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Abstract

Discrete choice models are based on the idea that each user can choose both freely and
independently from other users in a given set of alternatives. But this is not the case in several
situations. In particular, limitations and interactions can occur when the number of available
products of one type is smaller than the total demand for this type. As a consequence, some
individuals can be denied their preferred choice. We develop a methodology to address those
constraints and we apply it to residential location choice, where our empirical data suggest
that availability constraints may bias actual choices. The analysis provides some theoretical
developments and elaborates an iterative procedure for estimating demand in the presence of
capacity constraints. The empirical application relies on the location choice model developed
and estimated in [6] for Ile de France (Paris region) and generalizes it to integrate capacity
constraints.
Keywords: Residential location, constrained Logit, capacity constraints, sampling, Ile-

de-France.
JEL: C35, R21, R31.

1 Introduction

The choices that individual households make in the housing market produce aggregate outcomes
that shape urban traffic conditions, patterns of poverty concentration and ethnic segregation,
the quality of public schools, access to economic opportunities, and the decline and revitalization
of neighborhoods — all of which are important, long-term, and related policy concerns. Efforts
to model individual household residential location choices using discrete choice frameworks date
at least to the pathbreaking work of [9], [11], [12], [13], and [14], among others. Over the past
25 years an extensive literature has examined household location choices in the housing market,
significantly advancing the behavioral underpinnings and the methods used, and including efforts
to represent the residential location choice as a dynamic process: see, e.g., [1].
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One important issue that has not yet received sufficient attention in the literature, and
that is the central focus of the theoretical and empirical analyses presented in this paper, is
the role of availability constraints in households’ choices. In estimating location choice models
by observing agents’ choices among a set of alternatives, an implicit assumption is made that
the alternatives are all available, as they would commonly be if the choice were made among
standard (durable or non durable) commodities which are not in short supply. However, in the
housing market and in many other market situations, such as air travel, limited availability is
not at all uncommon. For example, a particular neighborhood may be highly desired, while
few vacancies may be available to those searching in this area. Seats may be sold out on the
particular flight itinerary a traveler wishes to choose. A standard assumption in economics is
that prices adjust and clear the market, and therefore putting prices on the right hand side
of the model is sufficient to address this concern. However, casual observation supported by
data suggest that this assumption may be too strong in many market conditions, including the
housing market. Various forms of friction make the housing market less than perfectly efficient.
High transactions costs, attachments to social networks, non-trivial search costs, asymmetric
information, low turnover in some locations, and sellers’ willingness to withhold a property
from the market rather than suffer a loss, among other factors, suggest that prices may not
fully clear the market. These factors give rise to supply constraints (or sticky prices) in some
locations. Although the phenomenon we analyze is plausible to find in many metropolitan
housing markets, it is likely that certain characteristics increase the likelihood of finding excess
demand in highly dense housing markets such as that in Paris. Its large population and
international attractiveness as a tourist destination, coupled with the degree of preservation of
the historical core of the city, mean that supply is not likely to be very elastic in the urban core.
Moreover, vacancies may be structurally high due to speculation and given that a significant
fraction of the housing stock is held by non-residents. It is certainly not difficult to imagine
that housing in the most desirable locations of Paris might not be sufficient for supply to meet
demand.

Whether prices actually do fully clear the housing market should be an empirical question
rather than a strong assumption concerning the perfect competition hypothesis. If the assump-
tion that prices clear the market is not valid, then it follows that coefficients estimated for
discrete choice models in markets that experience some level of availability constraints will be
biased, confounding the effect of the constraints with the agents’ preferences. An important
policy implication of this methodological concern is that if these constraint effects are not cor-
rected for in estimation of a choice model, predicted shifts in demand in response to an exogenous
change (such as the change in accessibility due to major transportation investments) would also
be biased, leading to potentially misleading conclusions regarding the relative costs and benefits
of alternative policy choices. A related concern is that housing prices are jointly determined
with location choices in constrained housing markets due to the role of prices in clearing the
market, even if they do not completely clear it. It is therefore necessary to address this source
of endogeneity bias in the estimation process (see the seminal article by [4] in the automobile
market context; [6] or [8] in the location choice context; or [10] for a recent survey on endogeneity
problems in DCM.

In this paper, we are interested in the allocation process when supply is smaller than demand
in some alternatives. Such an allocation has been described as a search mechanism by [5], later on
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applied in the regulated housing market in Holland by [7]. Here we adopt a completely different
approach to address the problem of disequilibrium between supply and demand. We assume
that the final allocation mechanism should obey some simple explicit rules (or axioms). From
these assumptions, we are able to compute the ex post allocation. That is, we only describe
the ex ante choice (i.e. the choice which ignores the capacity constraints) and the ex post
allocation (i.e. the individual choice once the competition for scarce housing resources has taken
place). Therefore, in the proposed approach, we do not specify the complex dynamics which
characterizes the adjustment process from ex ante to ex post allocation. Below we describe the
organization of the paper.

Following a brief description of the study area and the data used in the empirical work
(Section 2), we develop the model specifications and estimation algorithm for markets with
constrained availability of at least some alternatives (Section 3). We then present the estimation
results and an analysis of the sensitivity of the algorithm (Section 4). The paper concludes
(Section 5) with an assessment of the contribution of this research and proposed extensions of
it.

2 The study context

2.1 Central Paris and suburbs

The Ile-de-France is one of the most important economic regions in Europe. It houses 11 mil-
lion people (2 million in Paris) and 5.1 million jobs within a space of 12,000 sq. km. Careful
preservation of the historic central city of Paris and its many landmarks has had the effect of
making Paris a major tourist mecca for the globe, largely by restricting supply of new housing
and office space in the historic core, and protecting historic buildings from alteration or replace-
ment. As a consequence, real estate prices are high in the center, and lower-income housing is
concentrated in the several suburbs and new tows, mainly (but not only) in the eastern portion
of the region. This is an important motivation for the focus of this paper, since the desirability
of central Paris, coupled with strong supply constraints, provides a prime example of the kind of
constrained market we wish to analyze. Most of the growth in population and employment are
outside the core of the city, fueling rapid suburbanization and growth in travel. The regional
express roadway network contains 4,500 lane-km, and despite the traditional rush-hour traffic
jams, the average duration of a car trip is still only 19 minutes (EGT, 2001). With a ubiquitous
metro system in central Paris and half of households in the city not owning a car, transit rider-
ship is quite high. Half of commuting trips in the region in 2001 were by private cars, with 36%
using public transportation and 14% using a bicycle or walking, though the transit mode share
has declined 6% over the past twenty years as the region has decentralized. An efficient radial
public transport system (RER) and freeways connect Paris to the suburbs.

Most of the households (71%) are male headed. The “poor households” (that is, the 33%
households in the region with the lowest per capita income, defined as household income divided
by the square root of the number of persons in the household) are unevenly distributed in the
region: only 26% of households living in district 78, to the West of Paris, are poor, whereas
this fraction goes up to 41% in district 93, to the East. These same two districts contain the
highest (38% in district 78) and the lowest (21% in district 93) concentrations of rich households.
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Single-person households are highly concentrated in Paris city (52% of households in Paris are
single). Between 25 to 30% percent of households of all the districts have two members. The
larger families represent a larger share in rural districts in outer ring. About 25% percent of
households have no working member, and out of these, 28% percent live in Paris city1. Nearly
50% of the families in outer ring have two or more workers. Foreign households are most
concentrated in district 93 (19%), and are less represented in the outer ring (9%). About 25%
of households have a young head. They represent a larger share in Paris center and district 92
(31% and 27%) and their share is uniform in other districts (23%).

2.2 Geographical units and moves

The geographic units used in this analysis follow the administrative boundaries used in France.
The smallest administrative unit, and the one we use as the basis for the residential location
choice model is the commune, of which there are 1300 in the Ile-de-France. These roughly
correspond to small cities, in terms of having local administrative control of land use decisions.
Note that local administrative control operates at two different levels within Paris: each of the
20 arrondisements has his own mayor, who has less administrative control than the mayor of
Paris. However, we will still refer to Paris arrondissements as communes for simplicity. The
1300 communes are grouped into 8 districts (départements).

Table 1 presents the origin and destination rings and districts for the moves observed in
1998, defined as households who changed their location in 1998, with a final destination in Ile-
de-France. This population of recent movers within the region is the subject of our analysis
of the housing market in the Paris region. Most of the moves in 1998 are within the same
district, although households who move to Paris come predominantly from outside Ile-de-France,
following a classical migration staging pattern observed in many other cities. The most common
destination for immigrants from outside Ile-de-France region is Paris, followed by district 92 in
the inner ring, which shares many attributes with Paris.

Table (1): The distribution of moves between different rings in 1998 (origin by destination).
Origin district

Current District Outside Paris Inner Ring Outer Ring Total

Paris
Frequency
Percent

77.579
42.9%

67.027
37.1%

18.192
10.1%

18.023
10.0%

180.821
30.68%

Inner Ring
Frequency
Percent

61.135
29.5%

22.633
10.9%

103.205
49.8%

20.168
9.7%

207.141
35.15%

Outer Ring
Frequency
Percent

49.936
24.8%

9.299
4.6%

23.967
11.9%

118.191
58.7%

201.393
34.17%

Ile-de-France
Frequency
Percent

188.650
32.01%

98.959
16.79%

145.364
24.66%

156.382
26.53%

589.355
100.00%

Source: Census, 1999.

