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Abstract

Our paper contributes to bridge the gap between the microsimulation’s approach

and applied GE models, by making use of exact aggregation results from the discrete

choice literature: heterogeneous individuals choosing (possibly continuous amounts)

within a set of discrete alternatives may be aggregated into a representative agent

with CES/CET preferences/technologies. These results therefore provide a natural

link between the two policy evaluation approaches. We illustrate the usefulness of

these results by evaluating potential effects of population ageing on the dynamics

of income distribution and inequalities, using a simple OLG model when individuals

have to make leisure/work decisions, and choose a profession among a discrete set of
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1 Introduction

During the last twenty years, applied GE models have become standard tools of quantit-

ative policy assessment. Their appeal has built on their rigorous grounding in economic

theory: individual agents’ decision-making behavior is derived from explicit optimization

under strictly specified technological or budget constraints, given market signals that en-

sure global consistency. These theoretical foundations have made applied GE models

appear particularly useful for ex-ante evaluations of policy reforms. Convincing as this

argument may be, it can only be sustained if ex-post performance evaluations are made,

and sources of prediction errors identified and taken care of.1 Many reasons could of

course contribute to explain why most applied GE models would probably fail to a serious

ex-post prediction test. The theoretical mechanism hypothesized in the model may not be

appropriate: Kehoe (2003), for example, suggests that “no plausible parameter changes

can get the models of NAFTA built on the Dixit-Stiglitz specification to match what ac-

tually has happened”. Another reason, often (over- ?) stressed by statistically oriented

econometricians, is that applied GE modelers tend to excessively rely on guesstimated

rather than on rigorously estimated parameter values; more generally, that applied GE

modelers pay too little attention on the data-set they use (see e.g. Mercenier and Yeldan,

1999). Yet another — and potentially more serious — reason is that the whole apparatus

relies on the concept of “representative agent” despite unclear aggregation procedures to

link these aggregate optimizing decision-makers to the numerous individual agents whose

behavior they are meant to capture.

During the same period, microsimulation models have also become increasingly popu-

lar tools for policy analysis precisely because they avoid any reliance on typical agents by

fully taking into account the heterogeneity of individuals as they are observed in micro-
1Amazingly, the methodology has rarely been submitted to such tests: notable exceptions are Kehoe

et al. (1995) and Kehoe (2003). Though the former’s conclusion — based on a single-country perfectly-

competitive model of the 70s’ — sounded rather positive and optimistic, the latter’s assessment — built on

three of the most prominent applied GE models constructed to predict the impact of NAFTA — is quite

devastating: “Theses models drastically underestimated the impact of NAFTA on North American trade.

Furthermore, the models failed to capture much of the relative impacts on different sectors.” (Kehoe, 2003,

p0).
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data sets. See Bourguignon and Spadaro (2006) for an excellent survey and an extensive

list of references. Indeed, working with myriads of actual economic agents rather than

with a few hypothetical ones makes it possible to precisely identify the winners and the

losers of a reform — obviously a major concern to policy-makers — yet, making it possible by

simple addition to accurately measure this impact on aggregate variables. The increasing

availability of large and detailed data-sets on individual agents makes this quite appealing.

The drawback of this approach is of course that it is partial equilibrium in essence: indi-

viduals’ labor supply adjustments to some new tax incentive scheme, for instance, may be

accurately captured for given wages and other policy parameters, but market equilibrium

and government budget constraints can be expected to have a feedback influence that is

typically neglected. One could of course imagine iterations between the microsimulation

and the applied GE models, and indeed, a few efforts have successfully been done in this

direction: see for instance Savard (2003) and Arntz et al. (2006). Though this iterative

strategy might indeed be satisfactory for some problems — in particular when dynamics are

thought unimportant — it is likely to be unfeasible for those requiring more sophisticated

apparatus such as OLG models. Analyzing policy issues in a context of a demographic

change, for instance, would obviously require a different approach. It is the object of this

paper to suggest one such approach.

Our paper contributes to bridge the gap between the two approaches by making use

of some simple yet powerful exact aggregation results due to Anderson, de Palma and

Thisse (1992) (here after: AdPT). They show that, under reasonably mild conditions,

heterogeneous individuals that have to choose (possibly continuous amounts) within a set

of (possibly subsets of) discrete alternatives may be aggregated into a representative agent

with (possibly multiple-level) CES/CET preferences/technologies. These results therefore

provide a natural and appealing link between the standard applied GE apparatus and the

microsimulations approach. It also potentially makes available to applied GE modelers a

growing body of empirical results drawn from panel-data econometrics. There is no free

lunch, unfortunately: some details captured by the microsim approach could be lost in

the aggregation, a cost that one should balance against the benefits of accounting for the

GE feedbacks.

We illustrate the usefulness of these results in the context of a simple OLG model.
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Simulations will be done in vitro — i.e., using a computer generated data-set — to explore

the potential consequences of population ageing on the dynamics of income distribution

and inequalities, when individuals have to make leisure/work decisions, and choose a

profession among a discrete set of alternatives.

