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Abstract

Non-recurrent congestion in transportation networks occurs as a consequence of stochas-
tic factors affecting demand and supply. Intelligent Transportation Systems such as Ad-
vanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems
(ATMS) are designed in order to reduce the impacts of non-recurrent congestion by pro-
viding information to a fraction of users or by controlling the variability of traffic flows.
For these reasons, the design of ATIS and ATMS requires reliable forecast of non-recurrent
congestion. This paper proposes a new method to measure the impacts of non-recurrent con-
gestion on travel costs by taking risk aversion into account. The traffic model is based on the
dynamic traffic simulations model METROPOLIS. Incidents are generated randomly by re-
ducing the capacity of the network. Users can instantaneously adapt to the unexpected travel
conditions or can also change their behavior via a day-to-day adjustment process. Compar-
isons with incident-free simulations provide a benchmark for potential travel time savings
that can be brought in by a state-of-the-art information system. We measure the impact of
variable travel conditions by describing the willingness to pay to avoid risky or unreliable
journeys. Indeed, for risk averse drivers, any uncertainty corresponds to a utility loss. This
utility loss is computed for several levels of network disruption. The main results of the
paper is that the utility loss due to uncertainty is of the same order of magnitude as the total
travel costs.



1 Introduction

A potential benefit of Advanced Traveler Information Systems (ATIS) is the reduction of unex-
pected traffic delays. The travel time for a given journey often exhibits variability due to various
sources of stochasticity. The travel demand may vary from one day to the next because of the
rhythms of human activities (e.g. sport events, week-end and holiday departures) but also be-
cause the capacity of the infrastructure undergoes changes that are partially unpredictable (e.g.
road repairs, weather conditions and accidents). The term non-recurrent congestion is often used
to describe various types of unexpected delays. Although it is difficult to find an accurate defini-
tion for this concept in the literature, empirical studies such as (11; 12) and more recently (9; 19)
point out that non-recurring traffic conditions are responsible for a large share of congestion in
metropolitan areas (the figures vary from 15% to 60%). The primary goal of this paper is to
measure non-recurrent congestion by a dynamic traffic assignment simulator - METROPOLIS,
and check whether the values pointed out by the empirical studies lead to situations where ATIS
would be efficient at reducing congestion. The key idea is that drivers are risk averse so that travel
time variability induces a psychological cost to travelers that can be given a dollar measure as
explained later on in the paper. One could define recurrent congestion as the travel delays caused
by the fact that the (stationary) demand for mobility exceeds the available capacity of the trans-
portation system. However, the demand for mobility is itself defined for a given transportation
system that in reality undergoes exogenous shocks (e.g. weather) but also endogenous shocks
(e.g. accidents) which depend on demand and supply in a complex way. We adopt here the same
assumptions as that of (7): in a simulation environment, exogenous and endogenous shocks can-
not be distinguished and are generated in a similar way. By doing so, the distinction between
recurrent and non-recurrent congestion is easier since travel times can be compared between
shock and shock-free simulations. Identifying the location of recurrent and non-recurrent con-
gestion is often ambiguous because they influence each other mutually. Indeed, if some incidents
are well-known to occur frequently at about the same location and under given traffic conditions
(e.g. delivery trucks blocking a particular urban street), users may anticipate the corresponding
delays and select another itinerary from the start, thereby causing congestion elsewhere on a reg-
ular basis. Conversely, non-recurrent congestion can also be induced by recurrent congestion.
For instance, the probability of an accident on a road might increase with its traffic load.

One could argue that the frequent occurrence of an incident does not qualify it as a non-recurrent
or unexpected shock. For these reasons, any evaluation done by simulation should include (a)
sensitivity analysis based on varying the probability distribution of incidents and (b) measure-
ments of the travel time delays at the metropolitan level as opposed to local measurements re-
stricted to a subset of the network (e.g. corridors or motorways).