1This reflects more a larger fraction of retired household members in Paris city than a larger unemployment
ratio.
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2.3 Housing Turnover Index (HTI) and supply

According to the 1999 Census, 8.06% of the dwellings located in Ile-de-France were vacant in
March 1999. While this represents a reasonable estimate of the vacancy rate over a very short
period of time, for our analysis, we wish to approximate the availability of housing over a longer
period of one year (one year supply).2 Unfortunately, we have no information on how long each
dwelling was vacant before a household moved in. However, during the period between the time
a household moved out and another moved in, the dwelling was vacant and could have been
chosen by another household. For this reason, some fraction, denoted by λ, of the dwellings
occupied in March 1999 by a household which moved in 1998 should be included in the one year
supply. This fraction λ is interpreted as a Housing Turnover Index. If we assume that dwellings
are vacant, on average, during half a year (λ = 0.5), then the one-year supply is made of 409, 491
dwellings vacant in March 1999, and half the 589, 355 dwellings in which a household moved in
1998, which represents a total supply of 704, 168.5 dwellings in the region. We consider it as
an upper bound for the supply, leading to a lower bound for the constraints, while we will also
explore smaller values for λ. More interestingly, the time a dwelling remains vacant is shorter in
Paris than in most of the other districts, which means that the HTI λ varies across the region.
We therefore computed the HTI for each district under a stationarity assumption.3 We assume
that the ratio of the (cumulated) stock of vacant dwelling to the (cumulated) supply stock is
equal to the ratio of the one-year flow of movers to the supply defined above, which can be
considered as a one-year supply flow.4 Table 2 presents the vacancy rate and HTI λ computed
by district and shows that, although Paris displays the highest vacancy rate, it also displays
the second lowest HTI. The global HTI is 0.39598 for Ile-de-France, which means that dwellings
remain vacant on average 4.75 months before they are occupied again.

Table (2): Vacancy rate and Housing Turnover Index.
Sub-region District Vacancy rate HTI λ
Paris 75 0.10325 0.36773

Close Suburbs
(Inner Ring)

92 (West)
93 (North)
94 (South)

0.08447
0.08461
0.07479

0.41411
0.28478
0.38813

Far away suburbs
(Outer Ring)

78 (West)
91 (South)
95 (North)
77 (East)

0.06188
0.06596
0.06286
0.06557

0.49909
0.42586
0.45274
0.44376

2We observe the households which moved during one year (1998), without information on the exact date they
moved. In addition, we know which district they come from, but not which commune they come from. Moreover,
we have no information on the number of households who left Ile de France in 1998.

3The HTI computed at a lower geographical level would be too sensitive to the randomness of the number of
movers during a given year.

4 LetM and V denote the numbers of movers and vacant units, respectively. The annual supply is λM+V , so
that the annual supply over demand ratio is (λM + V ) /M , where λ represents the fraction of a year a housing unit
remains vacant after a household leaves it. Let T and S denote the total housing stock and the secondary residence
units (these dwellings should not be included in the supply, although most of them were not occupied at the time
census data were collected), respectively. The aggregate supply over demand ratio is (T − S) / (T − S − V ).
Equating these two ratios, we find an expression for λ: λ = T−S

T−S−V −
V
M
.
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Source: Author’s computations from census data.

3 Model specification

In this section, we develop the specification for the model, beginning with the household res-
idential location choice, and elaborating the basic model to address constraints. For clarity of
exposition, we begin with a stronger assumption of homogeneous agents (no individual character-
istics are considered), and then relax this to accommodate heterogeneous agents. We follow with
the description of the iterative solution algorithm, first when the demand is known (parameters
are given for the residential location choice model), and then when the demand is unknown. In
this latter case, we need to estimate the parameters of the location choice model to check if the
capacity constraint in a commune is violated or not, and to separate this constraint effect from
the effect of preferences.

3.1 Household residential location choice: basic model and notation

We refer to households that make a location choice within a given year as movers. These
represent the set of agents producing demand for housing. Supply of housing is considered to be
the set of housing units that are available for locating households (see Section 2.3 and footnote
4). The set of alternatives in the housing market are represented by J = 1300 communes,
denoted by J , with Card (J ) = J . The demand for alternative j is denoted by Dj and the
supply (or capacity) of alternative j is denoted by Sj . Individual decision makers are indexed
by i, i = 1...N . The conditional utility of individual i selecting alternative j is:

U i
j = V i

j + εij , i = 1...N, j ∈ J , (1)

where V i
j represents the systematic component of the utility and where εij are i.i.d. random

variables, with a double exponential distribution with a variance equal to μ2π2/6, where μ is
a positive scale parameter. In this case, the probability Pij that individual i prefers alternative
(commune) j is given by the multinomial logit formula (See [2] for details):

Pij =
exp

³
V i
j /μ

´
X

j0∈J
exp

³
V i
j0/μ

´ , i = 1...N, j ∈ J . (2)

In the homogeneous case where we treat agents as though they were identical, systematic utilities
and choice probabilities do not vary between individuals, so they are denoted by Vj and Pj =

exp(Vj/μ)X
j0∈J

exp(Vj0/μ)
, respectively. The expected demand, Dj , for alternative j is:

Dj =

( XN

i=1
Pij in the heterogeneous case

NPj in the homogeneous case
, j ∈ J . (3)
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3.2 Introducing capacity constraints

The analysis of the residential choices in Ile-de-France (based on preliminary demand estimates)
shows that many alternatives (about half, depending on the specification) have greater demand
than supply. We consider below the situation where demand Dj strictly exceeds supply Sj for
at least one alternative j. In that case, we say that the system is constrained. We denote
Dj − Sj as the excess demand, which is positive for at least one alternative when the system
is constrained. When the system is constrained, the choices based only on preferences, or ex
ante choices, differ from the actual allocation consistent with preferences and with capacity
constraints, or ex post allocation, because the constraints are binding and some households are
forced to take an alternative which was not their first preference. Note that even when only
one alternative is constrained, ex post demand is a priori different from ex ante demand, for
all alternatives. We refer to the demand after constraints are imposed as the ex post demand.
It is in this sense that we will refer to equilibrium, or market clearing. The time frame for the
analysis is considered short-term, with supply assumed to be constant.

In order to guarantee that there exists at least one feasible allocation, we also assume that
constraints are not globally too severe. That is, we impose a feasibility condition that aggregate
supply is sufficient to accommodate aggregate demand, resulting in a vacancy rate that is strictly
positive:

N =
P

j∈J Dj <
P

j∈J Sj . (4)

When the system is constrained, the (ex post) probability that individual i is allocated to
alternative j is denoted by P̃j in the homogeneous case (or by P̃ij in the heterogeneous case).
The ex ante demand Dj defined in (3) corresponds to ex ante choices, whereas the observed
demand (or ex post demand), denoted by D̃j , corresponds to the ex post allocation:

D̃j =

( XN

i=1
P̃ij in the heterogeneous case

N P̃j in the homogeneous case
. (5)

Note that, when the system is not constrained, then P̃ij = Pij , j ∈ J , for all alternatives and all
individuals, and the observed demand is equal to the ex ante demand for all alternatives. When
the system is constrained, D̃j is bounded by Sj (j ∈ J ) and the constraint is binding for at
least one alternative. For a given alternative j, two situations may arise:
1. Either alternative j is unconstrained ex ante: Dj < Sj . In this case, alternative j is uncon-
strained ex post if D̃j < Sj , while alternative j is constrained ex post if D̃j = Sj .
2. Or alternative j is constrained ex ante: Dj ≥ Sj . In this case, it can be shown, under simple
regularity conditions, that D̃j = Sj , i.e. alternative j is also constrained ex post.

We define the following sets of unconstrained alternatives: C̄ =
n
j ∈ J | D̃j < Sj

o
denotes

the alternatives unconstrained ex post, while C̄ (0) = {j ∈ J | Dj < Sj} denotes the alternatives
unconstrained ex ante.

Similarly, we define the following sets of constrained alternatives: C =
n
j ∈ J | D̃j = Sj

o
denotes the alternatives constrained ex post, while C (0) = {j ∈ J | Dj ≥ Sj} denotes the set of
alternatives constrained ex ante.

These four sets determine two partitions of J (since C ∩ C̄ = C (0)∩C̄ (0) = ∅ and C ∪ C̄ = C (0)∪
C̄ (0) = J ). When the system is constrained, the actual allocation is the result of a complex
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mechanism which depends on the assumptions (priority rules) introduced below. Such assump-
tions characterize ex post allocation.

Constraints have two consequences: first, if alternative j is constrained ex ante (j ∈ C (0)), a
fraction of the individuals who would select alternative j without capacity constraints (Dj) must
instead choose a less desirable alternative k; second, due to the first consequence, the excess
demand generated in alternatives constrained ex ante is reallocated to alternatives which were
not constrained ex ante. Therefore, the observed demand is larger than (or equal to) the ex
ante demand in all alternatives unconstrained ex ante. Some of the alternatives which are not
constrained ex ante may be constrained ex post, due to the reallocation of excess demand.

We now introduce a first assumption: free allocation, which means that if an individual
prefers an alternative j, which is unconstrained ex post, he can be sure to be allocated to it.