The paper is organized as follows: in Section 2, we provide a refresher on probabilistic

discrete choice models, and show how the basic aggregation results emerge from assuming

multinomial logit heterogeneity in preferences. We then apply these results in Section

3 to modeling nested choices between leisure/work - professions and imbed this decision

problem into an OLG model that is sketched in Section 4. We then submit in Section 5

the economy to an ageing shock, and plug into individual decision problems the computed

equilibrium prices to evaluate the effect of population ageing on the dynamic path of

income inequality indicators. The paper closes with a brief conclusion.

2 Discrete-choice models: a refresher

Assume a population of individuals h = 1, ..., N has to choose among a set i, j = 1, ..., n

of discrete alternatives with associated utility levels:

euhj = uj + ²hj j = 1, ..., n

where uj is a deterministic component (for now, assumed common to all individuals) and

²hj is a random term. Each h is therefore characterized by a draw ² = (²h1 , ..., ²
h
n) in a

probability distribution with cumulative density function F (²). Assume that individuals

in this population are not only statistically identical but also statistically independent.

Then, the distribution of choices is multinomial with mean Xj = NPj , j = 1, ..., n , where

Pj denotes the probability that alternative j be chosen by h. Xj is the mathematical

expectation of demand for alternative j; for N large enough, Xj is a close approximation

of aggregate demand for j in this population. In other words, aggregate demands for each

alternative may be readily determined from the choice probabilities from the individual

discrete decision problem.
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The probability that h will choose alternative j is:

Pj = prob
heuhj ≥ euhi ,∀i = 1, ..., ni

= prob
h
uj + ²

h
j ≥ ui + ²hi ,∀i = 1, ..., n

i
= prob

h
²hi − ²hj ≤ uj − ui,∀i = 1, ..., n

i
The determination of the choice probabilities using F (²) is in principle always possible

but in general extremely difficult, in particular if ² is assumed normally distributed, as

would seem natural. Fortunately, a theorem due to McFadden2 identifies a class of distri-

bution functions F (²) — of which the multinomial logit is a special case — for which these

probabilities may be easily determined indirectly. Consider the generalized extreme value

distribution function

F (²1, ..., ²n) = exp
£
−H(e−²1 , ..., e−²n)

¤
with H a nonnegative function defined over RN+ satisfying the following properties: (i)

H is homogeneous of degree 1/µ; (ii) limxi→∞H(x1, ..., xn) =∞ ∀i = 1, ..., n; (iii) the

mixed partial derivatives ofH with respect to k different variables exist and are continuous,

non-negative if k is odd, non-positive if k is even, k = 1, ..., n. (These technical conditions

are needed to ensure that F (²) is indeed a cumulative probability distribution function.)

Then, the choice probabilities Pj may be determined as:

Pj = µ
∂ lnH(eu1 , ..., eun)

∂uj

It can easily be checked that the following particularization of H,

H(²1, ..., ²n) =
nX
j=1

²
1/µ
j

satisfies the previous properties. The cumulative distribution function becomes:

F (²1, ..., ²n) = exp

⎡⎣− nX
j

e−²j/µ

⎤⎦ = nY
j

exp
h
−e−²j/µ

i
that is, the product of n i.i.d. double exponential distributions characterizes the stochastic

behavior of utilities euj , and it follows from the theorem that

Pj = µ
∂ ln

Pn
i e

ui/µ

∂uj
=

euj/µPn
i e

ui/µ
(1)

2See McFadden 1978, p.80; 1981, p.227.
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which are the choice probabilities derived from a multinomial-logit population with dis-

persion parameter µ. This of course makes the MNL quite appealing. It turns out that,

in addition, it provides a good approximation to the normal distribution.3 Observe that,

from (1),
∂Pj
∂ui

= −PjPi
µ

i, j = 1, ...n, i 6= j

so that the cross-elasticities

Elas(Pj , ui) = −
Piui
µ

i, j = 1, ...n, i 6= j

are independent of j. Any change in the deterministic utility level associated with altern-

ative i will therefore affect symmetrically the choice probabilities of all other alternatives:

relative aggregate demands between two alternatives are unaffected by variations in the

utility level of a third alternative. This over-restrictive property, known as the independ-

ence of irrelevant alternatives, can be bypassed by nesting multinomial logit systems, as

we shall now illustrate.

Assume that the set A of alternatives j = 1, ..., n can be partitioned into m subsets

{Al; l = 1, ...,m} of close alternatives. We particularize theH(²1, ..., ²n) function as follows:

HA(²1, ..., ²n) =
mX
l=1

⎡⎣X
i∈Al

²
1/µ2
i

⎤⎦µ2/µ1 (2)

This function is homogeneous of degree 1/µ1; McFadden has shown that if µ1 ≥ µ2,

this function satisfies all the properties required to apply the extreme value theorem. It

follows that

F (²1, ..., ²n) = exp

⎧⎪⎨⎪⎩−
mX
l

⎡⎣X
i∈Al

e−²i/µ2

⎤⎦µ2/µ1
⎫⎪⎬⎪⎭

and

Pj = µ1

∂ ln
Pm
l

hP
i∈Al e

ui/µ2

iµ2/µ1
∂uj

=

hP
i∈Al e

ui/µ2

iµ2/µ1
Pm
l

hP
i∈Al e

ui/µ2

iµ2/µ1 · euj/µ2P
i∈Al e

ui/µ2
j ∈ Al (3)

3Ben Akiva and Lerman (1985, p128) write: “there is still no evidence to suggest in which situations

the greater generality of the multinomial probit is worth the additional computational problems resulting

from its use.” We are not aware that such evidence has been reported in the literature since then.
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This expression has a structure that makes it straightforward to understand. The

second term is the probability that, within the subset Al of alternatives, j be chosen. The

first term represents the probability that among all subsets of A, Al be chosen.

