related to some easily observ-
able variables that are referred to as predictors. Fama and French [1988], Poterba and Summers
[1988], Campbell [1996], Campbell, Lo and MacKinlay [1997], Barberis [2000], Cochrane [2001]
and many others estimated significant predictability of US stocks returns. In particular, there
is mean-reversion in stocks returns, in the sense that shocks in expected stocks returns are
negatively correlated with shocks to realized stocks returns. For example, Barberis [2000] used
a simple VAR setup for stocks returns with the dividend-price ratio as predictor. He showed
that the implied standard deviation of ten-year U.S. stocks returns is 23.7 percent, much
smaller than the 45.2 percent value implied by the standard deviation of monthly returns.
Using a more sophisticated VAR analysis of bills, bonds and stocks returns with three predic-

!Gollier and Zeckhauser [2002] examine this question when relative risk aversion is not constant.



tors, Campbell and Viceira [2002] showed that mean-reversion of U.S. stocks returns cuts their
standard deviation from 18% at a one-year horizon to 14% at a 25-year horizon.

Because mean-reversion implies that stocks are safer in the long run, the intuition suggests
that a long horizon agent should have a larger demand for stocks early in his investment period.
Campbell and Viceira [1999] and Barberis [2000] numerically estimated the sensitiveness of the
demand for stocks to the investment horizon. The hedging demand for stocks is surprisingly
large. For an agent with a relative risk aversion equaling 10 and a ten-year time horizon, the
optimal investment in stocks is about 40% of current wealth without predictability. It goes
up to 100% when mean-reversion is taken into account. This suggests that limiting the risk
measurement to 12-month as in the Solvency II reform would inefficiently bias the insurers’
assets portfolios towards bonds and bills. Given the large equity premium that has been
observed over the past century both in the United States and in Europe (Dimson, Marsh and
Staunton [2002]), this regulatory failure could have dramatic effects on the accumulated wealth
and welfare of future retirees.

Our contribution to this literature is twofold.

First, one important limitation to applying these ideas to make policy recommendations is
that this literature is entirely based on U.S. data. It is a priori not clear whether these findings
can be applied to other countries, as long as we don’t have a general theory that would explain
these serial correlations in assets returns. Our aim in this paper is to see whether the above-
mentioned findings made on U.S. markets can be extended to France. We use quarterly data
from 1970Q4 to 2006Q4 to perform a VAR analysis of real assets returns on French financial
markets. We use the following list of predictors to determine the intensity of predictability:
past real returns of stocks, bonds and bills, the nominal interest rate, the dividend-price ratio
and the spread of interest rates. We closely follows the analysis that was used by Campbell and
Viceira [2002], and we obtain very similar conclusions. Namely, stocks returns exhibit mean-
reversion, whereas the returns of portfolios of bonds held to maturity exhibit some degree of
mean-aversion. The intensity of mean-reversion of French stocks returns is stronger than the
one reported by Campbell and Viceira on U.S. data. More specifically, the annualized standard
deviation of French stocks returns goes down from 22% for a 1-year horizon to only 2.8% for
a 2b-year investment horizon.

Second, we depart from existing empirical work by providing 95% confidence intervals for
the various assets risks across horizons. They reveal that the risk associated with equities is
actually significantly higher than the one of other assets for short to medium term investment
horizons. For instance, it becomes statistically undistinguishable from the bonds risk only for
horizons longer than 11.5 years.

The paper is organized as follows. Section 1 shows how conditional second-order moments
of asset returns, i.e. their volatility, can be derived from a VAR setup. Section 2 describes
the data used for the VAR model estimation presented in Section 3. In Section 4, French
assets conditional volatilities are compared across investment horizons. The robustness of



these results is then checked in Section 5 while Section 6 concludes.

1 Asset returns predictability and horizon effects from a VAR
setup

A vector autoregressive (VAR) dynamics for U.S. asset returns is considered in e.g. Camp-
bell [1991], Campbell [1996], Barberis [2000] or Campbell and Viceira [2002].2 Beyond asset
returns predictability considerations, Campbell and Viceira [2002] analysis emphasizes how
well-suited the VAR framework is in order to evaluate investment horizon effects. Following
their approach, our empirical study allows an arbitrary set of traded assets and state variables.
More specifically, we consider a short-term interest rate together with excess stock returns and
excess bond returns. Let Ry, denote the ex post real short rate and ro, = log(Ry;) the log (or
continuously compounded) real return on this asset that is used as a benchmark to compute
excess returns on other asset classes. Then, with r; and ry; the log real stock return and the
log real bond return, let w¢; = rep — ro¢ and xp; = 1y — ro; denote the corresponding log excess
returns.