Assumption 1 (Free allocation) Let j ∈ C̄. Then

P ({i allocated to j | i prefers j}) = 1,∀ i = 1...N.

However, note that an individual may be denied access to his preferred choice j if it is
constrained ex post, and may be forced to choose another alternative (that may be constrained
or unconstrained ex ante). Assumption 1 implies that the IIA property (specific to the MNL
model) is valid for the unconstrained alternative, that is, for two alternatives unconstrained
ex post, the ratio of (ex post) allocation probabilities is equal to the ratio of (ex ante) choice
probabilities. Assumption 1 implies the IIA property in the following sense:

Lemma 1 (Alternative unconstrained ex post) If Assumption 1 holds and if alternative j
and k are unconstrained ex post, then the allocation probabilities satisfy the IIA property in the
sense that:

P̃ij
P̃ik
=
Pij
Pik

, ∀ i = 1...N, ∀ j, k ∈ C̄. (6)

Moreover:
P̃ij ≥ Pij and D̃j ≥ Dj , ∀ i = 1...N, ∀ j ∈ C̄. (7)

The equality (6) states that the allocation probabilities satisfy the IIA property for uncon-
strained alternatives. The inequalities (7) state that the probability that individual i is allocated
to j is larger than the probability that he prefers j and the observed demand addressed to j is
larger than the ex ante demand if j is unconstrained. An immediate consequence of Assumption
1 and Lemma 1 is that if alternative j is constrained ex ante, then it is also constrained ex post;
if alternative j is unconstrained ex post, then it is also unconstrained ex ante.(in formal terms,
C (0) ⊂ C and C̄ ⊂ C̄ (0)).

Lemma (1) states that the individual ratio P̃ij/Pij of the actual allocation probability to the
choice probability is the same across all unconstrained alternatives, since equality (6) can be
rewritten as:

P̃ij
Pij
=
P̃ik
Pik

def
= Ωi, ∀ i = 1...N, ∀ j, k ∈ C̄, (8)

8



where the common value of this ratio is denoted by Ωi. We interpret Ωi as the individual alloca-
tion ratio for individual i. When Ωi = 1.1, for example, this implies that, for any unconstrained
alternative j, the probability that individual i is allocated to alternative j is 10% higher than
the probability that i prefers j. This also means that, if individual i is allocated to an alternat-
ive j unconstrained ex post, the probability that j is not his/her preferred alternative is 9.09%

(
P̃ij−Pij
P̃ij

= Ωi−1
Ωi
). The ratio Ωi−1

Ωi
, which does not depend on j, therefore corresponds to the

probability that i is not allocated to his/her preferred alternative, given that he/she is allocated
to an alternative unconstrained ex post. Note that (7) implies Ωi > 1, so Ωi−1

Ωi
> 0.

The computation of Ωi cannot be performed before the allocation rules are defined for the ex
post constrained alternatives. We now introduce a second assumption concerning the allocation
in alternatives which are constrained ex post. We assume that if an individual i has a stronger
preference (ex ante) for the alternative j constrained ex post than another individual i0, in the
sense that the choice probability for i is larger than the choice probability for i0, individual i will
also have proportionally more chances than individual i0 to be allocated ex post to alternative
j in the following sense:

Assumption 2 (No priority rule) If j ∈ C, the individual allocation ratio of alternative j,
constrained ex post is the same for all individuals:

P̃ij
Pij
=
P̃i0j
Pi0j

def
= Φj , ∀ i, i0 = 1...N, ∀ j ∈ C.

Assumption 2 states that the individual allocation ratio for alternative j, denoted by Φj , is
the same for each individual (i = 1...N). Assumption 2 can therefore be interpreted as a fairness
criterion.

This assumption suffices to determine the queue discipline for the alternatives which are
constrained ex post. Indeed, it is straightforward to show that the common value (across indi-
viduals) of the allocation ratio P̃ij/Pij is equal to the relative supply (measured by Sj/Dj):

Lemma 2 (Alternative constrained ex post) If Assumption 2 holds and alternative j is
constrained ex post, the common value of the individual allocation ratio is equal to the relative
supply, i.e.:

Φj =
Sj
Dj

< 1, ∀ j ∈ C.

Assumptions 1 and 2 hold, throughout the rest of the paper. They are essentially sufficient to
solve for an equilibrium. It is necessary, also, to eliminate extreme preferences (which are hardly
observed in our data), which corresponds to a kind of “no preference reversal” assumption.5

We provide below the solution for the homogeneous case and sketch the solution for the
heterogenous case.

5We need to eliminate extreme preferences. With that respect, one supplementary assumption is the “no
preference reversal” : no individual in the population has a strong preference for alternatives, which are constrained
ex post but not ex ante. More specifically, we assume that j∈C∩C̄(0) P

i
j is not too large.
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3.3 Equilibrium solution with capacity constraints

The solution requires the computation of two unknown pieces of information: (1) which altern-
atives are constrained ex post and (2) the value of Ωi, i = 1...N . We assume for the moment
that we know which alternatives are constrained ex post and will return to the computation of
this list subsequently.

Recall that, for an unconstrained alternative j, the individual allocation ratio, P̃ij/Pij = Ωi,
is independent of the alternative. For any alternative j unconstrained ex post, the individual
allocation ratio P̃ij/Pij is larger than 1 since some individuals are reallocated from their preferred
constrained alternative to alternative j, whereas, according to Assumption 1, all individuals
who prefer j are allocated to j. The value of the individual allocation ratio in unconstrained
alternatives is given by:

Lemma 3 (Individual allocation ratio) Consider an individual i. The individual allocation
ratio is the same for each alternative unconstrained ex post and is given by :

P̃ij
Pij
= Ωi =

1−
P

j∈C
Sj
Dj
PijP

k∈C̄ Pik
> 1,∀ j ∈ C̄.

Lemma 3 shows that the individual allocation ratio Ωi = P̃ij/Pij , ∀ j ∈ C̄ is uniquely determ-

ined once the set C of alternatives constrained ex post is known. Note that Ωi =
1− j∈C

Sj
Dj
Pij

1− j∈C Pij
,

which is larger than 1 since Sj
Dj

< 1,∀ j ∈ C (0) and
P

j∈C∩C̄(0) Pij is not too large (see footnote

5), so that the negative difference
P

j∈C∩C̄(0)

³
Pij −

Sj
Dj
Pij
´
cannot offset the positive differenceP

j∈C(0)

³
Pij −

Sj
Dj
Pij
´
.

The ex ante demand is given by (3), while the ex post demand is defined by: D̃j =
XN

i=1
P̃ij =XN

i=1
ΩiPij (see equation (5)). The aggregate allocation ratio, Ω̄j , is defined as a weighted

average of individual allocation ratios Ωi:

Ω̄j
def
=

XN

i=1
ΩiPijXN

i=1
Pij

> 1,∀ j ∈ J . (9)

Note that Ω̄j > 1 if j ∈ C̄ (see Lemma 3). In this case, we have (using (3)):

D̃j = Ω̄jDj and P̃ij = ΩiPij ,∀ j ∈ C̄.

For example, Ω̄j = 1.1 means that observed demand D̃j is 10% higher than the expected
demand Dj . This also means that 9.09% of the individuals allocated to alternative j prefer
another alternative (see also discussion of Equation (8)). Collecting the previous results, we
have:
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Lemma 4 (Aggregate allocation ratio) Consider an alternative unconstrained ex post. The
alternative-specific aggregate allocation ratio is :

Ω̄j =

XN

i=1
ΩiPijXN

i=1
Pij

=
D̃j

Dj
, j ∈ C̄,

where Ωi are given by Lemma 3.

Recall that the value of the individual allocation ratio Ωi can be computed once the set C is
known (see Lemma 3). Conversely, assume that the ratios Ωi (and therefore Ω̄j) are known. It

can be shown that an alternative j is constrained ex post if and only if Ω̄jDj =
XN

i=1
ΩiPij is

larger than (or equal to) Sj . Therefore, we have:

j ∈ C̄ ⇔ Ω̄j ≥
Sj
Dj

. (10)

Note that, if alternative j is constrained ex ante, then Sj/Dj < 1, and the condition (10) is
always satisfied (ex ante constraint implies ex post constraint). If alternative j is constrained
ex post but not ex ante, then Sj/Dj ≥ 1, but Ω̄j is even larger. In both cases (j ∈ C (0) and
j ∈ C ∩ C̄ (0)), we have:

D̃j = Sj and P̃ij =
Sj
Dj
Pij , j ∈ C.

The proofs of existence and uniqueness of a global solution
¡
Ωi, C

¢
remain an open issue (although

numerical simulation suggest that existence and uniqueness are guaranteed).
Below, we provide a method for computing the allocation equilibrium, either when the de-

mand is known and the parameters are given, or when it is unknown and the parameters need
to be estimated in tandem with the iterative procedure.

3.4 Computational method

3.4.1 Allocation Probabilities

The allocation probabilities are given by different expressions according to whether the altern-
atives are constrained or not ex post. The allocation probabilities can still be written as a
multinomial logit model, but with an additional term, or “correction factor”, ln

³
πij

´
, which

expresses the allocation ratio.