The expression can be given an alternative welfare interpretation. To see this, consider

a subset Al of alternatives, and define

HAl = HAl(²i, i ∈ Al) =
X
i∈Al

²
1/µ2
i (4)

GAl = GAl(ui, i ∈ Al) = µ2 ln
X
i∈Al

eui/µ2 (5)

It can be shown (see e.g. AdPT, p60) that GAl is the expected value of the maximum of

utilities from the alternatives in subset Al , which can therefore be interpreted as a measure

of the attractiveness of the subset Al. Dividing GAl by µ1 and using an exponential

transform yields:

eGAl/µ1 =

⎡⎣X
i∈Al

eui/µ2

⎤⎦µ2/µ1
Upon substitution of HAl into (2), we get:

HA = HA(HAl , l = 1, ...,m) =
mX
l

[HAl ]
µ2/µ1

Note the similarity of this expression with (4). We can write the expected value of the

maximum of utilities from choosing between the different subsets of alternatives as:

GA = µ1 ln
mX
l

eGAl/µ1

which can be transformed to yield:

eGA/µ1 =
mX
l

eGAl/µ1 =
mX
l

⎡⎣X
i∈Al

eui/µ2

⎤⎦µ2/µ1

Hence, making use of those expressions into (3), the probability Pj takes an intuitive

structure:

Pj =
eGAl/µ1Pm
l e

GAl/µ1
· euj/µ2P

i∈Al e
ui/µ2

(6)

Comparing (6) with (3), we see that the first term is a logit choice probability between

l = 1, ...,m alternatives, each alternative being priced by the expected maximum utilities
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from alternatives belonging to subset Al. The nested discrete choice problem can therefore

quite simply be solved sequentially, one level after the other, up the decision tree. It is

immediate to generalize this to any number q of nested discrete choices, provided that

µ1 ≥ µ2 ≥ ... ≥ µq where q is the lowest level in the decision tree, i.e. where individual

heterogeneity is lowest.

Note that the non idiosyncratic part of the utilities will in general depend on some

exogenous characteristics of both the option (such as a market price) and of the decision-

maker (such as age, sex etc). For illustrative purpose, assume uj depends on the market

price pj associated with option j, on the individual’s income yh and on some exogenous

characteristics zj common to a subset of individuals within the population:

euhj = consth + α ln yh − ln pj + γjzj + ²
h
j

= consth + α ln yh − ln (pj/f(zj)) + ²hj

= consth + α ln yh − ln epj + ²hj
where f(zj) = exp(γjzj) and epj = pj/f(zj). We see that the presence of the decider’s

characteristics into the utilities only affects the valuation of the option by all individuals in

the population who share the same characteristics. Assuming the random terms ²1, ..., ²n

are i.i.d. double exponentials, the choice probabilities are given by:

Pj =
exp

©¡
consth + α ln yh − ln epj¢ /µªPn

i exp {(consth + α ln yh − ln epi) /µ} j = 1, ..., n

=
exp {− ln epj/µ}Pn
i exp {− ln epi/µ} j = 1, ..., n

=
ep −1/µjPn
i ep −1/µi

j = 1, ..., n (7)

Aggregate demands for each option j from the population subset with common charac-

teristics zj are then closely approximated by multiplying this individual choice probability

by the (large enough) number of individuals N in that subset:

Xj = Pj ·N

=
ep −1/µjPn
i ep −1/µi

·N j = 1, ..., n

We are now equipped to represent individual nested discrete choice between leisure
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and work in different professions, and to derive a representative agent formulation that

replicates the aggregation of individuals’ decisions.

3 Modeling leisure/work decisions and the choice of a pro-

fession

3.1 The discrete choice formulation

The population is partitioned into k=1,...,K cells according to as many characteristics as

made possible by the available data, such as sex, age-class etc. In what follows, we model

the decision problems of individuals belonging to one such cell, and neglect the subscript

of the cell to ease notation. In the applied GE model there will be one representative

agent for each cell.

Consider one individual h belonging to a cell, therefore belonging to a sub-population

with the same socioeconomic characteristics. This individual has to decide whether to

work or not, and if he does, in which profession. We model this as a two-level discrete

choice problem; we take advantage of the nested structure to solve the problem sequentially

starting with the choice of profession.