Travelers react to recurrent congestion by departing at a time and on a route that take into account
their own schedule constraints and their willingness to incur congestion delays. This implies
often a trade-off between facing long travel times and arriving close to a desired arrival time.
Travelers react also to non-recurrent delays by altering their pre-trip decisions such as mode,
departure time and route but they can also divert en-route from their planned route and alter their
destination. Obviously, a broad panel of reactions are possible, depending on their expectations



about the level of service of the transportation system. The building of the users’ expectations
is a day-to-day dynamic process where the presence of ATIS can play a role. However, even
without any ATIS, travelers are likely to learn about the stochastic nature of the failures of the
network if external shocks are applied to the system on a random but regular basis. For instance,
if drivers tend to double park on an urban arterial, it leads to undue congestion, and despite the
stochastic nature of the situation, travelers taking that route are wary of the situation and may
decide to change their itinerary. It has been reported in (18) that “travelers appear to have an
intuition about which trips are highly variable and thus where information acquisition would be
of greatest value”. This internalized information about network reliability reduces considerably
the potential benefit of an ATIS system on the long run: if drivers start to be used to random
incidents occurring at given locations with certain probabilities, they will adapt by changing
their travel behavior. Consequently they would need less severely external information systems
since they could rely on their own experience. Conversely, tourists or occasional drivers would
still benefit from the provision of external information. Our first set of simulations alongside
measuring non-recurrent congestion and proving the short-term efficiency of ATIS, will also
show that the long-term efficiency of ATIS is indeed small if travel time reduction is the only
objective.

However, travel time savings are not the only benefit of ATIS: the same report (18) shows that car
drivers are also willing to reduce the uncertainty of their journey. A recent empirical study (16)
underlined the importance of the reliability of the predicted travel times. For instance, drivers
knowing beforehand that they will arrive late for a meeting can call up their secretary and post-
pone it. The users’ behavior with regard to unreliable travel times depends on their attitude
toward risk. Although the reduction of uncertainty has been widely accepted as a potential bene-
fit of ATIS in the literature, risk aversion is still absent from operational transportation models. A
formulation for analytical DTA has been proposed by (13). Similarly, measuring the cost of un-
certainty itself in a given transportation system subject to stochasticity would give a meaningful
benchmark of the maximum benefit that ATIS can achieve at reducing uncertainty. Preliminary
work in that direction has been carried out by (17) in the context of mean-variance and without
explanatory variables (see Section 2). Empirical works by (2) have shown that the Value Of Re-
liability (VOR) can be as important as the Value Of Time (VOT). Our second set of simulations
propose to measure the cost of uncertainty in a framework compatible with micro-economic the-
ory and, more specifically, with expected utility theory. For that purpose, the concept of risk
aversion is introduced in the simulations to model the impact of travel time reliability on gener-
alized user cost. We show that, even for reasonable levels of severity of the incidents, the cost of
uncertainty can be of the same order of magnitude as that of the travel cost.

The remainder of this paper is organized as follows: first, risk aversion is introduced along with
the methodology to measure the utility loss due to uncertainty; second, the simulation frame-
work is explained, in particular the day-to-day dynamics and how incidents are generated; lastly,
numerical results are provided on realistic examples.



2 Measuring the cost of uncertainty

The most widely used model to capture risk behavior in Economics is that of expected utility
theory (14). It relies on two separate assumptions. Firstly, it assumes that preferences can be
described by a utility function that is known to the modeler. Secondly, it assumes that the attitude
toward risk can be rationalized by an expected utility function. This latter function depends on
a parameter 6 referred to as the risk aversion. In this paper, travelers are assumed to be mostly
risk averse (i.e. to have a positive degree of risk aversion 6 > 0). Therefore, the variability of the
driving conditions corresponds to a loss of utility. Different expected utility function have been
proposed in the literature. The Constant Absolute Risk Aversion (CARA) utility function is used
here. The utility of a journey started at time ¢ with travel time 7 is given by:

1— 697’(15)
-
where 6 denotes the coefficient of absolute risk aversion which is constant in the case of the
CARA utility. The limit case § — 0 corresponds to the risk neutral individual with U (7 (t)) =
—7 (t). We only consider the day-to-day variability of 7 for a given O-D pair and for a given
departure time ¢. For the sake of simplicity we drop the time-dependent index ¢ as well as O — D
dependencies . The variability is described by a probability distribution f (7). Travel times are
assumed to be stochastic during a time period 7" that spans several days. The support of f ()
over T is denoted by €2r. According to the theory developed by (20), the expected utility of an

individual who departs from O to D at time ¢, in the case of the CARA utility function, is given
by:

Uy (7 (1)) (1)

1 1
E{U@} = 5 — 5 0 eeTf (7') dr

while the utility of the expected travel time is given by:

e
Us () = 5 —

where (7) is the expected travel time:
(r)=E{r}= [ rf(r)dr.
Qr

For instance, if we have a lottery two equally likely outcomes 71 and 7 , we have F {Uy} = % —

2—1@ {6671 + 6972} while the utility of the expected travel time is % (1 — eg(ﬁ”?)). The latter utility
is not stochastic and certain to happen (if the user prefers that situation to the lottery), and hence
we call it the risk-free choice in our context. For risk averse users § > 0 and Uy ((7)) > E{Uy}
by Jensen’s inequality. Therefore, the risk-free solution is always more attractive. The travel

time compensation Y is introduced to measure the discrepancy between the stochastic and the
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risk-free situations (the concept is reminiscent of the risk premium as introduced in the finance
literature). It is defined as the amount of additional time that a user would be willing to spend
in order to reduce the utility loss caused by uncertainty. That is, the travelers are indifferent
between a stochastic system described by f (7) (with an average travel time (7)) or a risk-free
system with an average travel time x + (7). Therefore,

Us (1) +x) = E{Us} ,

and
S = [y () ar,
Qr

and

X:;ln{/QTeeTf(T)dT}—@'). (2)

So far we have considered that the utility was only dependent on the travel time 7 (¢). In practice
it is often desirable to use a travel cost specification C' (¢) that depends on other components:
boarding costs, access and egress costs, schedule delay costs, etc. In that case, the monetarization
of the utility loss can be computed using eq. (2) by replacing 7 by C, x and §~! have then the
dimension of money. A meaningful dimensionless parameter to measure the relative impact is

¢ = & Where (C) is the average travel cost.

3 Simulation of non-recurrent congestion

So far, nothing has been assumed concerning the probability distribution of travel times (or travel
costs) f (7). We propose to compute f (7) by performing explicit Monte-Carlo simulations
where the stochasticity is induced by random incidents. The incidents disrupt the capacities of
the simulated road network. The corresponding travel time delays are computed using state-of-
the-art mesoscopic traffic with METROPOLIS (4; 5).

3.1 Traffic simulation

As it can be seen in the existing literature, the value of information systems is usually measured
by modeling the information systems themselves via simulation, and comparing it with a base
case. We use a new approach of modeling a simulation without an explicit information system,
but a departure time feedback, and historical and instantaneous information available to the
users. This is explained in the following sections.



3.2 Information-based traffic simulation

METROPOLIS is a simulation tool intended to be a fully dynamic model that features within-
day as well as day-to-day traffic dynamics. Some of its features are summarized below that
are relevant to our current study. Traffic models have usually two main components: (a) a sup-
ply model that describes how the traffic conditions evolve in the road network given the users’
driving choices and (b) a demand model that describes the users’ behavior given their driving
environment and other drivers’ decisions. When the description is time-dependent, the supply
model is often a DTA (Dynamic Traffic Assignment) model. The architecture of METROPOLIS
considers information as a third component of transportation models (see Fig. 1). Information
means, in the broad sense, any piece of knowledge that can play a role in the users’ travel de-
cisions: experienced travel times, shortest routes, congestion levels on downstream links, etc.
Information is user specific since it corresponds to the users’ perception of traffic conditions. For
the supply side, the mesoscopic level of details assumes that congestion is described by functions
that depend on aggregate variables such as density and flow. The congestion is located on links
and all the data about the network state is embedded in the information block. Some external
information can also take place in that block, like information provided by ATIS devices, radio
broadcast or other technologies (though this is not yet implemented). In turn, users are assumed
to be disaggregated and make use of the available information (which can be user specific) to per-
form their travel decisions. The supply consists of the coded car network: zones, intersections
and links. Both supply and demand data interact in the simulator that computes sequentially the
mode choice, the departure time choice and eventually, the route choice for each simulated user.
Destination choice is not yet implemented.