Theorem 1 (Allocation probabilities) If Assumptions 1 and 2 hold, the allocation probab-
ilities are given by the adjusted MNL formula:

P̃ij =
exp

³
Ṽ i
j /μ

´
X

k∈J
exp

³
Ṽ i
k/μ

´ , with (11a)

Ṽ i
j = V i

j + μ ln
¡
πij
¢
, with (11b)

πij =

(
Sj
Dj
if j ∈ C

Ωi if j ∈ C̄
. (11c)
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Proof. The denominator in (11a) isX
k∈J

exp
³
Ṽ i
k/μ

´
=
X

k∈C
Sk
Dk

exp
¡
V i
k/μ

¢
+Ωi ×

X
k∈C̄

exp
¡
V i
k/μ

¢

=
X

j∈J
exp

¡
V i
j /μ

¢
×

⎡⎢⎣X
k∈C

Sk
Dk

exp
¡
V i
k/μ

¢X
j∈J

exp
³
V i
j /μ

´ +ΩiX
k∈C̄

exp
¡
V i
k/μ

¢X
j∈J

exp
³
V i
j /μ

´
⎤⎥⎦

=
X

j∈J
exp

¡
V i
j /μ

¢
×
∙X

k∈C
Sk
Dk
Pik +Ωi

X
k∈C̄

Pik
¸

=
X

j∈J
exp

¡
V i
j /μ

¢
×
X

j∈J
P̃ij =

X
j∈J

exp
¡
V i
j /μ

¢
.

Therefore:

exp
³
Ṽ i
j /μ

´
X

k∈J
exp

³
Ṽ i
k/μ

´ = πij ×
exp

³
V i
j /μ

´
X

j∈J
exp

³
V i
j /μ

´ = πijPij = P̃ij .

The reader should still keep in mind that the difficult part of this approach (and of any
approach dealing with constraints) is the determination of the set of alternatives which are
constrained ex post.

We first describe the iterative procedure to find the allocation probabilities and the ex post
constrained alternatives, when the demand is known, as would be the case once the model is
estimated and is being used to make predictions. This simplifies the initial exposition. Next we
treat the case when demand is unknown and has to be estimated.

3.4.2 Algorithm K: the solution algorithm with known demand

We now turn to the development of the solution algorithm for the model, beginning with the
simpler circumstance in which the utility parameters are assumed to be known a priori. We
refer to this case as known demand, and its solution algorithm as Algorithm K. The formulas
are given by Lemma 3 for the individual allocation ratio Ωi, by Lemma 4 for the aggregate
allocation ratio Ω̄j and by condition (10) for the set C of alternatives j constrained ex post.
The algorithm allows computation of Ωi, Ω̄j and C with less than J iterations. The details of
the Algorithm K are included in the Appendix. In heuristic terms, the algorithm iteratively
estimates the constraints and the individual and aggregate allocation ratios until they converge.

3.4.3 Algorithm U: the solution algorithm with unknown demand

When the utility parameters are unknown, we need to jointly estimate the parameters of the
model and to determine the allocated demand, given a set of parameters. We accomplish this
by creating a new Algorithm U that embeds Algorithm K as an inner loop, and adds an outer

12



loop that generates estimates of the utility parameters and the resulting demand. The approach
is to iterate between a utility parameter estimation phase, which incorporates the correcting
factor ln

³
πij

´
, computed during the previous iteration and an inner loop based on Algorithm

K, which in turn relies on the previous iteration estimated demand. The outer loop (demand
estimation) is indexed by l0 and the inner loop (constraints) is indexed by l.

We require additional notations: D̂j (l
0), P̂ij (l0) and ln

h
πij (l

0)
i
represent the estimation of

the demand, the choice probabilities and the correction factor at iteration l0. Moreover, C (l0, l)
denotes the set of alternatives constrained ex post at iteration (l0, l), where l0 corresponds to
the demand estimation and l corresponds to the constraints. We define Ωi (l0, l) and Ω̄j (l0, l)
in a similar way. We provide the structure of the solution algorithm when unknown demand
is estimated in the Appendix, labelled Algorithm U. In the next section, we use Algorithm
U to estimate the residential location demand model when the system is constrained. In the
simulation results reported (and not reported), Algorithm U always converged to a unique
solution.

4 Empirical results

4.1 Data

The household data come from the 1999 census, for which we were able to access household-level
data for the entire population, allowing us to test the sensitivity of the estimation to using a
range of sampling rates from the population, a range of numbers of alternatives and various
specifications for demand equation and supply computation (value of the Housing Turnover
Index). The analysis focuses on “recent movers”: households who settled or moved to the region
recently, that is during year 1998. Among the 4,510,369 households living in the study area in
March 1999, 589,355 moved into or within the region of interest during year 1998.

The housing price data used in the model come from the “base de données des Notaires”
(notaries’ database) and contains the average price of single-family dwellings sold in the commune
in 1998. We do not observe prices for single dwellings, but only the number of dwellings sold and
the average price in each commune. Table 3 presents statistics computed with one observation
(average price) per commune, weighted by the number of dwellings sold in that commune during
year 1998. Differences in average housing prices by district are large: prices are higher in Paris,
intermediate in the close suburbs and decline in the more distant suburbs, which we refer to as
the inner ring and the outer ring, respectively. In addition, prices are higher in the western part
of the area than in the eastern part, consistent with the spatial patterns of social stratification.
Note that the heterogeneity of prices is probably underestimated when using such average prices
computed at the commune level, because they do not correct for the characteristics of the
dwellings, which are typically large houses in the West suburbs and small flats inside Paris.
This suggests that the differences between Paris and the suburbs reported in Table 3 are smaller
than differences in price per square meter, and this may explain why the largest average price
is observed in district 92, and is nearly twice the largest average price inside Paris. See [6] for
additional details on the data, and for price endogeneity tests.
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Table (3): Prices by district (in year 1998).

Sub-region District Average
Standard
Deviation

Minimum Maximum

Paris 75 294,500 165,241 83,939 694,375

Close Suburbs
(Inner Ring)

92 (West)
93 (North)
94 (South)

247,556
115,709
144,098

205,038
49,055
74,603

66,966
47,876
53,356

1,198,950
259,163
373,499

Far away suburbs
(Outer Ring)

78 (West)
91 (South)
95 (North)
77 (East)

135,122
114,826
104,375
91,539

65,714
46,740
41,670
37,220

38,112
24,719
25,154
18,028

373,815
332,338
241,692
253,827

Source: Author’s computations from notaries’ database.
The attributes of the alternatives have been computed from different sources, mainly drawing

on data from the IAURIF metropolitan planning agency. Several variables in the household
location choice model warrant a brief description. "Same district as before" is a dummy
variable coded 1 when a household lived in the same District as the commune represented by
an alternative. Paris is a dummy variable coded 1 if the commune is in Paris. The travel
times for TC correspond to transit mode, whereas those by VP correspond to private vehicle
(auto) mode. "Distance to highway" is a linear distance of the centroid of the commune to
the nearest highway. Social interaction terms are included as the percentage of households in
a commune having a certain characteristic, interacted with a dummy variable for whether the
locating household possesses a certain characteristic. Remaining variables used in the household
location choice model are self-explanatory characteristics of communes.

4.2 Location choice without capacity constraints

The variables used in the initial model specification, assuming no constraints on availability of
alternatives, are shown in Table 4. Note that variables describing alternative locations that are
expected to have a similar influence on the utility of all types of households are entered with no
interactions, whereas all household characteristics included in the specification are entered only
through interactions with characteristics of alternatives. This is due to the fact that household
characteristics do not vary across the alternatives, whereas characteristics of the alternatives
do. Including a household characteristic individually would not allow the maximum likelihood
estimation algorithm to converge, since there is no way to estimate a parameter on a variable
that is constant across all alternatives. We have selected specific household characteristics to
interact with a subset of alternative characteristics, in order to capture the most important
sources of systematic heterogeneity in preferences across market segments in the population. In
particular, household size, income, number or workers, and whether the household is foreign-born
are expected to produce potentially significant differences in the utility of the social composition
of the commune in terms of social sorting, or residential segregation.

Given the large size of the databases, there is a trade-off between the number of households,
the number of alternatives and the number of explanatory variables which can be used for
estimating the model. Table 4 contains the results of the residential location choice model
estimation, estimated on a 0.5% sample of households (that is 2, 946 households) with all the
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alternatives, and assuming that the system is not constrained (iteration l0 = 0 in algorithm U).
With a pseudo-R2 (McFadden’s likelihood ratio index) of 30.6%, this model has a rather good
explanatory power at the individual level. Later on, we will explore the validity of this model at
the aggregate level (see Section 4.4.4). We find a very significant effect of the “same district as
before move” variable, confirming (as expected) a strong preference of households to move in the
same district or neighborhood in which they lived before the move.6 The “Paris” coefficient is
not significant, suggesting that the relative attractiveness of Paris is captured in local amenities
and other explanatory variables.