3.1.1 Choosing between professions

There are I possible professions indexed i, j. We write the utility as a log-linear function:

evhi = ln θi + lnwi + ²hi i = 1, ..., I

The first term captures the (common to all options) disutility of working as well as the

welfare costs/benefits of various characteristics specific to profession i, and wi is the market

wage (adjusted for characteristic-specific efficiency) expressed in terms of the consumption

good. Note that these two terms are common to all h within the considered population cell.

We therefore assume here that, upon making their optimal decisions, individuals ignore

possible within-cell idiosyncratic productivity differences, that will ex-post be responsible

for the observed distribution of wages in the data.4 We refer to this within-cell average
4The additional information contained in the within-cell distribution of individual wages whi will be
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wage wi as the Mincer wage for that cell as opposed to the individual wage whi . In the ex-

post microsimulations we will of course evaluate how distortive will be the substitution of

wi for whi in individual decisions. Intra-cell individual heterogeneity in preferences is then

captured by the i.i.d. double exponential stochastic term ²hi with dispersion parameter µ.

From the previous section, we know that the probability h will choose profession i is:

Pi =
exp

³
ln θi+lnwi

µ

´
P
j exp

³
ln θj+lnwj

µ

´
=

θ
1/µ
i · w1/µiP
j θ
1/µ
j · w1/µj

3.1.2 Choosing whether to work or to leisure

Let the utility h enjoys from not working be:

eV h0 = lnΘ0 + εh0

where εh0 is a random term which captures individual heterogeneity in the valuation of

leisure (the disutility of working). The alternative is for the individual to work, taking

into account that if he does so, he will be able to choose the best profession. The valuation

of the alternative work that is consistent with the second stage decision problem is, from

(5): eV h1 = V1 + εh1

where:

V1 = µ ln
X
i

exp

µ
ln θi + lnwi

µ

¶
= µ ln

X
i

θ
1/µ
i · w1/µi

We assume that εh0 , ε
h
1 are double exponential i.i.d. random terms with dispersion

used in the econometric estimation of the parameters of the discrete-choice preferences, in the calibration

of the general equilibrium model, and in the ex-post microsimulations.
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parameter υ > µ. The probability that h will choose to farniente is therefore:

P0 =
Θ
1/υ
0

Θ
1/υ
0 + exp(V1/υ)

=
Θ
1/υ
0

Θ
1/υ
0 +

hP
i θ
1/µ
i · w1/µi

iµ/υ
3.1.3 Aggregation of individual choices

Let there be a large enough set N of statistically identical and independent individuals

in this population cell; each individual has one unit of time. The within-cell aggregate

labor supply resulting from individual discrete choices is then closely approximated by the

mathematical expectations for option “work”:

L = (1− P0) ·N

=

hP
i θ
1/µ
i · w1/µi

iµ/υ
Θ
1/υ
0 +

hP
i θ
1/µ
i · w1/µi

iµ/υ ·N
from which the cell’s labor-supply by professions follows immediately:

Li = PiL (8)

=
θ
1/µ
i · w1/µiP
j θ
1/µ
j · w1/µj

·

hP
j θ
1/µ
j · w1/µj

iµ/υ
Θ
1/υ
0 +

hP
j θ
1/µ
j · w1/µj

iµ/υ ·N i = 1, · · · , I

3.2 The representative agent formulation

Our next task is to write an optimization problem for a representative agent5 seeking to

split his total time N between leisure and professional activities, such that the optimal

allocation coincides with the one generated from aggregation of individual discrete choices

(8). We proceed in two steps.

We first determine the optimal share of total time N between leisure and work. Let

SL and SL denote some measure of time devoted respectively to leisuring (L) and working

(L), and λ be the household’s relative valuation of leisure: the index λ is of course inversely

related to market wages, in a way that will be established later, but is here assumed given.
5One for each population-cell, but here again we neglect the cell index k to ease notation.
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The representative agent chooses SL and SL so as to maximize λSL + SL subject to a

constant elasticity of transformation (CET) constraint:³
αL [SL]

τ+1
τ + αL [SL]

τ+1
τ

´ τ
τ+1

= 1 τ > 0

that captures the fact that moving in and out of the job market is not costless. It imme-

diately follows from the FOC that the optimal ratio of time spent on the two activities

is:
SL
SL

=

∙
αL
αL

¸−τ
· λτ (9)

Making use of (9) jointly with the resource constraint L+L = N yields the household’s

optimal labor supply:

L =
α−τL λ−τ

α−τL + α−τL λ−τ
·N (10)

The second step of the decision problem consists in allocating this work time between

professions taking into account relative market wages and the fact that switching profession

is not costless. Formally, the representative agent problem is to choose si so as to maximizeP
iwisi subject to a constant elasticity of transformation (CET) constraint:ÃX

i

αi · [si]
σ+1
σ

! σ
σ+1

= 1 σ > 0

This yields the optimal ratios:

si
sj
=

∙
αi
αj

¸−σ
·
∙
wi
wj

¸σ
i 6= j

which, jointly with the resource constraint
P
i Li = L determines the amount of time

devoted to working in each profession:

Li =
α−σi · wσ

iP
j α
−σ
j · wσ

j

· L

Making use of (10), we can substitute out L and get:

Li =
α−σi ·wσ

iP
j α
−σ
j · wσ

j

· α−τL · λ−τ

α−τL + α−τL · λ−τ
·N (11)

Let the household’s relative leisure valuation index λ be inversely related to market

wages by the following function:

λ = α−1L

⎡⎣X
j

α−σj ·wσ
j

⎤⎦− 1
σ

12



so that (11) can be rewritten as:

Li =
α−σi · wσ

iP
j α
−σ
j · wσ

j

·

hP
j α
−σ
j ·wσ

j

i τ
σ

α−τL +
hP

j α
−σ
j · wσ

j

i τ
σ

·N (12)

Comparing this expression with (8), we see that, though the interpretation of the

parameters differs considerably, the two expressions are identical provided that we set:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ = 1/µ

τ = 1/υ

αi = 1/θi

αL = 1/Θ0

(13)

For each population cell k = 1, ...,K, there are Nk individuals facing a specific Mincer

wage vector wki , i = 1, ..., n, and having preference characteristics θki , µ
k,Θk0, v

k. These

parameters can, in principle, be estimated using discrete choice econometric techniques

and the aggregate labor-supply systems (12) plugged into the general equilibrium model.

In this paper, however, we computer-generate the micro data-set and assume arbitrary

though reasonable values for the parameters.

3.3 The OLG set-up

We now have, for each population cell, a different labor-supply system generated from

aggregation of individual discrete choices, that is, there are as many representative labor-

supplying agents as there are socioeconomic characteristics of interest in the micro data-

base. This could suggest that, without restrictions on the number of these characteristics,

we would rapidly run into the “curse of dimensionality” in the general equilibrium set-up,

which would of course drastically limit the appeal of the current approach. Fortunately,

this is not the case. Indeed, if we adopt identical and standard homothetic intertemporal

preferences, we can aggregate further these representative labor-supplying agents into a

single (per-generation) representative consumer that optimally allocates its human wealth

to lifetime consumption.6

6The OLG structure we use is fairly standard; see e.g. Mercenier et al. (2005) for an illustrative use in

the context of population ageing. To avoid excessive lengthening of the paper, we only sketch it here. A

complete list of equations is available upon request.
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We distinguish between G generations that coexist at each time period t. At the end

of each period, the oldest group g(G) disappears and a new generation g(1) enters the

active population according to the following rule:

Ng(1),t+1 = ηt ·Ng(1),t (14)

where Ng(1),t denotes the number of young people at time t and ηt is an exogenous gross

reproduction rate. Each agent maximizes its intertemporal utility subject to its wealth

constraint. Doing so, he chooses: (a) the intertemporal profile of consumption (and

therefore of assets accumulation); (b) how much to work, and in which profession (for those

generations that are active, retirement is exogenously fixed at some late age). Formally,

lifetime utility for the generation that becomes active at time t is:

Ut =
GX
k=1

Rk−1 · ln cg(k),t+k−1 (15)

where R is an exogenous discount factor and c is consumption. U is maximized subject

to:
GX
k=1

Rt+k−1 ·
¡
mg(k),t+k−1 − cg(k),t+k−1

¢
= 0 (16)

where Rt is the market determined discount factor: Rt+k−1 =
Qt+k−1
s=t+1

³
1

1+rs

´
and mg(k),t

is labor income (net of social security contributions at rate τ sc) and pension benefits:

mg(k),t =
IX
i=1

X
sex

(1− τ sc) ·Ai,g(k),sex,t · wi,t · sg(k),sex,t · li,g(k),sex,t

+pensg(k),t

where wi,t is the per unit of effective labor wage in profession i, sg(k),sex,t the proportion

of males and females in the population by class age, li,g(k),sex,t the proportion of profes-

sions by class age and sex (li,g(k),sex,t =
Li,g(k),sex,t

Ng(k),t·sg(k),sex,t from (12)), and labor productivity

Ai,g(k),sex,t depends on characteristics such as age and sex:

lnAi,g(k),sex,t = ϕ1,ik + ϕ2,ik
2 + ϕ3,isex (17)

The economy produces one good in amount X using physical capital K and effective

labor of different professions Li with a constant returns to scale Cobb-Douglas technology:

Xt =
IY
i=1

Lαii,t ·K
β
t
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A pension system is Pay-As-You-Go with fixed social security rate τ sc, the replacement

ratio γ being endogenously determined to ensure balanced social security budget at each

t:

pensg(k),t = γt ·
IX
i=1

X
sex

Ai,g(k),sex,t · wi,t · sg(k),sex,t · li,g(k),sex,t (18)

The capital stock accumulation depends on investments and on capital depreciation:

Kt+1 = Kt · (1− δ) + Invt (19)

The price system (wi,t, rt) is determined so that markets balance at each time period:

Xt =
X
k

Ng(k),t · cg(k),t + Invt (20)

Li,t =
X
k

X
sex

Ng(k),t ·Ai,g(k),sex,t · sg(k),sex,t · li,g(k),sex,t (21)

4 The dynamics of income distribution in an ageing popu-

lation: an illustrative example

In this section, we wish to illustrate the usefulness of the aggregation results, and test

their robustness. We evaluate potential effects of population ageing on the dynamics of

income distribution and inequalities, using the OLG model particularized to the case where

individuals have to make leisure/work decisions, and choose one of two possible professions

(indicated by Prof-0 and Prof-1). Addressing such issues requires a consistent use of both

the microsimulation set-up — to keep track of individuals — and the general equilibrium.