We retain the same VAR(1) system as in Campbell and Viceira [2002] and Campbell et al.
[2003]3:

zi = Do+ P1zp1 + vy (1)
where
ot
Zy = Xt (2)
St

is a m x 1 vector with x;, the n x 1 vector of log excess returns and s; the m —n —1 x 1 vector
of variables which have been identified as returns predictors in existing empirical analysis,
such as the nominal short rate, the dividend-price ratio and the yield spread between long-
term and short-term bonds. In equation (1), ®¢ is the m x 1 vector of intercepts and ®; is the
m X m matrix of slope coefficients. It is assumed that the roots of the characteristic polynomial
®(2) = I;, — Py 2 lie strictly outside the unit circle in absolute value, a condition which rules out
nonstationary or explosive behavior in z;. Finally, v; is the m x 1 vector of innovations in asset
returns and return forecasting variables, which is assumed to be i.7.d. normally distributed:

Vi NN(()?E’U)a (3)

*Under the assumption that asset returns are well described by such a VAR model, Campbell, Chan and
Viceira [2003] show how to obtain approximate solutions to the multiperiod portfolio choice model they propose.
In this model, the investor is infinitely-lived with Epstein-Zin utility and there are no borrowing or short-sales
constraints on asset allocation.

3As emphasized by these authors, the analysis below can be easily extended to more than one lag. How-
ever, the number of parameters in a VAR model increases exponentially with the number of lags, which may
significantly reduce the estimates precision.



where X, is the m X m covariance matrix.

As stressed in Campbell and Viceira [2004], the conditional k—period variance-covariance
matrix obtains straightforwardly from the VAR model estimates. First, cumulative k—period
log returns are obtained by adding one-period log returns over k successive periods. Then,
under the assumption that ¥, is constant over time?, the conditional k—period variance is
given by:

Varyzior + - +zipg) = So+ I +0)S, (I + @)
+(I+ P14+ 01D1)S, (I + D1+ &1P1) + - -
(I + @+ -+ O S, (I + By 4 -+ DY (4)

In order to extract the conditional moments of real returns from the VAR, we use the following
(n + 1) x m selection matrix:

M, = 1 01xn le(m—n—l)

inx1  Inxn Onx(m—n—l)

in (4). Then, dividing both sides by the horizon in order to annualize, we get:

1 (()kt+1 1

EVC”"t rf(: t)+1 = EMTVart(th + 4z M (5)
(
b

This approach will be applied to the French data described in the next section.

2 The French assets return data

The short term rate is the 3-month PIBOR rate, obtained from Datastream. The end-of-
quarter values from this monthly series are retained to get quarterly observations, and rg;
denotes the real ex post short term rate, i.e. the difference between the log return on the
3-month PIBOR and the log inflation rate. The inflation series is calculated from the monthly
Consumer Price Index series (source: INSEE) as 100 x (¢piy — cpiz—12)/cpis—12. The log yield
on this 3-month PIBOR is also used as the measure of the log short-term nominal interest
rates, rgf"

French data for equities prices and returns come from Morgan Stanley Capital International
(MSCI) database and are available since December 1969. More precisely, quarterly stock mar-
ket data are based on the monthly MSCI National Price and Gross Return Indices in local

currency. From these data, a quarterly stock total return series and a quarterly dividend series

“Time variation in ¥, could be incorporated in the model, but since the available empirical evidence suggests
that the persistence of changes in risk is quite low, this should not affect too much the conclusions regarding
long-term asset allocation.



are obtained following the methodology described in Campbell [1999]°. Note that we depart
from Campbell’s approach by not including the tax credits on dividends which are applicable
to France. Indeed, MSCI calculates returns from the perspective of US investors, so it ex-
cludes from its indices these tax credits which are available only to local investors. Campbell
chooses to add back the tax credits quite roughly, by applying the 1992 rate of 33.33% to
all the sample. Nevertheless, this rate hasn’t remained fixed over the sample considered here
(1970Q1—2006Q4). On top of this, the way dividends are taxed has also changed during that
period. We couldn’t find exact tax rate data for our sample, and guess that on average, the
French tax credits system has increased the nominal stock returns by around 40%. Since ap-
plying this coefficient to all the observations would be neutral as long as volatility is concerned,
we choose to work with data excluding tax credits. The quarterly log real return on the stock
index is denoted r¢; and defined as the difference between the log return on equities and the log
inflation rate. The log excess return on equities is then x¢; = rer — roi- The log dividend-price
ratio, denoted ldmp; is the log dividend less the log price index. Since the quarterly dividend
series is calculated from the monthly dividend payments over the past year, this series starts
in 1970Q4 ouly.

Regarding the bond market, the long term government bond yield is used as a proxy vari-
able. The monthly observations come from Datastream, and an end-of-quarter yield has been
computed by selecting the end-of-quarter values. Then, the long bond return is constructed
from this series using the loglinear approximation technique described in Chapter 14 of Camp-
bell et al. [1997]:

nom .
Tomtt1 =~ Dnttynt — (Dnt — DYn—1,¢+1

where n is the bond maturity, D, is the bond duration and Y;,; is the bond yield from which
the log bond yield obtains as y,; = log(1l + Yy,;). The duration at time ¢ is calculated as:

~ 1— (1 + Ynt)in
1-— (1 + Ynt)f]‘

Dnt

where n is set to 10 years. Following Campbell and Viceira [2002], we approximate yp—1 441
by ynt+1. The log real return on bonds, denoted 7y, is the difference between r;,”™ and the
log inflation. The log excess return on bonds is then xp; = rp; — 7o The log real returns on
PIBOR, bonds and equities are plotted in Figure 6, see Appendix.