As expected, housing price has a negative effect on location preference for a commune. We
tested for the endogeneity of prices in the location choice model introducing the residual of a
hedonic price equation (results not reported here). Adding the residuals of the price equation
as an explanatory variable, the estimated coefficients changes trivially and the coefficient of this
new variable is not at all significant. This result confirms that housing price is not endogenous
(in the econometric sense) with regard to the location choice model. In other words, the variables
used in these two models fully explain the correlation between prices and location choice. Price
effect increases with the age of the household head and decreases as the household income
increases. The older heads of households are more sensitive to price and the richer households
are less sensitive to it. Since price is entered using three variables to capture average effects as
well as interactions with age and income, the combined effects are complex. We note that the
average price effect as well as the age and income interactions, all have expected signs. However,
for a small subset of the population, namely very young and very rich households, the net price
effect from the interaction of these three coefficients would be predicted by this model to show
a slight positive preference for higher prices in communes where the neighboring households are
in the same socioeconomic category and which have more amenities. The relative sensitivity to
price is as expected, though the potential for a small positive preference for higher prices for this
specific subpopulation and sample of locations is likely to be due to some amenities that are not
accounted for in the model, rather than an actual preference for a higher price, ceteris paribus.
In that case, the price effect would become negative for all households if amenities were totally
controlled for (see, e.g., [8]).

In this specification, increase of the average travel time by public transit decreases equally
the preference of households headed by a man or by a woman. On the opposite, location is not
sensitive, ceteris paribus, to the average travel time by private car, or to the distance to highway.
These last results are probably explained by the large correlation between “TC” (public transit),
“VP” (private car) and “Distance to highway” variables.

In this specification, the demand is not sensitive either to the number of subway (metro)
or railway stations. This may also be explained by a large correlation with other explanatory
variables such as the “Paris” dummy.

Table (4): Residential location choice, all alternatives, no constraints (0.5% sample)

6Testing the effect of the distance from last residence would be interesting, but it was not possible to perform
this test with our available data, which did not contain information on previous residence location more detailed
than the district.
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Variable Coefficient Std error t-stat.
Same district as before move 2.585 0.047 54.80
Paris 0.047 0.128 0.364
Log(Price) -7.108 1.445 -4.920
Log(Price)* (Age-20)/10 -0.220 0.0473 -4.649
Log(Price)* Log(Income) 0.746 0.146 5.110
Number Railway stations 0.0053 0.0151 0.352
Number Subway stations -0.0011 0.0070 -0.156
Average travel time from j, commuting (TC) [hour] -0.635 0.157 -4.050
TC*(Dummy female) [hour] -0.066 0.231 -0.287
Average travel time from j, by private car (VP) [hour] 0.219 0.265 0.827
Distance to highway [103 km] -3.238 3.441 -0.941
% households with 1 member * 1 member in h 3.769 0.452 8.336
% households with 2 members * 2 members in h -0.591 1.678 -0.352
% households with 3+ members * 3+ member in h 2.523 0.455 5.549
% hh with no working memb. * no working memb. in h 6.489 1.283 5.059
% hh with 1 working memb. * 1 working memb. in h 0.855 0.789 1.085
% hh with 2+ working memb. * 2+ working memb. in h -0.890 0.556 -1.601
% poor households * h poor 1.459 0.664 2.197
% households with a foreign head * foreign head in h 5.125 0.911 5.628
% households with a foreign head * French head in h -3.575 0.556 -6.432
Employment [1,000] 0.263 1.292 0.204
Density (Population/Surface) [1000 persons/km] -6.625 4.360 -1.52
Log(Population) 1.011 0.029 35.00
% change in population, 1990 to 1999 0.185 0.097 1.898

The estimated coefficients corresponding to the socioeconomic structure of the commune
show a general preference of the households to live with neighbors of the same social category.
This preference is very strong for singles, for large families, for households without workers, or
with a foreign head. Households of French origin tend to avoid locations in which there are higher
concentrations of foreign households. The coefficient for the total number of jobs is insignificant
in this specification. Households prefer less dense communes, and the communes that have
absorbed more population during the 1990-99 period attract still more households. Note that
the very large and significant coefficient of “Log(Population)” should not be interpreted as a
preference for more populated communes but rather as a proxy for a series of commune dummies
allowing a better fit for aggregate demand.

4.3 Sensitivity analysis

In order to determine how robust these results are with respect to the sampling procedures we
are using, we present below the results of sensitivity analyses to test for the effects different sizes
of sampled alternatives. Estimates were also performed to test the effect of different sampling
rates for households, with a benchmark 0.5% of households and 100 alternatives. The results, not
reported here in order to save place, are available on demand. They confirm that the variances
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decrease proportionally to sample size, and that estimated coefficients do not vary significantly
with households sampling rate.

Table 5 presents the results when 100, 200, 500 and all alternatives are considered for each
household. When only a fraction of alternatives is considered, they are selected randomly using
an importance sampling strategy (at the commune level). More specifically, the probability of
inclusion is proportional to the number of dwellings in the commune; each alternative is selected
independently from the other alternatives considered for the same household and for the other
households, and repetitions are allowed. This is equivalent to a uniform sampling of dwellings.7

The last column in Table 5 corresponds to the coefficients reported in Table 4. In order to save
space, the significance of the coefficients is indicated using signs (*, † and ‡).

Table (5): Impact of the number of alternatives on residential location choice (0.5% sample)
Variable \ Household Sampling Rate 100 200 500 1300
Same district as before move 2.578‡ 2.583‡ 2.582‡ 2.585‡
Paris 0.079 0.246* 0.229* 0.047
Log(Price) -7.847‡ -8.062‡ -7.790‡ -7.108‡
Log(Price)* (Age-20)/10 -0.233‡ -0.235‡ -0.232‡ -0.220‡
Log(Price)* Log(Income) 0.808‡ 0.822‡ 0.799‡ 0.746‡
Number Railway stations -0.0014 -0.0032 -0.0080 0.0053
Number Subway stations 0.011* 0.011* -0.0013 -0.0011
Average travel time from j, commuting (TC) [hour] -0.251* -0.177 -0.493‡ -0.635‡
TC*(Dummy female) [hour] -0.108 -0.137 -0.102 -0.066
Average travel time from j, by private car (VP) [hour] -0.101 0.012 0.263 0.219
Distance to highway [103 km] -4.814* -5.351* -2.922 -3.238
% households with 1 member * 1 member in h 3.246‡ 3.325‡ 3.660‡ 3.769‡
% households with 2 members* 2 members in h 0.137 0.257 -0.082 -0.591
% households with 3+ members* 3+ member in h 2.962‡ 2.887‡ 2.627‡ 2.523‡
% hh with no working memb. * no working memb. in h 6.384‡ 6.793‡ 6.940‡ 6.489‡
% hh with 1 working memb. * 1 working memb. in h -0.118 0.016 0.537 0.855
% hh with 2+ working memb. * 2+ working memb. in h -0.112 -0.234 -0.758* -0.890*
% poor households * h poor 1.148* 1.337† 1.412† 1.459†
% households with a foreign head * foreign head in h 5.140‡ 4.628‡ 4.771‡ 5.125‡
% households with a foreign head * French head in h -3.849‡ -4.327‡ -4.026‡ -3.575‡
Employment [1,000] 1.951* 3.289‡ 3.913‡ 0.263
Density (Population/Surface) [1000 persons/km] 0.661 2.167 3.079 -6.625*
Log(Population) 0.211‡ 0.377‡ 0.728‡ 1.011‡
% change in population, 1990 to 1999 0.201† 0.232‡ 0.185* 0.185†
Pseudo R2 14.4% 15.7% 21.3% 30.6%
*: significant at the 10% level; †: significant at the 5% level; ‡: significant at the 1% level

The first result to be noticed is that the variations in the coefficients as a function of the
7 In this case, repetitions of the same dwelling in the same individual choice set should be excluded, but the

probability of repetition in a set of more than 5 million dwellings is negligible.
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number of alternatives are very limited for the coefficients which are significant. This is consist-
ent with the theory that importance sampling leads to unbiased coefficients when a correcting
term (size variable, expressed in log terms) is introduced in the model.8 On the opposite, the
unsignificant coefficients tend to be very unstable (e.g. number of stations, commuting travel
time for women and travel time or distance to highway). This is in agreement with expect-
ations and probably results from the large correlation between these variables. However, the
impact of commuting travel time becomes significant in larger samples. The coefficient of the
“log(Population)” significantly varies as a function of the number of alternatives, which is con-
sistent with the fact that, as explained in footnote 8, it reflects both a correction term (heavily
dependent on the number of sampled alternatives) term and preferences.

The second result to be noticed is that the explanatory power dramatically increases with
the number of alternatives (from 14.4% to 30.6%). This is consistent with the fact that the
coefficient of the size term “Log(Population)” becomes larger and more significant, suggesting
that this variable is a far better proxy for the list of commune dummies when the number of
alternatives increases.

4.4 Location choice with capacity constraints

4.4.1 Estimation of a more parsimonious model with and without constraints

In order to estimate the effect of the availability constraints based on the yearly demand, it
is necessary to infer an annual supply of dwellings from the current supply observed in March
1999. This annual supply depends on the Housing Turnover Index λ defined in Section 2.3.

As a preliminary sensitivity analysis, we consider two cases: λ = 0.5 and λ = 0.45. Recall
that these values correspond to an upper bound for the HTI, that is, a lower bound for the
constraints. The results obtained when estimating a more parsimonious model (with only 5
explanatory variables) on a 2% sample of households with all alternatives are reported in Table
6.9 The “initial” estimates corresponds to the model estimated assuming that the system is
not constrained (iteration l0 = 0 in Algorithm U, see Appendix), whereas the “final” estimates
correspond to (iteration l0 =∞ in Algorithm U).