For this, we shall use a plausible artificial computer-generated micro data-set of 30.000

individuals, and link this to an applied OLG model calibrated on a fictitious macro data-

set that can be thought of as representative of some archetype OECD economy. Assuming

the dynamic economy is initially in a stationary steady state, we then submit it to a quite

drastic demographic slowdown.

4.1 The micro data-set

In this stationary population, we distinguish individuals by gender and age groups of ten

years each, starting at age 15. Only those belonging to the first five age classes have
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discrete choices to make: to work or not to work, and in which profession. Those from

the last three generations are exogenously retired from the labor force. There are 30.000

such decision-making individuals, each belonging to one specific cell of characteristics, in

proportions conveyed by Table 1.

Males Number Females Number
g(1)  : 15-24 3000 g(1)  : 15-24 3000
g(2) : 25-34 3000 g(2) : 25-34 3000
g(3)  : 35-44 3000 g(3)  : 35-44 3000
g(4)  : 45-54 3000 g(4)  : 45-54 3000
g(5) : 55-64 3000 g(5) : 55-64 3000

total 15000 total 15000

Table 1: Number of individual decision-makers by age and sex

Mincer wages by professions are generated using the following equation:

lnwi = consti + α1i · age+ α2i · age2 + α3i · sex

The parameters adopted for this equation are reported in Table 2. The quadratic term

is of course meant to capture the hump-shape of labor productivity with respect to age.

Prof-0 Prof-1

constant 5 6

age 0.3  0.45

age x age -0.005 -0.003

sex -0.4 -0.35

Table 2: The parameters of the Mincer equations

Idiosyncratic productivity differences and wages whi are generated using a normal dis-

tribution with average levels wi and standard deviations as reported in Table 3a and

Table 3b. Observe that the latter are chosen sufficiently large for the accuracy test to be

meaningful.
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Mean Stand dev Mean Stand dev
g(1)  : 15-24 170.669 41.891 114.008 28.463
g(2) : 25-34 288.831 55.985 220.420 37.137
g(3)  : 35-44 401.843 77.223 298.008 49.980
g(4)  : 45-54 512.599 95.286 388.631 65.002
g(5) : 55-64 661.020 127.120 489.150 83.912

Males Females

Table 3a: Parameters of the distributions of individual wages by age and sex for Prof-0

Mean Stand dev Mean Stand dev
g(1)  : 15-24 554.909 137.339 348.526 88.735
g(2) : 25-34 875.275 210.080 606.427 139.897
g(3)  : 35-44 1399.315 316.811 922.660 213.110
g(4)  : 45-54 2089.774 508.444 1397.954 320.523
g(5) : 55-64 3175.437 767.594 2045.990 487.340

Males Females

Table 3b: Parameters of the distributions of individual wages by age and sex for Prof-1

The preference parameters are chosen so as to generate reasonable shares of leisure

and work, as well as contrasted activity shares by professions: see Table 4.

Leisure / Total Work / Total Prof-0 / Work Prof-1 / Work
Males

g(1)  : 15-24 17.47% 82.53% 61.79% 38.21%
g(2) : 25-34 15.33% 84.67% 74.61% 25.39%
g(3)  : 35-44 14.60% 85.40% 51.80% 48.21%
g(4)  : 45-54 12.67% 87.33% 58.59% 41.41%
g(5) : 55-64 25.47% 74.53% 51.03% 48.97%

Females
g(1)  : 15-24 18.47% 81.53% 62.18% 37.82%
g(2) : 25-34 31.43% 68.57% 57.07% 42.93%
g(3)  : 35-44 15.87% 84.13% 65.17% 34.83%
g(4)  : 45-54 15.43% 84.57% 62.83% 37.17%
g(5) : 55-64 22.50% 77.50% 57.59% 42.41%

Table 4: Leisure/work rates, and activity rates by profession

Finally, intra-cell individual heterogeneity in preferences is then generated using i.i.d.

double exponential stochastic terms with dispersion parameters µ and υ that are the
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inverse of the transformation elasticities between professions σ and between leisure and

work τ of (13) which values are reported in Table 5.

Leisure / Work Prof-0 / Prof-1
Males

g(1)  : 15-24 0.752 1.336
g(2) : 25-34 0.753 0.177
g(3)  : 35-44 0.739 1.527
g(4)  : 45-54 0.749 0.449
g(5) : 55-64 0.727 0.824

Females
g(1)  : 15-24 0.759 1.397
g(2) : 25-34 0.772 1.226
g(3)  : 35-44 0.789 0.827
g(4)  : 45-54 0.742 0.961
g(5) : 55-64 0.755 0.417

Table 5: Transformation elasticities of the aggregate supply systems

4.2 The macro data-set and the ageing shock

In this illustrative simulation exercise, we assume the economy initially in a steady-state

that is stationary. Because all individuals are assumed to exit at the same age of 95,

the dependency ratio is rather high in this economy, at 60%. (We could have taken care

of this by introducing mortality rates at each age but with little additional insight given

illustrative-only ambition of the exercise.) The main parameters and data of the macro

model are summarized in Table 6.