The traffic assignment procedure uses an event-based approach. As the traffic simulator pro-
ceeds, the within-day time evolves. Supply outputs are collected as dynamic level of services:
time-dependent travel times and time-dependent traffic flow patterns on each road section. On
the demand side, actual users choices are collected: departure time, route and mode taken. These
results may be aggregated to compute Measures Of Effectiveness (MOEs) or performance in-
dexes. When the simulation of the considered period (e.g. morning peak) is over, the learning
process uses these results to update the historical information. The learning process corresponds
to the day-to-day dynamics. The departure time model and the mesoscopic DTA are responsible
for the within-day dynamics. In absence of exogenous incidents, the system converges toward a
stationary state. Indeed, users improve continuously their knowledge of the traffic condition. At
some point, they will not be able to improve anymore their travel choices in order to minimize
their generalized travel cost. The simulator computes a generalization of Wardrop’s first princi-
ple: at equilibrium, no user can strictly decrease his generalized travel cost by changing either
his mode, his departure time or his route.

3.3 Learning process

The learning process can be seen as a black box that models day-to-day dynamics: it captures the
fact that users take into account their past driving experiences in future travel decisions. The data
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processed here is the information that must be understood in a broad sense. It groups together
historical drivers’ information and instantaneous information. It consists of any data relevant to
user travel choices, like data required to estimate time-dependent shortest routes, but also the
expected variability of travel times under non-recurrent situations or data relevant to road tolls.

Input Historical information denotes the accumulated knowledge that users gain from
using the transportation system days after days. Should traffic conditions never change
(which is never the case in real life), this historical information would reach a stationary
state and remain constant in a well behaved model. Instantaneous information refers to
what each user may learn during the within-day simulation: perception of actual traffic
conditions, forecasts or exogenously simulated information provided to the drivers, etc.
Instantaneous information is continuously updated as the dynamic assignment proceeds,
while historical information is only updated daily. Information is partially shared among
the drivers (public information) and partially specific to individual drivers (private infor-
mation). Information determines all the travel choices modeled in the simulator: Mode,
departure time and route choices. The flexibility of this information handling allows, for
instance, to provide different users segments with different sets of instantaneous infor-
mation. External information consists of any information provided from outside of the
transportation system by means of information technology like radio, variable messages
signs, on-board computers, etc. In principle, external information can also be included in
the framework, but as of now the travel choices are driven only by historical and instanta-
neous information.

Output Once a simulation day (or morning rush) is completed, the historical information
is updated according to the driving conditions experienced by the simulated drivers. The
updating process is based on a Bayesian mechanism that combines the historical informa-
tion and the last day changes in the network usage according to the user characteristics (i.e.
perception and cognitive abilities). Since these mechanisms are typically very expensive
to implement literally at the numerical and computing memory point of view (see (1)), we
decided to resort to heuristic laws similar to (15). The historical information available to
users on day w + 1 is the output of the learning process on day w, that is, the accumulated
knowledge of the w previous days (i.e. a Markov process of order 1). For a given O-D pair,
the expected travel time when departing at time ¢; on day w + 1 is computed as follows:

BT (7 (tg) = (1 — A) B (7 (tg)) + A% (tq) (3)

Numerous experiments with METROPOLIS have shown that the updating process (3) is
fairly robust and converges in a few dozen iterations. A typical value used in practice is
A = 0.1. It can be interpreted as if 10% of the users are revising their decisions every day.
For a discussion on the optimal strategy of partially informed drivers in this context, see

3).



3.4 Incidents and impacts

A possible solution to evaluate the impacts of non-recurrent traffic incidents would be to use a
static traffic assignment approach. Given the probability distribution of occurrence of an inci-
dent f; (1), links could be characterized by a stochastic capacity and fully stochastic assignment
algorithms can then be used to solve the problem (see (10)). This approach lacks however an
important aspect which is within-day departure time choice adjustment, i.e. if users expect to
encounter unreliable traffic conditions on certain part of the network at certain moment of the
day, they might decide to schedule their trip at another time. Also, the impacts measured by
the static approach are those of a supposedly long-term situation where the users have somehow
discovered f; (t) by experiencing traffic conditions. But the transient states might exhibit larger
impacts that cannot be measured without taking into account explicit day-to-day dynamics, and
as stated earlier, we intend to show that ATIS is most effective in dispersing congestion during
these transient states. Hence we use a dynamic traffic assignment approach for the simulation.
Note that even a DTA, but without departure time feedback capability is not sufficient, since
some mechanism has to be responsible for the adaptation of (exogenous) departure time profiles
as shown in (15). The architecture of METROPOLIS overcomes this as explained in Fig. 1.