Since random sampling introduces heterogeneity in the individual allocation ratios Ωi, the
homogeneous model can only be estimated using the universal set of alternatives (1, 300municip-
alities). However, the data set with universal choice set and 100% of the movers would contain
766 million lines and its size would be over 2 terabytes with all the variables used in the previous
section! In order to illustrate the method on a more tractable data set, we used a representat-
ive random sample of 2% households, and we selected a small number of explanatory variables

8 In the case of importance sampling (an alternative is included in the choice set with a probability proportional
to the number of households which have chosen this alternative), the coefficient of this correcting term should be
equal to 1 (see [3]). However, the size variable can also enter preferences. Its coefficient can therefore be estimated
freely, since it merges preferences, fitting considerations (see above) and correcting factor. Note that we did not
consider here exactly a size variable (number of dwellings) but instead a population variable. The difference
between these two variables is the log of average number of household members, which may also enter preferences.
Since all these variables are highly correlated between each other and with other explanatory variables, they
cannot be introduced simulatenously in the model, and we selected the most significant set of variables.

9The dataset size would prevent from estimating the full model on the same sample since four times more
variables roughly means four times more RAM necessary.
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(Log(Price); Average travel time from j, commuting (TC); % households with a foreign head;
Log(Population); and Same district as before move in the heterogeneous case). This selection is
based on results obtained in the previous sections and on other results not reported here in order
to save space. With this parsimonious model, the explanatory power is still reasonable in the
heterogeneous case, and sample size is tractable (15, 321, 800 lines, 11, 786 movers and slightly
more than 1 Gb). Although convergence is attained after a small number of iterations (less than
5 iterations for constraints at each estimation loop, less than 10 demand loops), about 2 hours
are necessary for estimating the homogeneous version of the model, and computing time goes
over 15 hours for the heterogeneous version model.10 In the future, working on a more powerful
computer and improving the efficiency of the algorithm will allow increasing significantly both
the sampling rate and the number of explanatory variables. A trade-off between the number of
households, the number of alternatives by individual and the number of explanatory variables
will remain, however.

The overall fit of this parsimonious model is quite good given the low number of explan-
atory variables: in the 2% sample with all alternatives, the Pseudo-R2 is nearly 30% in the
heterogeneous case and 23% in the homogeneous case. The unexpected positive sign of the price
coefficient reflects an omission bias: some alternative attributes (e.g. % poor households) are
correlated both with price and with demand. Because of this omission bias (which is corrected
by the introduction of additional explanatory variables, as in the full model), we will not inter-
pret the value of the price coefficient. The extreme sensitivity of the price coefficient to omission
bias has already been noticed by [8]. In addition, results not reported here show that the price
coefficient value and significance level are very different in a 1% sample of households, and even
more different in the full model. The most significant variable remains the dummy “same dis-
trict as before move”, and the corresponding estimated coefficient is stable across sample sizes.
Strangely enough, in this parsimonious specification, the price coefficient is unchanged when the
factor correcting for constraints is introduced.

We could anticipate identification problems because both price and correcting factor log
³
πij

´
reflect the supply/demand ratio in some sense: πij = Sj/Dj in the alternatives constrained ex
post and equilibrium on the dwelling market suggests that price depends on the supply/demand
ratio. However, the correlation between log(Price) and supply/demand ratio is only -4.85%
(significant at the 10% level but not at the 5% level) for initial demand estimates and -1.12%
(not significant at all) for final demand estimates, suggesting that prices are only marginally
influenced by the frictions in the housing market. In other words, prices do not actually clear the
market, a conclusion we can only generalize at this point to the Ile-de-France housing market.
Note that the price coefficient is not significant in the 1% sample and only marginally significant
in the 2% sample. However, the price coefficient becomes more significant in larger samples and
negative when enough covariates are added, as in the full model. In the parsimonious model, the
coefficients of the accessibility variable (average travel time from the commune) and of the size
variable (log(Population)) are stable across sample sizes and between initial and final estimates.
By contrast, the fraction of foreign households is more sensitive both to the sample size and to
the introduction of constraints.
10Using the SAS software on an IBM laptop with 2 Gb RAM.
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Table (6): Comparison of results in the homogeneous and heterogeneous cases (2% sample)

Variable
Homogeneous case
Coefficient (t-stat)

Heterogeneous case
Coefficient (t-stat)

Same district as before move

initial, λ = 0.45
final, λ = 0.45
initial, λ = 0.5
final, λ = 0.5

does not apply
does not apply
does not apply
does not apply

2.5765 (105.71)
2.5890 (106.05)
2.5765 (105.71)
2.5800 (105.93)

Log(Price)

initial, λ = 0.45
final, λ = 0.45
initial, λ = 0.5
final, λ = 0.5

0.0280 (1.67)
0.0321 (1.92)
0.002501 (0.11)
0.000250 (0.01)

0.0219 (1.30)
0.0268 (1.59)
0.0219 (1.30)
0.0260 (1.54)

Average travel time from j

initial, λ = 0.45
final, λ = 0.45
initial, λ = 0.5
final, λ = 0.5

−0.2443 (−2.27)
−0.1392 (−1.28)
−0.3170 (−2.07)
−0.3302 (−2.14)

−0.2876 (−2.64)
−0.1999 (−1.82)
−0.2876 (−2.64)
−0.2567 (−2.34)

% hh with a foreign head

initial, λ = 0.45
final, λ = 0.45
initial, λ = 0.5
final, λ = 0.5

−0.4483 (−2.28)
−0.8548 (−4.21)
−0.9955 (−3.46)
−1.0966 (−3.71)

−0.5612 (−2.77)
−0.9530 (−4.57)
−0.5612 (−2.77)
−0.8345 (−4.05)

Log(Population)

initial, λ = 0.45
final, λ = 0.45
initial, λ = 0.5
final, λ = 0.5

1.0846 (105.27)
1.0590 (98.82)
1.0807 (105.27)
1.0733 (68.33)

1.0722 (100.23)
1.0495 (94.76)
1.0722 (100.23)
1.0496 (94.23)

Log
³
πij

´ final, λ = 0.45
final, λ = 0.5

0.5157 (8.27)
0.7848 (7.22)

0.3888 (7.88)
0.7848 (7.22)

Pseudo-R2

initial, λ = 0.45
final, λ = 0.45
initial, λ = 0.5
final, λ = 0.5

22.90%
22.94%
23.15%
23.19%

29.68%
29.72%
29.84%
29.92%

We are also interested in the sensitivity of the results to the sampling ratio and compare
the results obtained on a 1% and on a 2% representative samples of households. Because
of constraints on the data sets size, we only explore the parsimonious models (see Table 8).
The “Same district as before move” dummy is used in the heterogeneous case, but not in the
homogeneous one.

4.4.2 Constraints and allocation ratio in the parsimonious model

We turn now to an assessment in the homogeneous case (parsimonious model) of the effect,
on the fraction of alternatives constrained and on the allocation ratio, of the sampling rate of
households and of λ. Table 7 presents the results for 1% and 2% samples of households, using
λ = 0.5 and λ = 0.45.

Table (7) Fraction alternatives constrained and allocation ratio, homogeneous case
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λ = 0.5, 1% λ = 0.5, 2% λ = 0.45, 2%

% alt. constrained:
Ex ante, initial demand estimates
Ex post, initial demand estimates
Ex ante, final demand estimates
Ex post, final demand estimates

36.2%
39.3%
46.5%
51.2%

40.2%
43.5%
51.5%
56.2%

47.31%
52.69%
61.77%
70.85%

Average [min;max] Sj/Dj ratio:
Initial demand estimates
Final demand estimates

1.18 [0.06; 5.48]
1.08 [0.01; 5.26]

1.14 [0.06; 4.97]
1.03 [0.03; 4.64]

1.09 [0.06; 4.94]
0.91 [0.00; 4.53]

Allocation ratio Ω:
Ex ante, initial demand estimates
Ex post, final demand estimates

1.019
1.050

1.021
1.039

1.037
1.127

For all values of the HTI λ, we have the following result: the fraction of constrained altern-
atives is always larger once algorithm K has converged. This is true when the initial demand
is considered and when the final demand is considered. For the final demand, the fraction of
constrained alternatives is (almost always) larger than for the initial demand at any stage of
algorithm K. In other words, convergence of the inner or outer loop increases the fraction of
constrained alternatives. The reason behind this intuition is as follows: at the initial demand
loop, the observed demand under-estimates the ex ante demand in constrained alternatives and
over-estimates ex ante demand in unconstrained alternatives. These biases are corrected at the
final demand loop. As expected, ceteris paribus, when λ decreases, the level of constraints in-
creases since a lower value of λ means a smaller number of dwellings available on average during
one year. Note that a very small variation of λ induces an important variation of the fraction
of alternatives constrained.

The average ratio of supply to demand, which is inversely proportional to the degree of
constraint, decreases from the initial demand to the final demand (since this increases the
amount of constraints). The same reasoning applies to Ω, which is an increasing function of the
level of constraints. According to the final estimates, when λ = 0.5, 4% to 5% of the households
are not located in their preferred commune.