Consumption / GDP 80%
Investments / GDP 20%
Gross capital remuneration / GDP 33.3%
Remuneration of Prof-0  / GDP 15.3%
Remuneration of Prof-1  / GDP 51.4%
Social security contributions 20%
Gross interest rate 8.3%
Depreciation rate 5.0%
Intertemporal substitution elasticity 1

Table 6: The main parameter values used in the illustrative OLG model
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The ageing shock is implemented by a temporary drop of the parameter ηt (see (14))

with resulting population time-path displayed in Figure 1, and old-age dependency ratio

(the ratio of retired to active population) as displayed in Figure 2. This is indeed a quite

drastic ageing shock. The reason for choosing an admittedly excessive demographic change

is that we want to ensure significant factor-price changes and hence, induce significant

switches in individual discrete decisions: only then can we gain true confidence in our

methodology.
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Figure 1: The demographic shock: total population
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Figure 2: The old-age dependency ratio resulting from the demographic shock
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The resulting solution time-path of factor prices is displayed in Figure 3, and is as

one expects.7
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Figure 3: The dynamics of factor prices induced by the demographic shock

4.3 Accuracy

Having computed the equilibrium path of wages, we now plug back these factor prices into

the microsimulation model, and compute the new optimal discrete choices for each of the

30.000 individuals, aggregate these per population cells and compare with those generated

from the representative agent formulation in the OLG model. Why could these predictions

differ, given that we use exact aggregation results? The reader will remember that, within

each population cell, we assumed that the labor supply decision results from considering

— both in the micro and in the macro approach — the Mincer wage wi rather than the

true individual wage whi , which is wi adjusted for within-cell idiosyncratic productivity

differences. The ex-post microsimulation evaluation uses this individual information that

has been lost in the aggregation process. Checking for these errors is therefore indeed

meaningful.
7We only report the first 20 periods though the model is solved over a horizon of 40 periods of ten years

each.
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Table 7 and Table 8 provide a sample of accuracy results, measured as % discrep-

ancies between the two predicted labor supplies. Observe that the first time period dis-

crepancies are all of the order of 1.E-10 which only reflects the quality of the calibration:

indeed, the demographic shock only affects the economy at later periods. Looking at the

time path of errors, we see that the largest is roughly equal to half a per cent, a very

small number given the severity of the demographic shock: clearly, a discrepancy that is

unlikely to affect the equilibrium wages and is therefore without GE implication.

g(1) g(2) g(3) g(4) g(5)
1 -1.19904E-12 5.55112E-13 2.22045E-12 2.5091E-12 3.9968E-12
2 -2.16404E-08 -3.09893E-09 -1.64776E-08 -3.75063E-09 -8.0231E-09
3 -4.9683E-08 -7.1157E-09 -3.78319E-08 -8.61163E-09 -1.8421E-08
4 1.97866E-08 2.83493E-09 1.5069E-08 3.43074E-09 7.33644E-09
5 -0.000564295 -7.45465E-05 -0.000395638 -9.02095E-05 -0.000192817
6 -0.00203157 -0.000268202 -0.00144886 -0.000331816 -0.000707877
7 -0.003751061 -0.000493583 -0.002565971 -0.000606362 -0.001291068
8 -0.005325312 -0.000763898 -0.004172046 -0.000938141 -0.001960737
9 -0.005843257 -0.000846965 -0.004418017 -0.001069888 -0.001866271
10 -0.006287636 -0.000973801 -0.004982881 -0.00124621 -0.00188436
11 -0.006212755 -0.000921774 -0.00530581 -0.001172894 -0.001807266
12 -0.004738384 -0.000700114 -0.003978269 -0.000890913 -0.001526259
13 -0.002638207 -0.000387584 -0.002217207 -0.000460682 -0.000641863
14 -2.63511E-05 -3.8454E-06 -2.21728E-05 -4.57406E-06 -5.1224E-06
15 -6.75913E-06 -9.86695E-07 -5.68882E-06 -1.17413E-06 -1.3115E-06
16 1.2707E-06 1.85523E-07 1.0696E-06 2.208E-07 2.46377E-07
17 2.02767E-06 2.96044E-07 1.70678E-06 3.52341E-07 3.93118E-07
18 -8.86393E-07 -1.29408E-07 -7.46087E-07 -1.54008E-07 -1.71897E-07
19 -1.07553E-06 -1.57021E-07 -9.05284E-07 -1.86869E-07 -2.0858E-07
20 -4.98291E-07 -7.27476E-08 -4.19418E-07 -8.65777E-08 -9.66293E-08