Exogenous traffic hazards are straightforward to implement in event-based models such as METROPO-
LIS. At the beginning of each day (or morning peak), a random number R = U (0, 1) is drawn
for each link where a potential incident can happen. If R < p then an incident happens on that
link. In our experiments, the probability of occurrence p is the same for a selected subset of
important links of the network (e.g. motorways) and p = 0 for the rest of the network. The
incidents are characterized by a capacity drop of 50% that lasts for the whole morning peak. The
linear bottleneck congestion model is applied throughout the whole simulated period. Note that
incidents could also be defined with a specific duration (e.g. half an hour for a stopped vehicle
blocking a lane). Nevertheless, these incidents still affect the departure time choice since roads
are usually under-used (i.e. below capacity) at the beginning (and end) of the peak period. If the
capacity drops often during the peak period, some users will consider departing earlier or later to
avoid congestion. Vehicles that reach an intersection are informed if an incident has happened on
a downstream link so that en-route diversion is possible. Note that users gather the information
of the incident only when they reach the origin intersection of the link on which the incident
has happened and are not informed of the incident beforehand. Hence they make a decision to
divert their route based on this local information (i.e. time delay on the incident-ridden link) and
historical information (i.e. travel times of the alternative routes possible).

Therefore, the non-recurrent congestion scenario can serve as a benchmark for comparing the
effects of non-recurrent congestion with a scenario having an information system, where users
would be informed of the incidents occurring on far-off links. The increase in travel cost AT'C'
due to incidents (compared to an incident-free scenario), is assumed to be contributed by the
global effect of the reduction of capacity ACap, and the effect of a the lack of information
system ALS.

ATC = ACap + AIS
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In the absence of any Braess-like paradox, we can assume that AC'ap > 0 and therefore AIS <
ATC'. Our methodology consists in measuring A7'C' as an upper bound of the potential benefits
AIS from any information systems. We measure A7T'C' through out first set of simulations as a
proxy to the maximal travel cost savings that can be squeezed out of a sophisticated information
system.

4 Simulation results

4.1 Control runs

A first set of experiments is performed on the well-known network of Sioux Falls to understand
the day-to-day adjustment process. About 50, 000 individual car trips are simulated. Mode choice
is disabled. Incidents are introduced on four links that are located on the north-south corridors
identified on Fig. 2. Three simulations are performed:

1. for the base case scenario without incidents,
2. for a scenario with incidents in the corridors from day #20 on,

3. for a scenario with incidents in the corridors between day #20 and day #50.

Fig. 3 presents the travel costs for the first hundred iterations of the three cases. During the
first twenty iterations the three curves are overlapping which is consistent with the fact that the
random number generator is initialized with the same seed. The base case system exhibits some
oscillations. The peak at iteration #10 shows that the system is not yet completely stabilized.
This is due to the fact that the simulation model is stochastic and that the exponential smoothing
process does not lead here to a unique situation but rather to a set of stationary states. We
will show below that this does not hinder the evaluation of non-recurrent congestion. It can be
seen that the impacts of the incidents are quite large on day #20 since users are unaware of the
incidents and did not yet had the opportunity to adapt their travel habits. This would be the
impact reported by a pure DTA model without feedback on departure time choice. Two things
are noteworthy in this example: the adaptation in the case of the standing incidents is such that
the travel cost follows a decreasing trend. Also in the case of the third scenario, the decrease in
travel cost does not happen as soon as the exogenous shocks cease (i.e. on the 50th day) because
of the inertia of the system. The comparison between the second scenario and the base case
provides an upper bound of the potential travel cost savings of an information system: about 50
cent per trip (equivalent to a travel delay of 3 minutes). The situation on day #20 is strikingly
different: the difference is tenfold larger.
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4.2 Impacts of incidents