Finally, the yield spread (spr;) is the difference between the 10-year Treasury bond yield
from Datastream and the 3-month PIBOR rate, again using end-of-quarter observations.

Table 1 reports sample means and standard deviations in annualized percentage points,
except for the dividend-price ratio. To annualize the raw quarterly data, means are multiplied
by 400 while standard deviations are multiplied by 200 since the latter increase with the square
root of the time interval in serially uncorrelated data. The mean log returns are adjusted by

5See also Campbell’s “Data Appendix for Asset Prices, Consumption and the Business Cycle”, March 1998,
downloadable from Campbell’s homepage.



adding one-half their variance so that they reflect mean gross returns. These statistics are
computed for the sample 1970Q4-2006Q4.

Table 1: Sample statistics for real asset log returns

mean standard deviation

ro 2.34 2.67
Te 6.94 23.03
Tp 0.73 3.39
rg°™  7.39 3.44
ldmp -4.95 0.56
spr 1.02 1.39

Remind that the stock return here does not include tax credits. When adding back, say, a
40% tax credit rate, the stock excess return would reach more than 10% per year. By contrast
the excess return of the 10-year Treasury bond is only 0.7%. Volatility is much higher for
stocks than for bonds (23.03% and 3.39% resp.).

ADF unit root tests are reported in Table 2. The deterministic component includes at most
a constant under the stationary alternative. The lag order of the ADF regression was selected
as the smallest one succeeding in eliminating residuals autocorrelation up to order 8. The unit

Table 2: ADF Unit Root Tests

nom

To T, Tp Ty ldmp spr

ADF stat -2.65 (1) -11.21 (0) -8.19 (0) -2.04 (1) -1.50 (0) -4.57 (1)
p-value 0.085 0.000 0.000 0.268 0.530 0.000

Number of autoregressive lags into parenthesis.

root null is strongly rejected for x., z, and spr, whereas it is rejected only at the 8.5% level
for ry and clearly not rejected for the dividend-price ratio and for the nominal short term rate.

3 The VAR model estimates

In the sequel, we will consider the same model as Campbell and Viceira [2002], i.e. z; =
(T0,t> Tets To e, TG s ldmpy, spry) in equation (1). The lag order of is set to one, according
to both Akaike, Schwartz and Hannan-Quinn information criteria. Moreover, the null of no
residuals autocorrelation up to order 8 is not rejected at the 23% level according to Box-Pierce
statistics.



Due to the stock market data, our sample is 1970Q4-2006Q4, i.e. 145 observations. The
VAR is thus estimated from 1971Q1 to 2006Q4. The results are reported in Table 3. The
first column reports the real 3-month rate equation. The lagged 3-month rate and the lagged
spread coefficients are significantly different from zero and hence help predicting the real 3-
month return. The second column refers to the real stock log return equation. This variable is
known to be hardly predictable, which is here confirmed by the R? value of 12%. Nevertheless,
the lagged bond log return and the lagged dividend-price ratio coefficients are significantly
different from zero. The third column shows that both lagged 3-month return, bond return
and yield spread help predicting the log bond return. The R? of this equation is 21%. The last
three columns reveal that the return forecasting variables are highly persistent, especially the
nominal short rate and the dividend-price ratio. In order to check for the VAR model stability,
we have computed the roots of its characteristic polynomial: it turns out that the modulus of
the largest root is lesser than one, with a value of 0.97. Hence the VAR apparently satisfies
the stability condition.

Table 4 reports standard deviations (multiplied by 100) of estimated residuals on the di-
agonal and their correlations off-diagonal.

The magnitude of real returns residuals standard deviations obtained here are somehow
similar to those obtained on quarterly data by Campbell et al. [2003] and Campbell and Viceira
[2005].% Indeed, these authors find 0.57, 8.06 and 2.69 for ¢, z. and x; respectively, to compare
with our values of 0.93, 11.41 and 3.09. The residuals cross-correlations are also quite similar to
those found by these authors, except for the log real short-term rate equation: contrary to their
results, we find that unexpected real short-term returns are negatively correlated with log bond
excess returns and yield spread innovations, and positively correlated with nominal short-term
rate innovations. Unexpected log excess stock returns are highly negatively correlated with
shocks to the log dividend-price ratio, and mildly positively correlated with unexpected log
excess bond returns and yield spread innovations. Finally, unexpected log excess bond returns
are negatively correlated with shocks to the nominal short-term rate and to a lesser extend
with shocks to real short-term returns. They are weakly positively correlated to yield spread
innovations.