Similar results are obtained in the heterogeneous case, with the parsimonious model. The
results (not reported here) for the heterogeneous case are qualitatively similar to the ones of
the homogeneous case in terms of the fraction of alternatives constrained and the supply over
demand ratio. Note that the allocation ratio in the heterogeneous case is specific either to the
household or to the alternative. When λ = 0.5, the average individual-specific allocation ratio is
approximately equal to the homogeneous allocation ratio, but this is no more true when λ = 0.45.
In that case, the fraction of households not located in their preferred commune increases to 13%
when λ = 0.45.

4.4.3 Extent of the constraints and allocation ratio in the full model (heterogen-
eous case)

Here we examine, in the heterogeneous case, the effect on the fraction of alternatives constrained
and on the allocation ratio of the sampling rate of households and of alternatives. Table 8
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presents the results in the case when demand is estimated using the full model (with 24 explan-
atory variables) and the HTI λ is specific to the district. Note that constraints are more severe
in that case because the average HTI used here (see Section 2.3) is 39% for Ile-de-France. This
new set of results should therefore be considered as an upper bound for the constraints (since it
is based on a lower bound for HTI).

The model could not be estimated on the 1300 alternatives/0.5% sample because it ran out
of memory after the estimation of the initial demand. The results are significantly different from
those obtained in the previous section, and are highly sensitive to the number of alternatives
used for the estimation. The fraction of alternatives constrained ex ante with initial demand
estimates is also sensitive to the sampling ratio, but the fraction of alternatives constrained ex
post with final demand is less sensitive to the sampling ratio. However, the constraints are not
very severe in most of these alternatives, and the average allocation ratio remains close to 1.13
ex ante and 1.30 ex post in all sample sizes with 100 alternatives, which means that 30% of
households are not located in their preferred commune.

Table (8) Fraction alternatives constrained and allocation ratio, heterogeneous case, district-
specific HTI

Nb.alt.
sampling rate

500
0.5%

200
0.5%

100
0.5%

100
1%

100
2%

100
3%

100
4%

100
5%

% alt. constr.:
ex ante, initial
ex post, initial
ex ante, final
ex post, final

27.0%
43.7%
34.8%
62.5%

29.5%
50.8%
37.7%
69.1%

40.3%
57.7%
45.8%
67.9%

38.7%
59.2%
44.2%
68.8%

43.8%
63.0%
48.5%
75.5%

38.9%
58.5%
41.8%
69.2%

38.2%
59.2%
43.0%
71.7%

40.9%
60.4%
46.2%
73.8%

Average Ωi:
ex ante, initial
ex post, final

1.167
1.478

1.179
1.444

1.138
1.314

1.130
1.302

1.136
1.311

1.134
1.303

1.129
1.303

1.131
1.321

[min;max] Ωi:
ex ante, initial
ex post, final

[1.07;1.35]
[1.00;3.70]

[1.06;1.55]
[0.91;5.35]

[1.02;1.74]
[0.87;5.25]

[1.02;1.86]
[0.83;7.38]

[1.01;2.06]
[0.61;8.02]

[1.01;2.54]
[0.23;13.4]

[1.01;1.95]
[0.44;9.15]

[1.01;1.95]
[0.42;12.3]

Average Ω̄j :
ex ante, initial
ex post, final

1.194
1.717

1.199
1.636

1.159
1.441

1.157
1.442

1.169
1.472

1.157
1.431

1.153
1.445

1.156
1.482

[min;max] Ω̄j :
ex ante, initial
ex post, final

[1.13;1.25]
[1.23;2.43]

[1.08;1.41]
[−;3.06]

[1.03;1.55]
[−;4.49]

[1.08;1.43]
[1.08;3.45]

[1.09;1.39]
[1.11;2.35]

[1.09;1.34]
[1.14;2.56]

[1.08;1.33]
[1.14;2.36]

[1.10;1.31]
[1.16;3.05]

4.4.4 Comparison of constrained and unconstrained aggregate demand

We now turn to the aggregate results and compare the demand predicted by the different models
in each commune to actual (observed) demand, that is the number of movers observed in 1998.
At a first glance, the correlations between aggregate demand (Dj) estimated in the different
specifications and samples is very high. However, the precision of aggregate demand deteriorates
in small municipalities when sample size becomes too small.
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Table 9 reports the correlation coefficient between the actual demand (number of households
which moved in to each commune in 1998) and the demand predicted by the different models.
The “Full model” was estimated using a random sample of 8 alternatives for each household,
with 24 explanatory variables, as reported in Table 5. The “Parsimonious model” was estimated
using the same random sampling of 8 alternatives, but with only 5 explanatory variables, as
reported in Table 6. The estimates with constraints are those of the homogeneous case with
λ = 0.5. Table 9 shows that the accuracy of the aggregate estimates remains satisfactory when
the sampling ratio decreases. It is interesting to notice that accuracy is not significantly altered
in the parsimonious model. It seems that the accuracy becomes poorer and poorer (correlation
less than 90% in the 1% sample, less than 93% in the 2% sample) when the “size” (measured
as the number of observed moves into the commune in 1998) of the alternatives decreases. The
correlation with actual demand remains quite high in the 1148 municipalities with less than
1000 movers in 1998, but it diminishes in the 1054 municipalities with less than 500 movers in
1998 and becomes even lower in smaller alternatives. However, accuracy significantly improves
in the 1% and 2% samples of households when a universal set of alternatives is used for the
demand predictions. Note that with a universal set of alternatives the accuracy is the same
in the 1% and 2% samples of households, whereas, with a random sampling of 8 alternatives,
accuracy was far poorer in the 1% sample compared to the 2% sample of households (in the small
municipalities). Integrating the constraints significantly improves the accuracy of the demand
estimates, especially for small alternatives.

Table (9): Correlation between actual number of movers and demand predicted by different
models

Model / sampling rate / Nb alt. All alt.
< 1000
1148

< 500
1054

< 200
948

< 100
841

< 50
725

Full / 100% / 8 0.9979 0.9941 0.9893 0.9764 0.9599 0.9205
Parsimonious / 100% / 8 0.9968 0.9877 0.9765 0.9626 0.9444 0.8979
Full / 20% / 8 0.9979 0.9919 0.9855 0.9672 0.9329 0.8726
Parsimonious / 20% / 8 0.9967 0.9864 0.9726 0.9535 0.9206 0.8595
Full / 2% / 8 0.9968 0.9735 0.9398 0.8701 0.7441 0.6258
Parsimonious / 2% / 8 0.9958 0.9702 0.9361 0.8878 0.7775 0.6702
Full model, 1% / 8 0.9958 0.9554 0.8952 0.7659 0.6180 0.5124
Parsimonious / 1% / 8 0.9950 0.9531 0.8986 0.7935 0.6563 0.5529
Parsimonious / 2% / all 0.9953 0.9803 0.9635 0.9427 0.9218 0.8582
Parsimonious / 2% / all, constraints 0.9955 0.9834 0.9722 0.9625 0.9426 0.9005
Parsimonious / 1% / all 0.9953 0.9799 0.9624 0.9397 0.9176 0.8582
Parsimonious / 1% / all, constraints 0.9997 0.9828 0.9712 0.9610 0.9413 0.9005

5 Conclusion and extensions

Constraints on the availability of alternatives have been demonstrated for the housing market
in the Ile-de-France. We have shown that housing prices do tend to capitalize the imbalances
between demand and supply in the short run period of one year, but do not fully accomplish the
task of resolving short-term market disequilibrium. The specification linking residential location
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choices and housing prices through the aggregation of individual demands provides a tractable
means to address this economic endogeneity issue, and our results demonstrate that the market
clearing role for prices is significant. However, even after accounting for the price effect, a large
fraction of alternatives still had excess demand, imposing availability constraints on consumers
that ultimately must make suboptimal choices from unconstrained alternatives. This is a
significant empirical finding, since virtually all previous literature in discrete choice modeling
in market contexts implicitly or explicitly assume that prices clear the market. We note that
excess demand appears to be more significant when we consider hererogeneity introduced by
including interactions of household and alternative characteristics in the utility function. This
suggests that more complete specifications of the interactive factors influencing utility are more
likely to explain the uneven distributions of demands of different types of housing consumers,
and result in more accurate estimation of the excess demand.

We have developed and demonstrated a viable mechanism to address the influence of con-
strained alternatives on choice outcomes, by using relatively weak assumptions consistent with
the property of independence of irrelevant alternatives inherent in the multinomial logit model.
Basically, we assume that (1) if an individual prefers an alternative j, which is unconstrained ex
post, he can be sure to be allocated to it, and (2) in an alternative constrained ex post, the indi-
vidual allocation ratio is the same for all individuals. We then develop a discrete choice model
specification and computational algorithm that corrects for capacity constraints in a way that is
consistent with the IIA assumption. In can be shown that this algorithm converges to a unique
equilibrium in the case of homogeneous agents. Though we have not proven the existence and
uniqueness of an equilibrium solution in the heterogeneous case, simulation results suggest that
convergence and uniqueness occur. We leave the theoretical proofs for future research.

Application of this constrained discrete choice algorithm confirms that the share of altern-
atives initially estimated to be constrained significantly increases once the parameter estimates
are adjusted to correct for the effect of the constraints. In our heterogeneous case, the initial
estimate of ex ante constraints was that 30% to 40% of communes were constrained, depending
on sampling rates. At convergence of the algorithm, after accounting for the complex spillovers
of households forced to make second-best choices among initially unconstrained alternatives that
could become constrained due to these spillovers, this estimate increased to 62% to 75%.