The second set of experiments is performed on a real-world example for the Paris area. The coded
network consists of about 17,000 links and more than 3, 000, 000 individual trips are simulated
for each morning period (the computation of a single iteration takes around 20 minutes on an
Apple G5 with a clock speed of 2Ghz). Both commuting trips and non-commuting trips are
simulated to take off-peak congestion into account. The incidents are introduced on the major
roads of the area , defined as the roads that have at least three lanes (see Fig. 4). Several
simulations are run for different probabilities of occurrence p ranking from 0 to 1. In each case,
50 iterations (days) are performed. The corresponding global indicators are reported in Tab. 1.
The impacts are important because each traveler uses on average at least one road section that
belongs to the major roads (there are about 1, 000 major-road links and the average trip length
is 16 links). The schedule delay cost measures the penalties incurred by travelers arriving too
early or too late at their destination. Obviously, drivers arrive later than expected when the level
of incidents increases. Note that the indicators show that the case p = 0.5 is worse than the risk-
free case p = 1, even if the average capacity of the overall system is higher. As explained earlier,
by risk-free we refer to a scenario which is certain (definite incidents: p = 1, or no incidents at
all: p = 0). This discrepancy between the stochastic and the risk-free situation is evaluated in
the next section.

4.3 Utility loss

A survey (6) was administered by one of the authors to estimate the level of risk aversion of
drivers in the Paris area. Respondents are asked lottery-type questions where they have to rank
different lotteries assigned to different level of risk. The same method has been used also to
compute the distribution of risk aversion of private investors (see www.RiskDynaMetrics.
com). In the transportation area, the users are asked to compare route with different variability of
travel times, while in the finance application, respondents are asked to compare different financial
products which differ according to their level of risk and return. In both case the alternative are
naturally ranked and an ordered probit model is used to estimate the level of risk aversion of the
users and to determine the different factors and socio-economic characteristics which influence
the level of risk aversion. The results show for instance that men are less risk averse than women,
and that blue collars are more risk averse than white collars. Basically, the socio-economic
characteristics and the purpose of the trip do influence the level of risk aversion. The major
outcome of the survey (6) is the provision of the distribution of risk aversion in the population of
drivers.

In the simulations reported in this paper, users still base their travel decisions on expected costs
updated using eq. (3). The travel cost includes free flow cost, queuing cost and schedule delay
cost. Users attempt to maximize their utility U (¢) = —C (¢) and do not use the CARA utility
specification given by (1). Nevertheless, the utility loss can be computed for the stochastic
system at hand. All users are assumed to be risk neutral except for an infinitesimal fraction
that are risk-averse. Their utility loss can be computed using (2). Since it is an infinitesimal
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fraction, their decision does not affect the overall system. The purpose here is to demonstrate
first the importance of the utility loss. The long term goal is to develop a completely consistent
framework that would use (1) as the user objective. In that case users would also adapt their
departure time and route choices according to the variability of the travel conditions.

The compensation y introduced above for travel time variability is measured on the Sioux Falls
example. This compensation is extended here to the compensation of travel cost variability
instead. This value can then be interpreted as the utility loss due to uncertainty (or monetarization
value of uncertainty). The variability f (C (¢)) is computed by recording the total travel costs
C; for T' =300 iterations. Therefore, the monetarization of uncertainty (per trip) is computed as
follows:

17,T 1ZT
Xo ln{ Zeec} ZC

Incidents are introduced during the 7" iterations for a given level of probability p. Several sets
of simulation are performed for values of p ranking from 0 to 1. Fig. 5 presents the results
of the evaluation of Y, as a function of the level of risk aversion #. As shown in the control
runs (Fig. 3), travel costs can oscillate even without incidents because of the stochastic nature
of the traffic simulation. Nevertheless, those oscillations are rather small, which explains why
the risk-free situations (p = 0 and p = 1) correspond to the bottom curves associated with an
(almost) null cost for uncertainty. As for the Paris example, the case p = 0.5 yields the highest
cost of uncertainty. Obviously it is not a symmetric dependence (see the discrepancies between
p = 0.4 and p = 0.6). If we assume 6 = 10/$ (a value compatible with the survey results of
(6)), we get the relative impacts is ¢ = % reported in Tab. 2. The travel time equivalent of the

compensation, 7, is computed by assuming a VOT of 10$/h.