The signs of these innovations cross-correlations may explain some results. As shown
by Stambaugh [1999], the small-sample bias in such regressions has the opposite sign to the
sign of the correlation between innovations in returns and innovations in predictive variables.
Hence, one may suspect that for the 3-month return equation, where the spread innovations
are negatively correlated with returns innovations, there is a positive small-sample bias which
may in turn explain some apparent predictability. On the contrary, the positive correlation
between bond return and yield spread innovations suggests that the predictability of bond
returns is not overstated in our sample. Regarding the log excess stock returns equation, the

SCampbell et al. [2003] use quarterly US data from 1952Q2 to 1999Q4 while Campbell and Viceira [2005]
extend the sample until 2002Q4.



Table 3: VAR estimation results

nom
To,t Te,t Th,t Tot

ldmpy spr

T0,t—1 0.923 0.828 0.394 -0.0434 -0.027 -0.032
(0.059)  (0.728) (0.197) (0.059) (0.008) (0.053)
[ 15.54] [1.14] [2.00] [-0.74] [-3.29] [-0.59]

Tet 1 0.005  -0.022  -0.027 0.004 -0.001  -0.002
(0.007)  (0.093) (0.025) (0.007) (0.001) (0.007)
[0.71]  [-024] [-1.06] [0.55] [-0.39] [-0.28]

Tot1 0.037 0.667 0.274 -0.085 -0.006 0.055
(0.027)  (0.332)  (0.090) (0.027) (0.004) (0.024)
[1.38]  [201] [3.04] [3.17] [-1.57] [2.26]

ey 0083  -1.037 -0.145 1.010 0.013  -0.006
(0.048)  (0.585)  (0.158) (0.047) (0.007) (0.043)
[1.75]  [-1.77]  [0.91] [21.41] [1.95] [-0.14]

ldmp—, ~ -0.629  8.805 1127 -0.323 0.850  0.188
(0.331)  (4.068) (1.101) (0.328) (0.046) (0.298)
[[1.90] [2.16] [1.02] [-0.98] [18.36] [0.63]

SPri_1 0.287 0844  0.829 0.219 -0.017 0.703
(0.075)  (0.926) (0.251) (0.075) (0.010) (0.068)
[3.81] [091] [3.31 [294] [-1.59] [10.36]

c -3.822 47.317 5378 -1.753 -0.757 1.304
(1.856) (22.769) (6.163) (1.836) (0.259) (1.669)
[2.06] [2.08] [0.87] [0.95 [-2.92] [0.78]

R-squared 0.88 0.12 0.21 0.93 0.95 0.65

Standard errors in ( ) and t-statistics in [ ].



Table 4: Standard deviations and correlations of residuals

nom

ro Te Tp ry ldmpy Spre

To 0.930 0.285 -0.432 0.731 0.109 -0.707

Te 11.409 0.288 -0.337 -0.799 0.234
Tp — 3.088 -0.698 -0.245 0.238
rge™ — — 0.920 0.248 -0.857
ldmp — — 0.130 -0.147
spr — — 0.836

predictability due to the log dividend-price ratio may be overstated due to the quite strong
negative correlation between stock returns and dividend-price ratio innovations.

4 Comparing French assets risk across investment horizons

The conditional k-period variance-covariance matrix of real returns is obtained from the
VAR(1) estimates according to equation (4). The conditional standard deviation of the cumu-
lative returns over investment horizon is divided by the square root of the horizon, so as to get
annualized values. The annualized percent standard deviations of real returns for investment
horizons up to 100 quarters, i.e. 25 years, are plotted in Figure 1.

25 T
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Equities

Long bond rolled

Bond held to maturity K
20

15+

Annualized standard deviation (%)

0 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Holding period, K (quarters)

Figure 1: Annualized percent standard deviations of real returns
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If returns were i.i.d., Siegel’s measure of risk, i.e., the standard deviation of annualized
returns, would be independent of the investment horizons. Hence, finding evidence that risk
does not scale with horizon in this way would tend to confirm the predictability of returns.
This is precisely the case here since the standard deviations plotted in Figure 1 depend on
the investment horizon. Stock returns appear less volatile at longer horizons than at shorter
ones. Hence, French stocks are mean-reverting. The same result is obtained for annual and
quarterly US data by Campbell and Viceira [2002], Campbell et al. [2003] and Campbell and
Viceira [2005]. However, French stock returns volatility decreases faster than its US analogue:
here, it drops from 22% to 11% within eight quarters whereas the US stock returns volatility
is divided by two after about 16 quarters. The initial steep decrease in French equities return
volatility is then followed by a gradual decline, and the volatility is 2.8% at the 100-quarter
horizon. By comparison, the US stock return volatility is still around 8% at this long horizon,
according to Campbell and Viceira [2005] results.