Our sensitivity testing confirms that most parameter estimates in the unconstrained model
are fairly robust to sampling of households, down to quite small proportions such as 1 to 2%,
where precision decreases. Due to the size of the data and the use of a full enumeration of
1300 alternatives in the heterogeneous case, we were limited to using small sampling rates for
households for testing a very parsimonious model that clearly reflects omitted variables bias, but
allowed the initial testing of the algorithm to proceed. The results of this testing confirm that
the algorithm converges after a small number of iterations, and that parameters can be adjusted
for the bias resulting from capacity constraints. Finally, our analysis of demand predictions
confirms that the constrained discrete choice algorithm significantly improves predictions of
demand, particularly for those alternatives with relatively small market share. This may have
important implications for research in which the alternatives of interest reflect small market
shares, and the system contains some capacity constraints — even if the alternatives of interest
are not themselves constrained ex ante.

The method developed so far can be improved along several directions. First, our results
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are sensitive to the value of the Housing Turnover Index λ, which could be estimated precisely
on our data. A more behavioral approach could help deriving the individual optimal search
time (which is implicitly aggregated in our HTI λ), following an approach similar to the one
used in [4] in the case of automobile market. Second, other allocation mechanisms could be
envisaged. Our allocation mechanism relies to a certain extent on an assumption of equity
in the adjustment of choice probabilities. Finally, further empirical testing and refinement of
the computational performance of the constrained choice algorithm, and implementation in
generally-available software, remain to be completed, and these steps will make it possible to
explore applications of this approach to policy questions relevant to constrained choice contexts.
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7 Appendix

Algorithm K: known demand

1. Check that aggregate demand is smaller than aggregate supply (see Condition (4)).

2. Iteration l = 0 (initialization): set Ωi = 1; compute the set C (0) = {j ∈ J | Sj ≤ Dj}
of alternatives constrained at iteration zero (that is, constrained ex ante). The set of
alternatives unconstrained at iteration zero (that is, unconstrained ex ante) is given by:
C̄ (0) = J \ C (0).

3. Compute the individual allocation ratios Ωi (0) =
1− j∈C(0)

Sj
Dj
Pij

1− j∈C(0) Pik
, using Lemma 3.
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4. Compute the alternative-specific allocation ratios using Equation (9):

Ω̄j (0) =

XN

i=1
Ωi (0)PijXN

i=1
Pij

.

5. Update iteration: l → l + 1. Update the constrained choice set using Condition (10) and
Definition (9):

C (l + 1) =
½
j ∈ J | Sj ≤ Ω̄j (l)Dj =

XN

i=1
Ωi (l)Pij

¾
.

6. Update: Ωi (l + 1) =
1− j∈C(l+1)

Sj
Dj
Pij

k∈C̄(l+1) Pik

7. Update Ω̄j (l + 1) =

XN

i=1
Ωi(l+1)PijXN

i=1
Pij

8. Stop at iteration l+1 if C (l + 1) = C (l) (and therefore Ωi (l + 1) = Ωi (l) for all i = 1...N),
else go to 5. By definition, convergence is attained at l =∞.

9. Compute the correction factor

ln
¡
πij
¢
=

½
ln (Sj/Dj) if j ∈ C
ln
¡
Ωi (∞)

¢
if j ∈ C̄ .

using Theorem 1.

In the homogenous case, it can be shown that this algorithm converges. Simulation experi-
ments suggest that it also converge in the heterogenous case.

Algorithm U: unknown demand

1. Check that the aggregate demand is smaller than the aggregate supply (Condition (4)).

2. Iteration l0 = 0 (initialization of demand of the estimation module): estimate a MNL
model assuming initially no constraints (i.e. Ωi = Ω̄j = πij = 1). This leads to the

estimated choice probabilities P̂ij (0) and to the estimated demand D̂j (0) =
XN

i=1
P̂ij (0).

The correcting factors ln
h
πij (0)

i
are initialized to 0 and play no role in Equation (11a).

(a) Iteration l = 0 (initialization of the constraints): compute the set

C (0, 0) =
n
j ∈ J | Sj ≤ D̂j (0)

o
of alternatives constrained ex ante for the initial estimated demand, using Condition
(10).
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(b) Compute the individual allocation ratio, using Lemma 3:

Ωi (0, 0) =

⎛⎝1− X
j∈C(0,0)

Sj

D̂j (0)
P̂ij (0)

⎞⎠,⎛⎝1− X
j∈C(0,0)

P̂ij (0)

⎞⎠ .

(c) Compute the alternative-specific allocation ratio using Equation (9):

Ω̄j (0, 0) =

µXN

i=1
Ωi (0, 0) P̂ij (0)

¶ÁµXN

i=1
P̂ij (0)

¶
.

(d) Update iteration for algorithm K: l→ l+1. Update the set of alternatives constrained
using Condition (10):

C (0, l + 1) =
½
j ∈ J | Sj ≤ Ω̄j (0, l) D̂j (0) =

XN

i=1
Ωi (0, l) P̂ij (0)

¾

(e) Update Ωi (0, l + 1) =

Ã
1−

P
j∈C(0,l+1)

Sj
D̂j(0)

P̂ij (0)

!,Ã
1−

P
j∈C(0,l+1)

P̂ij (0)

!

(f) Update Ω̄j (0, l + 1) =
µXN

i=1
Ωi (0, l + 1) P̂ij (0)

¶ÁµXN

i=1
P̂ij (0)

¶
.

(g) Stop at iteration l+1 if C (0, l + 1) = C (0, l) (and therefore Ωi (0, l + 1) = Ωi (0, l) , i =
1...N), else go to step d.

(h) When convergence is attained (l =∞), we have C (0) def=
n
j ∈ J | Sj ≤ Ω̄j (0,∞) D̂j (0)

o
,

Ωi (0)
def
= Ωi (0,∞), and Ω̄j (0)

def
= Ω̄j (0,∞) .

3. Update iteration of the estimation module: l0 → l0 + 1: update

πij
¡
l0 + 1

¢
=

(
Sj

D̂j(l0)
if j ∈ C (l0)

Ωi (l0) if j ∈ C̄ (l0)
.

4. Stop if
¯̄̄
πij (l

0 + 1)− πij (l
0)
¯̄̄
< 10−6, ∀ i = 1...N, ∀ j ∈ J (l0 = ∞). The solution

is: Dj = D̂j (l
0) = D̂j (∞) , j ∈ J , C = C (l0) = C (∞), Ωi = Ωi (l0) = Ωi (∞) and

Ω̄j = Ω̄j (l
0) = Ω̄j (∞); else go to step 5.

5. Update the MNL estimates with updated πij (l
0 + 1) among the explanatory variables

in Ṽ i
j . This gives P̃ij (l0 + 1) =

exp(Ṽ i
j (l

0+1))X
k∈J

exp(Ṽ i
k (l

0+1))
, P̂ij (l0 + 1) =

P̃ij(l
0+1)

πij(l
0+1)

and D̂j (l
0 + 1) =

XN

i=1
P̂ij (l0 + 1)

(a) Iteration l = 0 (initialization): Compute the set C (l0 + 1, 0) =
n
j ∈ J | Sj ≤ D̂j (l

0 + 1)
o

of alternatives constrained ex ante for demand at step (l0 + 1) .
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(b) Compute the individual allocation ratio

Ωi (l0 + 1, 0) =

Ã
1−

P
j∈C(l0+1,0)

Sj
D̂j(l0+1)

P̂ij (l0 + 1)

!,Ã
1−

P
j∈C(l0+1,0)

P̂ij (l0 + 1)

!
.

(c) Compute the alternative-specific allocation ratio Ω̄j (l0 + 1, 0) =

XN

i=1
Ωi(l0+1,0)P̂ij(l

0+1)XN

i=1
P̂ij(l0+1)

.

(d) Update iteration of Algorithm K: l→ l + 1. Update

C (l0 + 1, l + 1) =
½
j ∈ J | Sj ≤ Ω̄j (l0 + 1, l) D̂j (l

0 + 1) =
XN

i=1
Ωi (l0 + 1, l) P̂ij (l0 + 1)

¾
.

(e) Update Ωi (l0 + 1, l + 1) =
1−

j∈C(l0+1,l+1)

Sj

D̂j(l0+1)
P̂ij(l

0+1)

1−
j∈C(l0+1,l+1)

P̂ij(l0+1)
.

(f) Update Ω̄j (l0 + 1, l + 1) =

XN

i=1
Ωi(l0+1,l+1)P̂ij(l

0+1)XN

i=1
P̂ij(l0+1)

.

(g) Stop Algorithm K at iteration l + 1 if C (l0 + 1, l + 1) = C (l0 + 1, l)
(and therefore Ωi (l0 + 1, l + 1) = Ωi (l0 + 1, l) and Ω̄j (l0 + 1, l + 1) = Ω̄j (l0 + 1, l)),
else go to step d.

(h) When convergence of Algorithm K is attained (l =∞), we have
C (l0 + 1) =

n
j ∈ J | Sj ≤ Ω̄j (l0 + 1,∞) D̂j (l

0 + 1)
o
, Ωi (l0 + 1) = Ωi (l0 + 1,∞), and

Ω̄j (l
0 + 1) = Ω̄j (l0 + 1,∞) .

6. Go to step 3.

29