5 Concluding comments

We have developed in this paper a method to improve the measurement of the cost of uncer-
tainty by modeling explicitly recurrent and non-recurrent congestion in transportation systems.
The methodology is built upon METROPOLIS, a dynamic traffic simulation tool that is able to
handle very large realistic networks, within-day dynamics and day-to-day dynamics. Random
incidents are introduced in the system and users react to them by adapting their departure time
and route on a within-day and day-to-day basis. We have stressed the importance of day-to-day
adjustment process by showing that the distinction between recurrent and non-recurrent conges-
tion is blurred: if the same incidents occur with a given probability on a long period, users might
eventually learn how to adapt and take into account travel time variability as an additional cost.
This additional cost or monetarization of uncertainty has been estimated using both empirical
measures and simulation results. This evaluation is crucial to the designers and managers of
ATIS and ATMS since it gives a benchmark of the potential benefit that can be obtained with
such technologies.
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The paper provides two important insights. First, the long-term efficiency of ATIS technology in
term of travel time savings is an order of magnitude smaller than its short-term efficiency which
has been the main focus in the literature. This is consistent with previous work (8) but depends
largely on the probability distribution of incidents. Therefore, one could but recommend to take
into account the likeliness of the incidents when performing a cost-benefit analysis. Second,
the long-term efficiency of ATIS might be found elsewhere in the reduction of uncertainty. Our
results show that the utility loss due to uncertainty is of the same order of magnitude as that
of the travel cost. The cost of uncertainty is as important as the cost of congestion. Therefore,
simulation models should integrate risk aversion using concave utility functions.
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Table 1: Impacts of non-recurrent congestion.

0/025] 04] 05]075] 09 |

L]

p |

Travel cost [$] 7.6 113 [ 11.5]12.0 | 12.6 | 12.0 | 11.9
Schedule delay cost [$] 221 32| 33| 34| 35| 33| 33
Travel time [min.] 25.0 | 37.4 | 38.2 | 40.0 | 42.1 | 40.0 | 39.8
Change in consumer surplus [$] 0| -19] 20| 23| 23| 22| -2.1
Congestion index [%] 289|554 |58.2|60.8|66.9 | 64.0 | 65.0
Mileage [10°km] 56.5159.8159.860.2]|60.6|60.0|59.8
Early arrivals [%] 49.5 | 48.2 | 47.8 | 48.1 | 45.6 | 46.6 | 46.1
Late arrivals [%] 29.7 | 34.7 | 35.1 | 35.0 | 37.5 | 36.2 | 36.5
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Table 2: Evaluations of the cost of uncertainty for an individual with a risk aversion level of
0 = 10/$ and a VOT of 10$/h.

| p  [025]040]0.50]0.60]0.75 [ 0.90 |
x[$] [210]2.55[335]|135]1.15]045
rlmin] | 12| 15] 20| 8| 7| 3
¢ 1037]045]0.57[0.23]0.20 ] 0.08
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Figure 1: Architecture of METROPOLIS. Blue dashed arrows correspond to within-day dynam-

ics. Green solid arrows correspond to day-to-day dynamics.

Supply

Car Network: — nodes, links

- dynamic congestion laws

— exogeneous incidents

-

Dynamic levels of service

Demand

Static O—D matrix, behavioral params.

Users’ actual choices

MOEs computation
Performance evaluation

Learning process

Traffic Simulation — Assignment

ii'ﬁ _,\_oﬁwm choice Ti.

_.
1

1

i

i

".ii" Degarture time choice Ti.
H |

I

i

1

1

I

-

T
i'ﬁ _uo&m choice Ti.

Information

e P |

?9

4
J

—~| Historical

Instantaneous External (ATIS)

19



Figure 2: Congestion index on the Sioux Falls network in the base case scenario (without inci-
dents). Incidents are introduced on the most loaded north-south corridors (with index > 0.6).
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Figure 3: Control runs. Three simulations with and without incidents. Day-to-day evolution of
the total travel cost.
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Figure 4: Ile-de-France area surrounding Paris. Incidents are introduced on the major roads (red).
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Figure 5: Monetarization of uncertainty. Measurements for different probability p of occurrence.
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