This finding is a direct consequence of our VAR analysis. The mean-reversion of stocks
return can be inferred from different channels. For example, we see in Table 3 that the au-
toregressive coeflicient of the excess return of stocks is negative. But we also see that the
dividend-price ratio is a good predictor of the future stocks return. Moreover, shocks to the
excess return and to the dividend-price ratio are strongly negatively correlated, as seen in
Table 4. It implies that a positive shock on the excess return of stocks yields a negative shock
on the dividend-price ratio, which in turn yields an downwards revision of the expectation of
future stocks returns.

Regarding bonds, two kinds of investment strategies are considered from the estimated
model. The long bond rolled strategy is the one implicitly assumed in long-term bond returns
time series: the maturity of the bond is held constant at, say, 10 years, buying a 10-year bond
each period and selling it next period so as to buy a new 10-year bond. The second strategy
consists in buying a bond and holding it until maturity. In this case, the standard deviation of
the real return is given by the standard deviation of cumulative inflation from time ¢ to time
t + K, since this nominal bond held to maturity is riskless in nominal terms.

As in Campbell and Viceira [2005], we find that the long bond rolled strategy is also
mean-reverting.” Starting from about 3% at short horizons, the long bond rolled real return
volatility is a little bit more than 1% at the 25-year horizon. Even though the long bond rolled
return volatility is always less than the one for stocks, the gap reduces to 1.8% at the 25-year
investment horizon. By contrast, the real returns on both PIBOR and the variable-maturity
bond are mean-averting. The volatility of the later becomes greater than the one of the PIBOR
after five quarters and than the one of the long bond rolled after ten quarters. Campbell and
Viceira [2005] reach the same conclusion, but for longer investment horizons. For instance, the
return on the variable-maturity bond becomes riskier than the long bond rolled from the 8-year
horizon on, while it becomes riskier than the stock return for horizons greater than thirty-two

"Using annual data, Campbell and Viceira [2002] find a mean-averting behavior for this return.

11



years. According to our data, the variable-maturity bond risk never exceeds the stock risk,
whatever the investment horizon considered. Finally, their study reveals that the return on
short term T-bills becomes riskier than the return on long bond rolled after around forty-five
years, whereas our findings from French data point to the same phenomenon for investment
horizons longer than eleven years only.

Overall, the stock real return is always riskier than the other assets considered here. For
horizons longer than two years and a half, the return volatility of variable-maturity bond
exceeds the ones of both the constant-maturity bond and the 3-month PIBOR. From the
twelve-year investment horizon on, the constant-maturity long bond becomes the less risky
asset. Nevertheless, the 3-month PIBOR (resp. stock) return excess volatility at the 25-year
horizon is less than 0.3% (resp. 1.84%) compared to the constant-maturity bond.

From the conditional variance-covariance matrix given in equation (5), it is straightfor-
ward to compute the correlations of the real returns at all horizons. Figure 2 shows that
the correlations of stocks return and both fixed and variable-maturity long bonds return are
hump-shaped at the short and medium horizons. These correlations are positive at all horizons.
At the one-quarter horizon, the correlation between stock and variable-maturity bond (resp.
fixed-maturity bond) returns is around 10% (resp. 21%). It then peaks at 60% (resp. 58%) at
the 5-year (resp. 4-year) horizon. At the 25-year horizon, the stock—variable-maturity bond
correlation is still 42%, whereas the stock—fixed-maturity bond correlation decreases to 16%.
This striking hump-shaped patterns are also present in Campbell and Viceira [2005]’s study.
The main discrepancy in our findings is that the correlation between stock and bond held to
maturity returns remains positive at all horizons, even for the 50-year horizon, while Campbell
and Viceira [2005] find that this correlation becomes negative after 45 years. Accordingly,
they claim that stocks are able to hedge inflation risk in the very long term. This feature
is not shared by French data. However, as stressed by these authors, the very long horizons
predictions of the model must be cautiously interpreted because of the size of the sample.

5 Robustness analysis

The conclusions drawn above rely entirely on the VAR(1) model estimates reported in Tables
3 and 4. We propose to check their robustness along three dimensions. Firstly, we will extend
the methodology proposed in Campbell and Viceira [2002] by taking the standard errors of @y,
®; and X, OLS estimates into account. Secondly, the stability of the coefficients estimates will
be checked using the structural break analysis developed by Bai, Lumsdaine and Stock [1998].
Indeed, the Sup test developed by these authors allows to test the null of VAR parameters
stability against the alternative of a structural change at unknown date. Thirdly, since the
unit root hypothesis cannot be rejected at reasonable levels for the log nominal short-term rate
and the log dividend-price ratio according to the univariate Augmented Dickey-Fuller tests,
these variables will be removed from the information set.