Table 7: Total labor supply, males, % differences between the micro and the macro predictions
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g(1) g(2) g(3) g(4) g(5)
1 -8.24896E-12 8.88178E-13 2.9976E-12 -3.475E-12 -2.88658E-12
2 -2.1646E-08 -3.09953E-09 -1.64797E-08 -3.75189E-09 -8.02445E-09
3 -4.96885E-08 -7.11652E-09 -3.78343E-08 -8.61299E-09 -1.84221E-08
4 1.97811E-08 2.8342E-09 1.50672E-08 3.42919E-09 7.33544E-09
5 -0.000564295 -7.45465E-05 -0.000395638 -9.02095E-05 -0.000192817
6 -0.00203157 -0.000268202 -0.00144886 -0.000331816 -0.000707877
7 -0.003751061 -0.000493583 -0.002565971 -0.000606362 -0.001291068
8 -0.005325312 -0.000763898 -0.004172046 -0.000938141 -0.001960737
9 -0.005843257 -0.000846965 -0.004418017 -0.001069888 -0.001866271
10 -0.006287636 -0.000973801 -0.004982881 -0.00124621 -0.00188436
11 -0.006212755 -0.000921774 -0.00530581 -0.001172894 -0.001807266
12 -0.004738384 -0.000700114 -0.003978269 -0.000890913 -0.001526259
13 -0.002638207 -0.000387584 -0.002217207 -0.000460682 -0.000641863
14 -2.63511E-05 -3.8454E-06 -2.21728E-05 -4.57406E-06 -5.1224E-06
15 -6.75914E-06 -9.86696E-07 -5.68882E-06 -1.17413E-06 -1.3115E-06
16 1.2707E-06 1.85523E-07 1.0696E-06 2.20799E-07 2.46376E-07
17 2.02766E-06 2.96043E-07 1.70678E-06 3.5234E-07 3.93117E-07
18 -8.86398E-07 -1.29409E-07 -7.46089E-07 -1.54009E-07 -1.71898E-07
19 -1.07554E-06 -1.57021E-07 -9.05287E-07 -1.8687E-07 -2.08581E-07
20 -4.98296E-07 -7.27481E-08 -4.1942E-07 -8.65788E-08 -9.66304E-08

Table 8: Labor supply, males in Prof-1, % diff. between the micro and the macro predictions

4.4 Income inequalities induced by population ageing

We now report how the ongoing ageing of our economies may affect income inequalities,

an issue that can be rigorously addressed thanks to the microsimulations model. Among

the various inequality indices, we choose two without apologies: our results are purely

illustrative and do not require thorough dwelling.

We first report in Figure 4 the median, tenth percentile, and ninetieth percentile of

the (net of social security contributions) total income distribution for the entire active

population (that is, excluding the retired cohorts). The dynamics of the median and

ninetieth percentile are easy to understand from the time path of wages (see Figure 3):

the former individual is a young lower-skilled — i.e., working in the profession where wages

are lowest — who benefits from increasing wages in Profession 0 and is largely unaffected

by the drastic reduction in capital returns; the latter individual is an older — and hence

with more accumulated assets — qualified worker (i.e., working in Profession 1) whose

rising wage more than compensates depressed returns on capital during the first half of

the time horizon, and whose recovering capital income offsets later the contracting labor

earnings. Not surprisingly, the time profile of the tenth percentile of income is more erratic
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reflecting undiversified factor ownership in the lower tail of the income distribution: up

to time period 8, the pivotal individual is a (possibly up to then unemployed) low-skilled

worker who benefits from rising wages and is immune to fluctuations in capital returns,

whereas for the next ten years, the pivotal individual, because unemployed, is strongly

affected by low interest rates.
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Figure 4: The dynamics of income inequality, the 10th, 50th, and 90th percentiles

We end this section by reporting in Figure 5 and Figure 6 the contrasted time path

of the Gini coefficients for age-groups 45-54 and 55-64 which of course are what we expect

from what we know on the cohorts (from Table 4) and from the factor-price movements.
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Figure 5: The dynamics of income inequality, the Gini index for the age group 45-54
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Figure 6: The dynamics of income inequality, the Gini index for the age group 55-64

5 Conclusion

Applied GE models have become indispensable tools of qualitative policy assessment. By

essence, they rely on some form of representative agents’ simplification of the economy
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so as to make explicit and manageable the consistency imposed on individual decisions

by technological and resource constraints. As huge micro data-sets have increasingly

been made available in recent years, the microsimulation approach has developed that

apprehends the full heterogeneity of individual behavioral adjustments to policy reforms

at the expense of global consistency. In these models, individual decision-making often

is of the discrete-choice type. In this paper, we suggested a bridge between these two

approaches by making use of exact aggregation results due to Anderson, de Palma and

Thisse (1992). We have argued that this provides an extremely useful interface between

the two approaches: it makes possible to counter the major weakness of each of the

two approaches making them consistently complementary. We have illustrated this in

a dynamic setting, by linking a microsimulation model built from a computer-generated

micro data-set to an OLG-GE representation of an economy submitted to demographic

ageing.
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