12
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Figure 2: Correlations of real returns implied by VAR(1) estimates

5.1 Bootstrapped confidence intervals for the curves of annualized standard
deviation

Rather surprisingly, the confidence intervals of the annualized standard deviation curves are
neither reported nor commented in existing empirical work. Yet, since the OLS estimates of
®y, ¢, and X, have of course a non-zero variance-covariance matrix, i.e. are measured with
uncertainty, nothing ensures a priori that the difference between the curves in e.g. figure 1 is
statistically significant.

In order to check this, the parametric residual bootstrap method described in e.g. Hansen
and Seo [2002] is used. From the model given by equation (1), assuming that vy is i.i.d. from an
unknown distribution, and for fixed initial conditions on z;, the bootstrap distribution may be
calculated by simulation. Random draws are made from the estimated residuals vector vy and
then the simulated vector series z; are computed by recursion given model (1). 10,000 vector
series z; are created, with the same length as the sample size. The initial condition is set to
the actual value. For each simulated z;, AS, 6{ and 63 are obtained from the OLS estimation
of equation (1). From these matrices, the corresponding annualized standard deviations of
simulated real returns are computed. For each kind of assets, figure 3 below reports the mean
of the annualized standard deviations obtained from the 10,000 drawings (solid line), as well
as the 5% and 95% associated quantiles (dashed lines). This figure reveals that once their 95%
confidence intervals are taken into account, the risks corresponding to the short rate, the long
bond rolled and the bond held to maturity are not significantly different from each other after

13



©
w
o

5%—quantile 5%—quantile
Pibor 3—month Equities i
95%-—quantile 95%—quantile

N
(&)

N
o

Annualized standard deviation (%
N

Annualized standard deviation (%)
P
o

; 10}

21

5l
0 0
[¢] 20 40 60 80 100 0 20 40 60 80 100
Holding period, K (quarters) Holding period, K (quarters)
8 5
5%—quantile 5%—quantile
= Long bond rolled = Bond held to maturity K
= 95%~—quantile T 4r 95%—quantile 1
S 6 S
k=S k<4
> >
3 3
s ] E
= =
2 %
5 2f ] 5
< <
(0]
(0] 20 40 60 80 100 o 20 40 60 80 100

Holding period, K (quarters) Holding period, K (quarters)

Figure 3: 95% Confidence Intervals for risks across horizons

the one-year horizon. Indeed, their confidence intervals intersect very quickly. Moreover, since
the short term rate risk confidence interval is relatively large, it crosses the one of equities at
the 6.5 years horizon (see figure 7 in Appendix, which gathers the four confidence intervals).
From that horizon on, equities risk is not significantly higher than the one of the short term
bills. The same conclusion holds for the equities risk compared to the long bond rolled after
11.5 years and to the bond held to maturity after 15.5 years.

5.2 Stability analysis

The liberalization of the French financial markets in the mid-eighties may have affected the
returns dynamics over, say, the second half of our sample. If it were actually the case, then
our conclusions would be biased since the VAR model given in equation (1) does not allow for
a structural change. In order to allow for a general structural change at time 7 = T'A, with
A € (0,1), the VAR model can be generalized as follows:

zZr = q)o + @1zt,1 + D(t > T)(Fo + I‘lztfl) + ug, (6)

where I'g and ['; are respectively m x 1 and m X m matrices, u; is the m x 1 vector of innovations
assumed to be i.i.d. with E(uu}) = X,. D(t > 7) is a dummy variable such that D(t > 7) =0
for t <7 and D(t > 7) =1 for ¢ > 7. Under the null hypothesis that no break occurs, model
(6) reduces to the VAR given in equation (1):

zp = Qo+ P1z4—1 + vy

14



with E(v,v;) = X,. Hence, the null hypothesis of no structural break at time 7 corresponds to:
Ho H Fo = 0m><1 and Fl = Ome. (7)

If the break point 7 were known, then standard likelihood ratio (LR), Lagrange Multiplier
(LM) or Wald (W) test statistics could be used to test Hy. If 7 is unknown, the difficulty is
that there is no estimate of 7 under the null hypothesis: 7 is a nuisance parameter under the
null. The parameters p; and B are also unidentified nuisance parameters under Hy. With
7 unknown, we will follow the common practice initiated by Davies [1987] which consists in
using sup tests of the type:

SupLR(t) = sup  LRp(7) (8)

TE[Tinf Tsup]
where 7,5 corresponds to the initial fraction of the full sample 1" which is trimmed, in practice
often set to 0.157" as suggested by Andrews [1993] and 7y, = (1—17;,7)T. In our case, since the
sample length is 145 and the number of parameters is 42, the trimming parameter is chosen so
as to leave 42 observations before the first break date 7;,; and after the last break date 7syp.

Moreover,
LRy (1) = (T — ne)(log det(2,) — log det(X(7))) 9)

where n, denotes the number of constrained coefficients involved by assumption (7). Note
that the LR statistics depends on 7 through the estimate of the variance-covariance matrix of
residuals under the alternative (6). Equivalently, one could define SupLM and SupW statistics.
As can be shown from Andrews [1993] and Bai et al. [1998], the asymptotic null distribution
of SupLR()) is free of nuisance parameter. Hence, the critical values for the test statistics can
be tabulated. However, as the empirical use of it will involve a finite number of observations,
we will rather use a residual bootstrap method calculated by simulation. For given initial
conditions, random draws are made from the residual vectors under the null. From these
bootstrap residuals, one can create a simulated sample of series using model (1), and for each
sample, calculate the corresponding SupL R statistic. The bootstrap p-value then obtains as
the percentage of simulated statistics which exceed the actual statistics.®

For a set of break dates ranging from 1981Q1 to 1996Q4, the SupLR statistic is 68.80, and
its bootstrapped p-value — computed from 5000 replications — is 52.74%. Consequently, the
null of parameters stability cannot be rejected for our VAR(1) model.

5.3 Change in the information set

As stressed earlier, the estimation results given in Tables 3 and 4 must be cautiously considered
since the univariate unit root tests do not reject the null hypothesis for the log nominal short-
term rate and for the log dividend-price ratio. Even though the largest root of the VAR(1)

8A detailed description of the method can be found in e.g. Hansen [1996] or Hansen and Seo [2002].
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characteristic polynomial is lesser than one, it is still very close to unity with a value of 0.97.
Johansen’s cointegration rank test further confirms that this value may not be significantly
different from unity.”

Therefore, we propose to check the robustness of our conclusions in two ways: i) by sub-
stituting the first differences to the levels of these variables, and i) by excluding these two
variables from the analysis. These two alternative models lead to the same results regarding
the conditional moments of the various assets across investment horizons. Indeed, the first
differences of the nominal short rate and of the dividend-price ratio do not help predicting
the real returns (see Table 7 in appendix). Hence, excluding them from the information set
does not affect the conclusions. Consequently, we will ouly report the results obtained from
the 4-dimensional vector z; = (roy, Zet, Toyt, spre). The VAR estimates are reported in Table
5. Again, the information criteria point to a lag length of one and the Box-Pierce statistics

Table 5: VAR estimation results for z;

To,t Tet Lt Spre

ro4_1 1.013  -0441 0.232  -0.059
(0.035)  (0.437) (0.117) (0.032)
[28.57] [-1.01] [1.99] [-1.86]

Te—1 0.009 -0.0791 -0.034  -0.003
(0.007)  (0.090) (0.024) (0.006)
[1.28] [-0.87] [1.41] [-0.48]

Toi—1 0.046 0.762 0.289  0.053
(0.026) (0.324) (0.086) (0.023)
[-1.77]  [2.35] [3.34] [2.28]

Spri_1 0.277 0.897 0.844 0.693
(0.074)  (0.908) (0.243) (0.066)
[3.75]  [0.99] [3.45] [10.55]

c 0279 -1.171  -0.928  0.404
(0.155)  (1.909) (0.510) (0.138)
[-1.80] [0.61] [1.82] [2.93]

R-squared 0.88 0.09 0.20 0.65

Standard errors in () and t-statistics in [ ].

9The trace test concludes to four cointegration relations at most, at the 10% level, hence indicating two
common trends.
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does not reject the null of no residuals autocorrelation up to order 8. This VAR model in
z; is thus estimated using the same sample as the VAR in z;, namely 1971Q1- 2006Q4. The
largest root of the characteristic polynomial is now 0.94 in absolute value and Johansen’s trace
test allows to conclude that the cointegration rank is four at the 7% level, hence confirming
the stationarity of z;. The estimated equations of the four remaining variables are basically
unchanged compared to the 6-variable system, except of course for the influence of the log
dividend-price ratio on the log stock real excess return which is now neglected.

Table 6 reports standard deviations (multiplied by 100) of estimated residuals on the diag-
onal and their correlations off-diagonal. They are very similar to the ones obtained from the
6-variable model. The only change concerns the sign of the correlation between stock and real
short rate returns innovations which is now negative. This should not affect the result that
much since the short-term real rate does not help predicting the excess stock return. Since

Table 6: Standard deviations and correlations of residuals

T'o Le L Spr

To 0.935 -0.305 -0.439 -0.703

Te — 11.520 0.298  0.240
Tp — — 3.078 0.241
spr — — — 0.833

the nominal short rate has been excluded from this model, the inflation rate dynamics cannot
be recovered from the system. Consequently, it is now impossible to compute the conditional
moments of the variable-maturity bond strategy. The annualized standard deviations of the
real returns on the three remaining assets are reported in Figure 4. The pattern of the stock
real return volatility is very similar to one obtained in the previous section: the standard devi-
ation reaches 22.5% at the one-quarter horizon, then sharply decreases and is divided by two
after 10 quarters. This volatility then slowly decreases and is only 4% at the 25-year horizon.
Compared to the 6-variable model, the patterns of long bond and 3-month PIBOR real re-
turns volatilities remain largely unchanged up to the 6-year horizon. Afterwards, the log long
bond return volatility stays approximately 0.5% above the log 3-month real rate and at the
25-year horizon, their respective values are 1.92% and 1.56%. So, in this 4-variable model, the
three curves do not intersect each other: at all horizons, the equities return is riskier than the
long bond return which in turn is riskier than the 3-month PIBOR rate. However, as can be
seen from Figure 4, the volatility differentials strongly decrease with the investment horizon,
as in the previous model. The most striking discrepancy between the two models appears in
the conditional correlations between stocks and long bond real returns — see Figure 5. From
the four-variable model, it is always increasing with the investment horizon. Starting with a
correlation of around 22% at the one-quarter horizon, similarly to the six-variable model, it
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sharply increases to reach 50% at the 6-year horizon and then slowly raises until it stabilizes
around 59% at the 25-year horizon.

6 Concluding remarks

The aim of this paper was to assess French assets returns predictability within a VAR setup.
Using quarterly data from 1970Q4 to 2006Q4, it turns out that bonds, equities and bills returns
are actually predictable, at least to some extend. This feature has important consequences in
terms of multiperiod portfolio choice. It implies that the investment horizon does indeed
matter in the asset allocation. Following the approach developed by Campbell and Viceira
[2002], the VAR parameters estimates are used to compute real returns conditional moments
of order two. From a six-variable VAR model similar to the one estimated by these authors,
we find the same kind of horizon effect for French data as they do using quarterly U.S. data.

In particular, French stock market return is mean-reverting: its volatility quickly decreases
as the holding period increases, even though stocks remain the riskiest asset for all horizons.
Furthermore, the relative magnitude of the four kinds of assets considered here changes with
the investment horizon. At the one-quarter horizon, stocks are riskier than constant-maturity
bonds, which themselves are riskier than 3-month bills, which in turn are riskier than variable-
maturity bonds. For horizons longer than fourteen years, variable-maturity bonds volatility
becomes very close to the one of stocks: the volatility gap between these two assets is around
0.5% only. For these long horizons, constant-maturity bonds and PIBOR volatilities are almost
identical: 1.32% for the latter and 1.05% for the former, at the 25-year horizon.

Compared to Campbell and Viceira [2002] and Campbell and Viceira [2005] results, French
stocks returns seem more strongly mean-reverting than their US analogues. As a result, French
stocks volatility is a little bit lesser than 3% at the 25-year horizon whereas US stocks volatility
is still around 8% at the same horizon. It is also worth noting that the 25-year horizon volatility
of the four French assets considered here ranks from 1% to 3%. By contrast, their US analogues
lie between 3% and 8%. Regarding the conditional correlation between assets across investment
horizons, French data reveal the same kind of patterns as the ones found by Campbell and
Viceira [2005], namely an increasing correlation at the short and medium horizons.

Finally, our main conclusions seem rather robust to changes in the information set. To
sum up, they suggest that long-horizon investors may well overstate the share of bonds in their
portfolio choice when neglecting the horizon effect on risk of asset returns predictability.
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Table 7: VAR estimation results for z

0t Tet Tp ¢ Ar(’}";m Aldmp; Spr
ro,t—1 1.032 -0.647 0.243 0.000 -0.006 -0.069
(0.036)  (0.457)  (0.122) (0.000) (0.005) (0.032)
[2855] [142] [1.99] [035 [115]  [-2.14]
Tet—1 0.026 -0.262 -0.027 0.000 0.000 -0.013
(0.012)  (0.147)  (0.039) (0.000) (0.002) (0.010)
[2.20] [-1.78]  [0.68] [1.31] [0.05  [1.21]
Tpt—1 -0.015 0.727 0.212  -0.000 -0.006 0.021
(0.029) (0.370)  (0.099) (0.000) (0.004) (0.026)
[0.53]  [1.96] [2.14] [142] [-1.44]  [0.80]
Argom, 18377  -4204 -54132 0.263  0.181  -20.312
(9.671) (122.22) (32.60) (0.09)  (1.44)  (8.63)
[ 1.90] [-0.03] [-1.66] [ 2.76] [0.12] [-2.35]
Aldmp;_, 1.592 -19.385 1.200 0.007 -0.053 -0.840
(0.974)  (12.306) (3.283) (0.010) (0.145) (0.868)
[ 1.63] [-1.57] [0.36] [0.75] [-0.36] [-0.97]
Spri—1 0.289 0.840 0.820 0.002 -0.014 0.682
(0.072)  (0.913) (0.244) (0.001) (0.011) (0.064)
[ 3.99] [ 0.92] [3.36] [3.53] [-1.33] [ 10.58]
c -0.323 -0.795 -0.878 -0.002 0.030 0.439
(0.153)  (1.936) (0.516) (0.001) (0.023) (0.137)
[2.11]  [041] [L70] [167] [133]  [3.21]
R-squared 0.89 0.10 0.22 0.17 0.05 0.67

Standard errors in () and t-statistics in [ ].
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